Текст книги "Большая Советская Энциклопедия (УГ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 3 (всего у книги 9 страниц)
Углеводороды
Углеводоро'ды, класс органических соединений, молекулы которых состоят только из атомов углерода и водорода. В зависимости от строения различают ациклические, или алифатические, У., в молекулах которых атомы углерода связаны друг с другом в линейные или разветвленные цепи, и изоциклические, или карбоциклические, У., молекулы которых представляют собой кольца (циклы) из 3 и более атомов углерода. Эту группу У. делят на алициклические У. и ароматические углеводороды (см. также Ароматические соединения ). Ациклические У. подразделяют на насыщенные углеводороды , содержащие только простые связи (родоначальник ряда – метан), и ненасыщенные углеводороды , в молекулах которых могут содержаться кратные связи – двойные и тройные, например одна двойная связь (см. Олефины ), две двойные связи (см. Диеновые углеводороды ), одна тройная связь (как, например, в ацетилене ). Алициклические У. также могут быть насыщенными (см. Циклоалканы ) и ненасыщенными. У. образуют гомологические ряды , характеризующиеся закономерным изменением физических и химических свойств (см. также Органическая химия ).
Углеводы
Углево'ды, обширная группа органических соединений, входящих в состав всех живых организмов. Первые известные представители этого класса веществ по составу отвечали общей формуле Cm H2n On , то есть углерод + вода (отсюда название); позднее к У. стали относить также их многочисленные производные с иным составом, образующиеся при окислении, восстановлении или введении заместителей.
Превращения У. известны с древнейших времён, так как они лежат в основе процессов брожения, обработки древесины, изготовления бумаги и тканей из растительного волокна. Тростниковый сахар (сахарозу) можно считать первым органическим веществом, выделенным в химически чистом виде. Химия У. возникла и развивалась вместе с органической химией ; создатель структурной теории органических соединений А. М. Бутлеров — автор первого синтеза сахароподобного вещества из формальдегида (1861). Структуры простейших сахаров выяснены в конце 19 в. в результате фундаментальных исследований немецких учёных Г. Килиани и Э. Фишера , основанных на стереохимических представлениях Я. Г. Вант-Гоффа и блестяще их подтвердивших. В 20-е гг. 20 в. работами английского учёного У. Н. Хоуорса были заложены основы структурной химии полисахаридов. Со 2-й половины 20 в. происходит стремительное развитие химии и биохимии У., обусловленное их важным биологическим значением и базирующееся на современной теории органической химии и новейшей технике эксперимента.
Классификация и распространение углеводов. У. принято делить на три основных группы: моносахариды, олигосахариды и полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3—9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой. Простейший из моносахаридов – глицериновый альдегид – содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Прочие моносахариды имеют несколько асимметрических атомов углерода; их рассматривают как производные D– или L-глицсринового альдегида и относят в соответствии с абсолютной конфигурацией при (т— 1)-м атоме углерода к D– или L-pяду. Различия между моносахаридами в каждом ряду обусловлены относительной конфигурацией остальных асимметрических центров (см. Изомерия ). Характерное свойство моносахаридов в растворах – способность к мутаротации, то есть установлению таутомерного равновесия (см. Таутомерия ) между ациклической альдегидо– или кетоформой, двумя пятичленными (фуранозными) и двумя шестичленными (пиранозными) циклическими полуацетальными формами (см. схему). Образующиеся пиранозы (как и фуранозы) различаются конфигурацией (a или b) возникающего при циклизации асимметрического центра у карбонильного атома углерода (на схеме помечен звёздочкой).
Соотношение между таутомерными формами в равновесии определяется их термодинамической устойчивостью (для обычных сахаров преобладают пиранозные формы). Полуацетальный гидроксил резко отличается от прочих гидроксильных групп моносахарида по способности к реакциям нуклеофильного замещения. Такие реакции с разнообразными спиртами приводят к образованию гликозидов (остаток спирта в гликозиде называют агликоном). В тех случаях, когда агликоном служит молекула моносахарида, образуются олиго– и полисахариды. При этом каждый остаток моносахарида может иметь пиранозную или фуранозную структуру, a– или b-конфигурацию гликозидной связи и быть связанным с любой из гидроксильных групп соседнего моносахарида. Поэтому число различающихся строением полимерных молекул, которые можно построить даже только из одного моносахарида, огромно.
К наиболее типичным моносахаридам относятся D-глюкоза , D-манноза , D-галактоза , D-фруктоза , D-ксилоза , L-арабиноза . К моносахаридам относятся также: дезоксисахара, в молекулах которых один или несколько гидроксилов заменены атомами водорода (L-paмноза , L-фукоза , 2-дезокси-D-pибоза); аминосахара, в молекулах которых один или несколько гидроксилов заменены на аминогруппы (D-глюкозамин, D-галактозамин); многоатомные спирты, или альдиты, образующиеся при восстановлении карбонильных групп моносахаридов (сорбит, маннит); уроновые кислоты , то есть моносахариды, у которых первичная спиртовая группа окислена до карбоксильной; разветвленные сахара, содержащие нелинейную цепь углеродных атомов (апиоза, L-cтрептоза); высшие сахара с длиной цепи более шести атомов углерода (седогептулоза , сиаловые кислоты ). За исключением D-глюкозы и D-фруктозы, свободные моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго– и полисахаридов и могут быть получены из них кислотным гидролизом. Разработаны методы химического синтеза редких моносахаридов, исходя из более доступных.
Олигосахариды содержат в своём составе 2—10 моносахаридов, связанных гликозидными связями. Наиболее распространены в природе дисахариды сахароза , трегалоза , лактоза . Известны многочисленные гликозиды оли-госахаридов, к которым относятся различные физиологически активные вещества (например, флавоноиды , сердечные гликозиды, сапонины , многие антибиотики, гликолипиды ).
Полисахариды – высокомолекулярные, линейные или разветвленные соединения, молекулы которых построены из моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы (остатки фосфорной, серной и жирных кислот). В свою очередь цепи полисахаридов могут присоединяться к белкам с образованием гликопротеидов . Отдельную группу составляют биополимеры, в молекулах которых остатки моно– или олигосахаридов соединены друг с другом не гликозидными, а фосфодиэфирными связями; к этой группе относятся тейхоевые кислоты из клеточных стенок грамположительных бактерий, некоторые полисахариды дрожжей, а также нуклеиновые кислоты , в основе которых лежит полирибозофосфатная (РНК) или поли-2-дезоксирибозофосфатная (ДНК) цепь.
Физико-химические свойства углеводов. Благодаря обилию полярных (гидроксильных, карбонильной и др.) групп в молекулах моносахаридов они хорошо растворимы в воде и нерастворимы в неполярных органических растворителях (бензоле, петролейном эфире и др.). Способность к таутомерным превращениям обычно затрудняет кристаллизацию моносахаридов. Если такие превращения невозможны, как в гликозидах или олигосахаридах типа сахарозы, вещества кристаллизуются легко. Многие гликозиды с малополярными агликонами (например, сапонины) проявляют свойства поверхностно-активных соединений. Полисахариды являются гидрофильными полимерами, молекулы которых способны к ассоциации с образованием высоковязких растворов (растительной слизи , гиалуроновая кислота ); при определённом соотношении свободных и ассоциированных участков молекул полисахариды дают прочные гели (агар, пектиновые вещества ). В отдельных случаях молекулы полисахаридов образуют высокоупорядоченные надмолекулярные структуры, нерастворимые в воде (целлюлоза , хитин ).
Биологическая роль углеводов. Роль У. в живых организмах чрезвычайно многообразна. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соединениями для биосинтеза разнообразных гликозидов, полисахаридов, а также веществ др. классов (аминокислот, жирных кислот, полифенолов и т.д.). Эти превращения осуществляются соответствующими ферментными системами, субстратами для которых служат, как правило, богатые энергией фосфорилированные производные сахаров, главным образом нуклеозиддифосфатсахара. У. запасаются в виде крахмала в высших растениях, в виде гликогена в животных, бактериях и грибах и служат энергетическим резервом для жизнедеятельности организма (см. Брожение , Гликолиз , Окисление биологическое ). В виде гликозидов в растениях и животных осуществляется транспорт различных продуктов обмена веществ. Многочисленные полисахариды или более сложные углеводсодержащие полимеры выполняют в живых организмах опорные функции. Жёсткая клеточная стенка у высших растений построена из целлюлозы и гемицеллюлоз, у бактерий – из пептидогликана; в построении клеточной стенки грибов и наружного скелета членистоногих принимает участие хитин. В организме животных и человека опорные функции выполняют сульфатированные мукополисахариды соединительной ткани, свойства которых позволяют обеспечить одновременно сохранение формы тела и подвижность отдельных его частей; эти полисахариды также способствуют поддержанию водного баланса и избирательной катионной проницаемости клеток. Аналогичные функции в морских многоклеточных водорослях выполняют сульфатированные галактаны (красные водоросли) или более сложные сульфатированные гетерополи-сахариды (бурые и зелёные водоросли); в растущих и сочных тканях высших растений аналогичную функцию выполняют пектиновые вещества. Особенно важную и до конца ещё не изученную роль играют сложные У. в образовании специфических клеточных поверхностей и мембран. Так, гликолипиды – важнейшие компоненты мембран нервных клеток, липополисахариды образуют наружную оболочку грамотрицательных бактерий. У. клеточных поверхностей часто определяют явление иммунологической специфичности, что строго доказано для групповых веществ крови и ряда бактериальных антигенов . Имеются данные, что углеводные структуры принимают участие также в таких высокоспецифичных явлениях клеточного взаимодействия, как оплодотворение, «узнавание» клеток при тканевой дифференциации и отторжении чужеродной ткани и т.д.
Практическое значение углеводов. У. составляют большую (часто основную) часть пищевого рациона человека (см. Питание ). В связи с этим они широко используются в пищевой и кондитерской промышленности (крахмал, сахароза, пектиновые вещества, агар). Их превращения при спиртовом брожении лежат в основе процессов получения этилового спирта, пивоварения, хлебопечения; др. типы брожения позволяют получить глицерин, молочную, лимонную, глюконовую кислоты и др. вещества. Глюкоза, аскорбиновая кислота, сердечные гликозиды, углеводсодержащие антибиотики, гепарин широко применяются в медицине. Целлюлоза служит основой текстильной промышленности, получения искусственного целлюлозного волокна, бумаги, пластмасс (см. Этролы ), взрывчатых веществ (см. Нитраты целлюлозы ) и др.
Важнейшие вопросы химии и биохимии У.– усовершенствование методов установления строения и синтеза природных У., выяснение связи между их структурой и функцией в организме, а также путей биосинтеза – разрабатываются химическими и биохимическими научными центрами наряду с др. актуальными проблемами органической химии, биохимии и молекулярной биологии. Исследованиям только в области У. посвящены специализированные международные издания: ежегодник «Advances in Carbohydrate chemistry and biochemistry» (c 1945) и журнал «Carbohydrate research» (c 1965). см. также статьи Брожение , Соединения природные , Углеводный обмен , фотосинтез .
Лит.: Химия углеводов, М., 1967; Методы химии углеводов, пер. с англ., М., 1967; Гликопротеины [т. 1—2], пер. с англ., М., 1969; Carbohydrates, ed. by G. О. AspinalI, L. – Baltimore, [1973]; Industrial gums, eds. R. L. Whistler and J. N. Bemiller, 2 ed., N. Y. – L., 1973.
А. И. Усов.
Рис. к ст. Углеводы.
Углевоз
Углево'з, угольщик, сухогрузное судно для перевозки каменного угля навалом; один из типов навалочников . Самоходные морские У. появились в середине 19 в. в связи с массовыми перевозками угля для нужд промышленности, энергетики и транспорта. У. – однопалубные суда с минимальным надводным бортом, машинное отделение и жилые помещения располагаются в корме. На У. предусматривают устройства для интенсивной вентиляции трюмов, оборудование для замера температуры воздуха в них, средства борьбы с пожарами, защиту помещений от газов, выделяемых грузом. Размеры грузовых люков и прочность корпусных конструкций рассчитывают на применение разгрузочных грейферов . У большинства морских У. (1976) грузоподъёмность 2—20 тыс. т, скорость 20—26 км/ч. На некоторых саморазгружающихся У. под трюмами в виде воронок располагаются продольные ленточные транспортёры, которые при разгрузке подают груз на палубный разгрузчик, а оттуда – на берег.
Углегорск (город в Донецкой обл.)
Углего'рск, город в Донецкой области УССР. Подчинён Енакиевскому горсовету. Железнодорожный узел (линии на Донецк – Никитовку, Дебальцево). 15 тыс. жителей (1975). Добыча угля. Центральная обогатительная фабрика. Предприятия пищевой промышленности.
Углегорск (город в Сахалинской обл.)
Углего'рск, город областного подчинения в Сахалинской области РСФСР. Порт на берегу Татарского пролива, в 150 км к С. от железнодорожная станция Ильинск. 18,4 тыс. жителей (1975). Леспромхоз, целлюлозно-бумажный комбинат, цех фирмы «Сахалинмебель», завод «Стройдеталь». Предприятия пищевой промышленности. Близ У. – добыча каменного угля.
Углегорская ГРЭС
Углего'рская ГРЭС, конденсационная электростанция в посёлке Светлодарское Донецкой области УССР. Проектная мощность 3600 Мвт (4 блока по 300 и 3 по 800 Мвт ). Топливом служат донецкий уголь для блоков 300 Мвт и мазут для блоков 800 Мвт. Техническое водоснабжение оборотное на базе наливного водохранилища. Строительство начато в 1967, 1-я очередь пущена в 1973. На начало 1976 введены в эксплуатацию 4 блока по 300 Мвт и 1 блок 800 Мвт. Электроэнергия передаётся по высоковольтным линиям электропередачи напряжением 110 и 330 кв. Станция входит в объединённую энергосистему Юга и через неё в Единую энергетическую систему СССР.
Углегорский
Углего'рский, посёлок городского типа в Тацинском районе Ростовской области РСФСР. Расположен в 6 км от железнодорожной станции Тацинская (на линии Волгоград – Лихая). Обувная фабрика, завод металлоизделий.
Углезаводск
Углезаво'дск, посёлок городского типа в Долининском районе Сахалинской области РСФСР. Расположен в южной части острова Сахалин, на р. Наиба. Железнодорожная станция на ветке Быков – Сокол. Завод железобетонных изделий. Вблизи У. – добыча каменного угля.
Углекаменск
Углека'менск, посёлок городского типа в Приморском крае РСФСР, подчинён Партизанскому горсовету. Расположен в 15 км к С.-В. от Партизанска и в 4 км от железнодорожной станции Лейтенант Гордеев (на ветке Партизанск – Сергеевка). Добыча каменного угля. Швейная фабрика.
Углекислота
Углекислота', неправильное название углерода двуокиси CO2 , которая является ангидридом угольной кислоты.
Углекислые соли
Углеки'слые со'ли, соли угольной кислоты; см. Карбонаты , Гидрокарбонаты .
Углекислый газ
Углеки'слый газ, CO2 , то же, что углерода двуокись .
Угленосность
Углено'сность, совокупность данных о количестве пластов угля (общем и удовлетворяющих кондициям), коэффициенте угленосности , распределении пластов по разрезу угленосной толщи, их синонимике, мощности, строении и степени выдержанности каждого из них, петрографических типах, химико-технологических свойствах углей и закономерностей пространственного их изменения в связи с условиями образования угленосных формаций. См. также Угли ископаемые , Угольный бассейн .
Углепетрография
Углепетрогра'фия, описание составных частей угля, изучаемых макроскопически и под микроскопом в тонких и полированных шлифах. Основоположниками У. в СССР являются Ю. А. Жемчужников, М. Д. Залесский; за рубежом – Р. Тиссен (США), М. Стопе (Великобритания). С совершенствованием методов и расширением круга проблем У. она превратилась в науку о составе, строении и происхождении углей – петрологию углей. Основная задача петрологии углей – изучение элементарных компонентов органического вещества угольных пластов, то есть остатков растений, которые в процессе биохимического разложения в торфяную стадию углеобразования в той или иной мере сохранили или утратили свою форму и структуру. При этом различают форменные элементы и основную массу, которые совместно называются составными частями, или компонентами, угля. Различают макрокомпоненты (витрен , фюзен) и микрокомпоненты (споры, кутикула и т.д.).
В У. используются оптические методы микроскопических исследований с применением проходящего и отражённого, простого, поляризованного и ультрафиолетового света в воздушной среде и с иммерсией; разделение в тяжёлых жидкостях (смеси C6 H6 , CCl4 , CHBr3 и др.) на группы компонентов, близких по плотности; методы мацерации для выделения и последующего изучения устойчивых компонентов, методы травления сильными окислителями для выявления скрытой структуры угля, а также методы термического и химического анализа вещества компонентов или их групп, выделенных из общей массы угля. Большое значение для решения задач имеют количественные методы: определение отражательной способности, показателя преломления и твёрдости витринита, цвета и яркости люминесценции лейптинита, подсчёт содержания компонентов в средних пластовых пробах и в кусках угля.
Различными исследователями выделяется от 14 до 40 петрографических компонентов углей, объединяемых по исходному материалу и условиям его превращения в торфяной стадии углеобразования в три основные (витринитовые или гелинитовые, фюзинитовые и лейптинитовые) и две промежуточные (слабо гелифицированные и слабо фюзенизированные) группы микрокомпонентов.
Количественное соотношение микрокомпонентов и состав исходных растений определяют генетические типы углей, характеризующиеся определёнными химическими и технологическими свойствами в пределах каждой данной стадии углефикации.
Лит.: Петрографические особенности и свойства углей, М., 1963; Материалы по геологии и петрографии углей СССР, Л., 1968; Угленосные формации и их генезис, М., 1973; Петрология палеозойских углей СССР, М., 1975.
Углеплотность
Углепло'тность, количество запасов угля, отнесённое к единице угленосной площади (месторождения, района, бассейна). У. определяется путём деления запасов угля, подсчитанных до той или иной глубины (перспективной для промышленного освоения), на общую площадь, по которой они оценены в млн. т/км2 . У. используется при подсчёте прогнозных запасов углей с переносом величин указанных выше показателей с хорошо разведанных площадей на слабо изученные, а также для сравнительной характеристики промышленной значимости изученных угленосных площадей.
Углерод
Углеро'д (латинское Carboneum), С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12 C (98,892%) и 13 C (1,108%). Из радиоактивных изотопов наиболее важен 14 C с периодом полураспада (Т = 5,6×103 лет). Небольшие количества 14 C (около 2×10-10 % по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N. По удельной активности изотопа 14 C в остатках биогенного происхождения определяют их возраст. 14 C широко используется в качестве изотопного индикатора .
Историческая справка. У. известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз – как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.
В 1778 К. Шееле , нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. У. был признан химическим элементом в 1789 Лавуазье. Латинское название carboneum У. получил от carbo – уголь.
Распространение в природе. Среднее содержание У. в земной коре 2,3×10-2 % по массе (1×10-2 в ультраосновных, 1×10-2 – в основных, 2×10-2 – в средних, 3×10-2 – в кислых горных породах). У. накапливается в верхней части земной коры (биосфере): в живом веществе 18% У., древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть У. литосферы сосредоточена в известняках и доломитах.
Число собственных минералов У. – 112; исключительно велико число органических соединений У. – углеводородов и их производных.
С накоплением У. в земной коре связано накопление и многих др. элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т.д. Большую геохимическую роль в земной коре играют CO2 и угольная кислота. Огромное количество CO2 выделяется при вулканизме – в истории Земли это был основной источник У. для биосферы.
По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает У. из недр (уголь, нефть, природный газ), так как эти ископаемые – основной источник энергии.
Огромное геохимическое значение имеет круговорот У. (см. ниже раздел Углерод в организме и ст. Круговорот веществ ).
У. широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.
Физико и химические свойства. Известны четыре кристаллические модификации У.: графит, алмаз, карбин и лонсдейлит. Графит – серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а=2,462Å, c=6,701Å. При комнатной температуре и нормальном давлении (0,1 Мн/м2 , или 1 кгс/см2 ) графит термодинамически стабилен. Алмаз – очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку: а = 3,560 Å. При комнатной температуре и нормальном давлении алмаз метастабилен (подробно о структуре и свойствах алмаза и графита см. в соответствующих статьях). Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий У. может быть получен при давлениях выше 10,5 Мн/м2 (105 кгс/см2 ) и температурах выше 3700 °С. Для твёрдого У. (кокс , сажа , древесный уголь ) характерно также состояние с неупорядоченной структурой – так называемый «аморфный» У., который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» У. выше 1500—1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства «аморфного» У. очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоёмкость, теплопроводность и электропроводность «аморфного» У. всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9—2 г/см3 ). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.
Конфигурация внешней электронной оболочки атома У. 2s2 2p2 . Для У. характерно образование четырёх ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp3 . Поэтому У. способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счёт sp3 -, sp2 – и sp -гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов У. и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами У.
Уникальная способность атомов У. соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений У., изучаемых органической химией .
В соединениях У. проявляет степени окисления —4; +2; +4. Атомный радиус 0,77Å, ковалентные радиусы 0,77Å, 0,67Å, 0,60Å соответственно в одинарной, двойной и тройной связях; ионный радиус C4- 2,60Å, C4+ 0,20Å. При обычных условиях У. химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: «аморфный» У., графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300—500 °С, 600—700 °С и 850—1000 °С с образованием двуокиси углерода CO2 и окиси углерода CO.
CO2 растворяется в воде с образованием угольной кислоты . В 1906 О. Дильс получил недоокись У. C3 O2 . Все формы У. устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и KClO3 и др.). «Аморфный» У. реагирует с фтором при комнатной температуре, графит и алмаз – при нагревании. Непосредственное соединение У. с хлором происходит в электрической дуге; с бромом и иодом У. не реагирует, поэтому многочисленные углерода галогениды синтезируют косвенным путём. Из оксигалогенидов общей формулы COX2 (где Х – галоген) наиболее известна хлорокись COCl2 (фосген ). Водород с алмазом не взаимодействует; с графитом и «аморфным» У. реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600—1000 °С образуется в основном метан CH4 , при 1500– 2000 °С – ацетилен C2 H2, в продуктах могут присутствовать также др. углеводороды, например этан C2 H6, бензол C6 H6 . Взаимодействие серы с «аморфным» У. и графитом начинается при 700—800 °С, с алмазом при 900—1000 °С; во всех случаях образуется сероуглерод CS2 . Др. соединения У., содержащие серу (тиоокись CS, тионедоокись C3 S2 , сероокись COS и тиофосген CSCl2 ), получают косвенным путём. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты – соли слабой тиоугольной кислоты. Взаимодействие У. с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений У. важное практическое значение имеют цианистый водород HCN (см. Синильная кислота ) и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000 °С У. взаимодействует со многими металлами, давая карбиды . Все формы У. при нагревании восстанавливают окислы металлов с образованием свободных металлов (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2 , Mo2 C, WO, TaC и др.). У. реагирует при температурах выше 600– 800 °С с водяным паром и углекислым газом (см. Газификация топлив ). Отличительной особенностью графита является способность при умеренном нагревании до 300—400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа C8 Me, C24 Me, C8 X (где Х – галоген, Me – металл). Известны соединения включения графита с HNO3 , H2 SO4 , FeCl3 и др. (например, бисульфат графита C24 SO4 H2 ). Все формы У. нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).
Народнохозяйственное значение У. определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо , главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза , для получения пластических масс и др.
О получении и применении У. и его соединений см. также Алмаз , Графит , Кокс , Сажа , Углеродистые огнеупоры , Углерода двуокись , Углерода окись , Карбонаты .
Б. А. Поповкин.
У. в организме. У. – важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры , а также многочисленные низкомолекулярные биологически активные вещества – витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления У. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений (см. Происхождение жизни ).
Уникальная роль У. в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один др. элемент периодической системы. Между атомами У., а также между У. и др. элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность У. образовывать 4 равнозначные валентные связи с др. атомами У. создаёт возможность для построения углеродных скелетов различных типов – линейных, разветвленных, циклических. Показательно, что всего три элемента – С, О и Н – составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома У. лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).
Согласно общепринятой гипотезе А. И. Опарина , первые органические соединения на Земле имели абиогенное происхождение. Источниками У. служили метан (CH4 ) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического У., за счёт которого образуется всё органическое вещество биосферы, является углерода двуокись (CO2 ), находящаяся в атмосфере, а также растворённая в природных водах в виде HCO-3 . Наиболее мощный механизм усвоения (ассимиляции) У. (в форме CO2 ) – фотосинтез — осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т CO2 ). На Земле существует и эволюционно более древний способ усвоения CO2 путём хемосинтеза ; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют У. с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы . Применение для биосинтеза белка и др. питательных веществ микроорганизмов, использующих в качестве единственного источника У. углеводороды нефти,– одна из важных современных научно-технических проблем.