355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Зоя Семенова » Кто охотится за молнией » Текст книги (страница 1)
Кто охотится за молнией
  • Текст добавлен: 22 сентября 2016, 03:26

Текст книги "Кто охотится за молнией"


Автор книги: Зоя Семенова



сообщить о нарушении

Текущая страница: 1 (всего у книги 2 страниц)

Семенова Зоя
Кто охотится за молнией

ЗОЯ СЕМЕНОВНА СЕМЕНОВА

КТО ОХОТИТСЯ ЗА МОЛНИЕЙ?

К ЧИТАТЕЛЮ

Ежегодно на нашей планете бушует 16 миллионов гроз. То есть, говоря иначе, каждую секунду в земной шар вонзаются около 100 огненных стрел. И все-таки кое-кому этого кажется мало. К молниям естественным они хотели бы добавить и молнии искусственные. Зачем? Корни ответа на этот вопрос уходят к истокам человеческой цивилизации. Еще первобытные люди могли наблюдать, как гигантская искра, упавшая с неба, с легкостью валит на землю столетние деревья, разводит гигантские костры... В Древнем Египте люлнией управлял самый главный бог – Сэт. В ведических книгах Индии есть упоминания о том, как Индра – сын Неба и Земли – вез в своей колеснице громовую стрелу с тысячей острий, а юноши его свиты в это время, метали огненные стрелы и проливали дождь. У древних греков и римлян вспышка молнии считалась проявлением неудовольствия отца богов Зевса. Именно молнией карал он непокорных смертных, отнимая у них жизнь или уничтожая их имущество. Так, например, Геродот рассказывает о случае, когда разгневанный Зевс метнул молнию во дворец скифского царя Скилеса и сровнял постройку с землей лишь за то, что царь хотел проникнуть в некоторые небесные тайны. Похожие представления были и у древних русичей. Вспомните хотя бы: "Пока гром не грянет, мужик не перекрестится". А почему он крестится? Боится, что покарает за грехи Илья пророк, выехавший ни своей громыхающей колеснице... Со временем многие люди перестали бояться небесной кары за свои земные, порой весьма неблаговидные дела. Более того, разобравшись несколько в небесной физике, некоторые стали подумывать о том, как бы принять на себя обязанности "отца богов" – самому наказывать непокорных с помощью рукотвортм молний. Однако всегда находились люди, которые активно противодействовали таким планам. Насколько это им удавалось до самого последнего времени? Что может дать нам познание тайн "небесного электричества"? На эти и многие другие вопросы и намерен ответить автор в своем повествовании.

ПРОДЕЛКИ ГРОЗЫ

...Туча заходила с севера. 26 августа 1753 года в полдень лиловое лохматое чудище заполонило все петербургское небо. Обыватели спешили по домам, нервно поглядывая вверх – того и глади, полоснет сейчас проливнем... Спешил домой и академический профессор физики Вильгельм-Георг Рихман, поторапливал своего спутника – граверных дел мастера Ивана Соколова. Профессор хотел до начала грозы привести в готовность приборы: громовую машину и свое детище – электрический указатель грозовой материи. Соколову же надлежало присутствовать при опытах профессора с тем, чтобы зарисовать приборы Рихмана в действии и затем отгравировать рисунки для печати в "Комментариях" Санкт-Петербургской академии. Рихман вбежал в двери дома, не снимая парадного мундира, прошел в дальний конец коридора, где на столике стоял указатель. По дороге проверил, надежно ли отняты от земли железные цепи и тонкий провод мачты грозовой машины: опыт должен проходить без малейшей утечки грозового электричества в грунт... Чем закончился этот опыт, известно, наверное, всем. Иван Соколов оставил для потомков рисунок, запечатлевший гибель Рихмана. "...Красно-вишневое пятно видно на лбу, а вышла из него громовая электрическая сила из ног в доски. Ноги и пальцы сини, башмак разорван, а не прожжен..." Так описывал смерть своего соратника и друга в письме к графу Шувалову М.В.Ломоносов. Профессор лежал на полу, а за окном лил дождь и с грохотом и шипением гроза катила земной шар сквозь рваные дымящиеся облака. Гибель Рихмана весьма напугала многих исследователей атмосферного электричества. Знаменитый Леонард Эйлер писал из Берлина: "Этот случай отнял мужество у многих местных естествоиспытателей, занимавшихся исследованием грозовых явлений, и они прервали свои занятия". Однако такое положение не могло продолжаться бесконечно. Миллионы гроз, ежегодно происходящих на земном шаре, настоятельно требовали объяснения своей природы, поисков рациональных мер защиты от молний. Объяснения церковников: "Это кара за грехи господни", – мало кого устраивала. Тем более что опыт показывал – сами храмы господни, их звонницы страдали от молний еще чаще, чем другие постройки. Так за одну только ночь 14 апреля 1718 года, когда полоса гроз прошла над побережьем Бретани (Франция) между местечками Ландреке и Сан-Пол-де Леон, пострадало 24 шпиля церковных католических храмов. И опыты с атмосферным электричеством все же были продолжены, В том же 1753 году, когда погиб Рихман, американский писатель, политики издатель, а сверх того философ и физик Бенджамен Франклин установил, что "грозовые облака чаще всего бывают при отрицательном состоянии электричества, но иногда наблюдается и положительное состояние". А чуть позднее тот же Франклин придумал и первый громоотвод. Описание первого способа защиты от молний появляется в ежегоднике "Альманах Бедного Ричарда" между двумя объявлениями, сообщающими о дне и месте проведения собрания квакеров и об очередном заседании суда. "Способ этот таков, – писал Франклин. – Возьмите тонкий железный стержень (каким, например, пользуются гвоздильщики) длиною достаточною для того, чтобы три-четыре фута одного конца опустить во влажную землю, а шесть-семь другого поднять над самой высокою частью здания. К верхнему концу стержня прикрепите медную проволоку длиной в фут и толщиной с вязальную спицу, заостренную как игла. Стержень можно прикрепить к стене дома бечевой (шнуром). На высоком доме или амбаре можно поставить два стержня, по одному на каждом конце, и соединить их протянутой под коньками крыши проволокой. Дому, защищенному таким устройством, молния не страшна, так как острие будет притягивать ее к себе и отводить по металлическому стержню в землю, и она уже никому не причинит вреда. Точно так же и суда, на верхушке мачты которых будет прикреплено острие с проволокой, спускающейся вниз на палубу, а затем по одному из вантов и обшивке в воду, будут предохранены от молнии". Как видите, Франклин дал вполне современную даже по нашим понятиям конструкцию громоотвода. Причем он, как выяснилось, был вовсе не первым конструктором такого устройства. При раскопках в Египте найдены надписи, рассказывающие, что установленные вокруг храма Эффу мачты служили для защиты от "небесного огня" и представляли собой шесты из дерева, обитые медными листами. А во время царствования императора Карла Римского крестьяне для "отвода грозы" ставили на полях высокие колья. Однако всего этого, похоже, Франклин не знал и чувствовал себя пионером. Тем более что досталось ему действительно как первопроходцу. В общем, дальше история развивалась так. "Альманах Бедного Ричарда" имел громадный по тому времени тираж – 10 000 экземпляров. О франклиновских стержнях прочли многие: их стали устанавливать на своих домах граждане Америки. В Филадельфии в 1760 году громоотвод был даже испытан в действии: как утверждали очевидцы, "франклиновский стержень" спас от пожара дом купца Уэста, приняв удар молнии на себя. Впрочем, новое ведь никогда не признается всеми безоговорочно. Даже в этом достаточно ясном случае нашлось немало горячих голов, утверждавших, что от громоотвода гораздо больше вреда, чем пользы. Так даже на здании Дижонской академии наук во Франции профессор де Морико смог поставить громоотвод лишь в 1773 году после долгого и продолжительного спора с профессором Сорбонны аббатом Нолле. Отмечен и такой исторический эпизод. В 1780 году некий Сиседи де Буа Балле установил громоотвод на крыше своего дома в Сент-Омере. Соседи потребовали снять стержень под тем предлогом, что, отводя молнию от себя, де Буа Балле будет наводить ее на них, а перед Богом, дескать, все равны. "Аргументы" эти были приняты местным судьей, и он потребовал снять громоотвод. Правда, адвокат господина де Буа Балле не успокоился, перенес дело в следующую судебную инстанцию и выиграл его. Кстати сказать, этим адвокатом был Робеспьер, один из главных действующих лиц грядущей французской революции. В Англии споры по поводу громоотвода были столь жаркими, что в дело был вынужден вмешаться сам король Георг III. Он вмешался и...запретил применение новинки. Причем надо сказать, что в решении короля была своя логика. Во-первых, в 1776 году американские колонии провозгласили "Декларацию независимости", и Франклин входил в состав комитета, подготовившего текст этого документа. Так что всякий раз, когда разгорался спор о "франклиновских стержнях", королю словно бы наступали на любимый мозоль. Во-вторых, в пороховые склады Пеффлита, защищенные по совету Франклина громоотводами в 1772 году, одна из молний все же попала, что послужило доказательством несовершенства защиты. В общем, дело подвигалось достаточно туго. Свидетельством тому может послужить хотя бы книга Франсуа Араго "Гром и молния", переведенная на русский язык в начале нашего века. Надо отдать должное ученому – труд этот написан с истинно французским изяществом, языком столь простым и ясным, что, как справедливо отмечал переводчик М.Хотимский, сочинение Араго можно было увидеть и в будуаре знатной дамы, и на столе государственного чиновника, банкира, заводчика, адвоката, скромного ученого. Причиной тому множество увлекательных историй, приведенных Ф.Араго на страницах книги. Например, такая. Риуэ, капитан фрегата, рассказывал, что в ночь с 21 на 22 февраля 1812 года, когда он, тогда еще старший офицер, нес вахтенную службу на корабле "Голумин", молния ударила аккурат в капитанский мостик. Риуэ получил несколько неглубоких ран на голове. А когда наутро стал бриться, то обнаружил, что бритва легко вырывает волосы с корнем, постепенно выпали волосы и на других частях тела. На страницах солидного фолианта, повторяю, таких историй можно отыскать множество. А ведь перед нами не сборник забавных анекдотов, а труд "непременного секретаря французской Академии и пр.", как указано на титуле книжки. А стало быть, книга претендует на право называться первой научной монографией, посвященной атмосферному электричеству. И Араго пытается дать какое-то объяснение чудесам природы. Он, например, нисколько нс сомневается в электрической природе грозы и приводит такое определение: "Гроза – небесный огонь или электрическая материя, исторгающаяся из облака, производя яркий свет и сильный грохот". Он сообщает и классификацию молний, во многом совпадающую с современной. В частности, выделяет в отдельный класс шаровую молнию, речь о которой пойдет позднее. Однако Араго все же не смог объяснить очень многих причин образования грозы, и потому нам придется обратиться за дальнейшими разъяснениями к современным ученым. "Впервые связь грома и молнии люди стали осознавать в конце XIX века, пишет, например, в своей статье "Гром" американский исследователь А.Фью. И сразу же одна за другой, словно грибы после дождя, стали возникать теории, объясняющие, откуда берется рокот "небесного барабана". Конечно, про громыхание "небесных колесниц" никто уже всерьез не вспоминает. Более, научное определение попытался дать в свое время даже Лукреций Кар в своей поэме "О природе вещей". Он считал гром как бы первопричиной грозы:

Прежде всего небеса лазурные гром сотрясает В силу того, что, летая высоко в пространстве эфира, Тучи сшибаются там под натиском ветров противных...

Конечно, такое объяснение сегодня трудно воспринять без иронии, хотя древние мыслители все же правильно ответили на вопрос: почему сначала мы видим молнию, а потом слышим гром? "Весла уже заносятся назад, в то время как звук, который они произвели, наконец достигает нас", – писал по этому поводу Аристотель. А тот же Лукреций добавил: "...Всегда до ушей достигает медленней звук, чем то, что дает впечатление глазу". Лишь поняв, что гроза представляет собой огромную электрическую машину природы, а облака не могут производить грохота при механическом столкновении, ученые стали искать другие объяснения происхождения грома. Одни говорили, что удар молнии образует области вакуума и гром возникает при исчезновении вакуумной полости примерно так же, как хлопает разбиваемая электрическая лампочка. Другие полагали, что удар молнии превращает воду, содержащуюся в атмосфере, в пар, а уже пар, расширяясь, порождает гром. Третьи считали, что электрический разряд разлагает воду на составляющие водород и кислород. А эти газы, соединяясь снова, образуют гремучую смесь, которая и взрывается со страшным грохотом. Однако правы в конце концов оказались те исследователи, которые поясняли: молния мгновенно нагревает воздух на своем пути; воздух же, расширяясь, и дает хлопок, словно пороховые газы, вырывающиеся из дула орудия. Действительно, когда удалось измерить температуру в канале молнии, оказалось, что она достигает 25-27 тысяч градусов! И чуть ли не три четверти энергии грозового разряда расходуется именно на нагревание воздуха в канале молнии. Понятно, что воздух, температура которого за несколько десятимиллионных долей секунды поднимается почти до 1500 градусов, расширяется столь сильно, что процесс этот сравним со взрывом. А чтобы вы полнее представили себе, какие грандиозные мощности при этом расходуются, добавим, что всего лишь около 0,5% этой энергии преобразуется в звук. Но даже при этом получаются раскаты, которые слышны на десятки километров! Кстати, характерные для грома раскаты – результат действия нескольких причин. Во-первых, звук, порождаемый молнией на различных этапах ее пути, проходит разные расстояния и доходит до наблюдателя в разные промежутки времени. Во-вторых, основному звуку вторит эхо – результат отражения от различных частей облака. Влияют на раскаты грома также и порывы ветра. Ныне запись грома с помощью специальных микрофонов дает возможность делать выводы о размерах канала молнии, ее мощности, о состоянии атмосферы, об объеме облака и даже о процессах, благодаря которым облако накапливает электричество. И тут уж стала выясняться сущая фантастика! Естественные электрические машины, как оказалось, способны накапливать потенциалы в миллиарды вольт, а общая мощность средней грозы вполне сравнима со взрывом нескольких термоядерных бомб. И все – результат всего лишь взаимодействия капелек и льдинок, поддерживаемых в воздухе восходящими потоками?! Да, это действительно так. Расчет показывает, что электростатический заряд каждой частицы облака, в общем-то, ничтожен, но таких частиц миллионы миллионов... В облаке средних размеров, содержащем порядка 100 тысяч тонн воды, таких капель будет примерно 6*10^12. Умножив число капель на среднюю величину заряда каждой, получим, что общий заряд облака составляет примерно 200 кулонов. Это не так уж много: такого заряда хватит, чтобы 100-ватная электролампочка горела всего несколько секунд. Однако разряд молнии длится миллионные доли секунды и успевает за это время достичь разности потенциалов в 300 миллионов вольт! Откуда капли берут энергию? Ведь в воде, казалось бы, отсутствуют электрические заряды... Наэлектризовать воду можно несколькими способами: путем захвата из воздуха ионов дождевыми каплями или смоченными ледяными кристалликами, электризацией посредством трения при столкновениях между собой льдинок, льдинок с каплями, при дроблении водяных капель на более мелкие (именно такие процессы, как установлено, приводят к электризации воды в водопадах и фонтанах)... Какой именно процесс или процессы имеют преобладающее значение, наукой пока еще точно не установлено. Однако результат таких процессов налицо. Одновременно с формированием кучевого облака, которое может нести в себе, согласно расчетам французских метеорологов Роже Клосса и Леопольда Фасси, до 360 тысяч тонн воды, происходит и накопление в нем электрического заряда. Накопление это идет до той самой поры, пока в воздухе не сверкнет первая искра... Причем для того, чтобы получился молниевый разряд, должны произойти прежде некоторые, обычно незаметные глазу обывателя, события. Дело в том, что, несмотря на относительно высокий потенциал, накапливаемый облаком, его зачастую все же недостаточно, чтобы пробить примерно пятикилометровый слой воздуха, разделяющий облако и землю. (Воздух, как известно, является достаточно хорошим изолятором). Поэтому главный разряд молнии может состояться лишь после того, как ему проложит путь предшествующий разряд небольшого напряжения. Такой разряд ученые называют ступенчатым лидером. Почему "лидер", понятно – идущий впереди заслуживает такого названия. Но почему "ступенчатый"?.. Лидер начинает формироваться, когда электрическое поле в облаке становится настолько плотным, что срывает некоторые электроны молекул воздуха с их законных орбит. Эти электроны ускоряются электромагнитным полем, сталкиваются с новыми молекулами воздуха, выбивают из них новые электроны... Начинается цепная реакция. Электронная лавина устремляется вниз, к земле, оставляя за собой проводящий путь из частично ионизированного газа, воздуха. Лавина эта не увеличивается до бесконечности только потому, что ее источнику – электрическому полю облака – начинает противодействовать все большее число положительных ионов, освобождающихся в результате выбивания электронов. В конечном итоге на каком-то расстоянии от облака наступает равновесие – электронная лавина приостанавливается, пройдя путь 50-100 метров со скоростью примерно 130 км/с. Здесь образуется своеобразная "ступенька", электронная лавина как бы отдыхает. Отдых этот продолжается примерно 50 мкс, и за это время, вероятно, происходит "подтекание" новых электронов из облака. Говоря иными словами, к лидирующей группе прибывает подкрепление. Восстановив свой заряд, лидер образует новую лавину, направление которой, как правило, не совпадает с направлением предыдущего разряда. Более того, в ряде случаев лавина может разделиться на 2-3 части, каждая из которых затем пойдет к земле своим путем. Так скачок за скачком, словно заяц и преследующая его гончая, ступенчатый лидер и его второй эшелон достигают земли. Как только ступенчатый лидер "заземлился", происходит разряд электрического тока, называемый иногда возвратным стримером. В миллионные доли секунды волна электрического тока пробегает от положительно заряженной земли к отрицательному облаку. Идет первый возвратный удар. Иногда на этом все и заканчивается, но гораздо чаще ударные процессы повторяются 3-4 раза с интервалом 10-100 мкс, то есть практически неразличимо для глаза. Лишь специальные методы скоростной киносъемки позволили различить отдельные циклы и даже установить своеобразный рекорд; однажды было зафиксировано 26 возвратных циклов одного молниевого разряда. Обычно все эти разряды кончаются довольно мирно. Падая в землю, они даже приносят известную пользу сельскому хозяйству, превращая азот воздуха в его окислы. Их затем легко усваивают растения, давая прирост урожая. Советские ученые в 30-е годы даже выдвигали предложение о том, чтобы поставить в полях специальные грозопривлекатели – шары, которые бы собирали на себя молниевые удары. Причем подыскивая соответствующее обоснование своему проекту, эксперты ссылались не только на наблюдения и расчеты, но и на опыт древнеримских крестьян, которые ставили на полях высокие колья. Определенную пользу ударов молнии для растительности отмечал в своей книге и уже известный нам Ф.Араго. "Так между Туром и Рошфором, – писал он, – некогда находился замок, к которому вела аллея тополей. Когда в один из них ударила молния, он стал быстро расти, далеко обогнав своих соседей". Мастера музыкальных инструментов в Карпатах подолгу ищут ель, разбитую молнией. Только такое дерево годится для изготовления трембит – деревянных духовых инструментов, звуки которых слышны за многие километры в округе. Но порой молнии совершают "подвиги" и совершенно иного рода. Так, например, молния, попавшая в космический корабль "Аполлон-12" при старте, чуть было не привела к катастрофе. Часть оборудования вышла из строя, и кто знает, чем бы все это кончилось, если бы не мужество и самообладание экипажа, а также хитроумие наземных экспертов, сумевших найти выход из, казалось бы, безвыходного положения и использовать для благополучного возвращения все возможности оставшегося невредимым оборудования. Статистики также отмечают попадание молний в самолеты, теле– и радиовышки, подстанции электросетей и опоры ЛЭП... Например, в середине июня 1991 года сильная гроза надвинулась на Вашингтон. В результате удара молнии, сумевшей обойти защиту, многие дома остались без электричества. Однако аварию на сей раз ликвидировали быстрее обычного. Это случилось благодаря системе обнаружения молний, незадолго до того установленной в штабквартире Северного отделения коммунальной компании "Вирджиния бауэр". Система поззолила заранее определить направление движения грозы и поднять по тревоге по пути ее следования ремонтные бригады. Национальная сеть обнаружения молний, состоящая из 115 станций, рассеянных по всей территории США, регистрирует до 26 500 разрядов в час за летний грозовой период. Компактные электронные датчики выявляют молнии, улавливая всплески электромагнитных полей, образующиеся при разряде. Разрешающая способность датчиков достаточно высока – они позволяют устанавливать координаты молниевого разряда с точностью до 2-3 км. Данные по местоположению и интенсивности каждой молнии переводятся компьютером в цифровую форму и передаются затем через спутник связи на главную ЭВМ Национальной системы метеорологической сети, которая находится в университете штата Нью-Йорк. Создается подобная система и в нашей стране. Например, с первого дня существования знаменитой телебашни в Останкино пришлось думать о защите расположенного на ней оборудования и самой башни. Ведь за год молния бьет в полукилометрового исполина до трех десятков раз. И всякий раз в высотную гидрометеорологическую обсерваторию башни поступает штормовое предупреждение: "Готовьтесь, в ближайшие 2-3 часа в Останкине будет гроза..." После такого объявления прерываются все работы, проводимые на внешних объектах – антеннах, открытых площадках и т.д., – так требует система, разработанная сотрудниками Научно-исследовательского энергетического института имени Г.М.Кржижановского. В нескольких местах по соседству с башней установлена фоторегистрирующая и измерительная аппаратура. Фоторегистраторы, конструкция которых разработана в одной из лабораторий института, позволяют мгновенно определить точку попадания молнии в башню. Это необходимо эксплуатационникам, имеющим дело со сложнейшей аппаратурой, работоспособность которой необходимо поддерживать на должном уровне. Поначалу проводимые эксперименты должны были только проверить надежность применяемых средств защиты. При этом удалось выявить случаи попадания в башню разрядов на отметках порядка 300 м, то есть ниже системы молниеотводов, и даже непосредственно в землю вокруг башни. Таким образом выявилось, что и по сию пору конструкции, разработку которых начал еще Б.Франклин, далеки от совершенства. Кроме того, эксперименты показали, что далеко не всем предупреждениям Гидрометцентра можно верить. Ведь его штормовые сигналы относятся к данному району вообще, без привязки к какому-либо конкретному объекту. А такую привязку делать крайне необходимо, поскольку в 60% случаев гроза обходила телебашню стороной, а простои оборудования, ремонтных рабочих стоят достаточно дорого. В общем, в результате всего этого группа сотрудников института разработала и установила на башне систему персонального грозового оповещания для данного объекта. Выглядит она так. С трех сторон башни на высоте 524 метра установлены 80-сантиметровые металлические стержни. При приближении грозового очага – примерно за 3 км от него – на стержнях возникает светящаяся корона, особого рода электрические разряды. Возникающий при этом электрический ток фиксируется индикатором грозовой опасности, и за 20 минут до того, как объект окажется в зоне молниевого поражения, диспетчер получает соответствующее предупреждение. Подобные системы стали устанавливать и на других телебашнях, прочих высотных объектах страны. Причем москвичи вовсе не являются монополистами в подобного рода исследованиях. "Ловцы молний" также работают, например, в Институте высоких напряжений при Томском политехническом институте. Сфера деятельности диспетчерской службы – весь регион, от Читы до Омска. Причем большая часть работы по обнаружению и регистрации молний ведется автоматически. Ни одна из проказ молний не остается незамеченной.

ПОРТРЕТ ОГНЕННОГО ШАРА.

О трагедии на Васильевском острове помнят многие. Но мало кто знает, что Рихман погиб не от простой, линейной молнии, а от шаровой. На это, в частности, указывает и рисунок Соколова. На нем изображен некий светлый сгусток, двигавшийся, судя по всему, практически горизонтально... Вот на какую подробность обратил когда-то мое внимание доктор физикоматематических наук И.М.Имянитов – пожалуй, один из старейших исследователей шаровой молнии в нашей стране. В то время, когда мы с ним разговаривали, Илья Моисеевич возглавлял одну из лабораторий Главной геофизической обсерватории имени А.И.Воейкова, расположенную там же, в Санкт-Петербурге, где была когда-то и лаборатория Рихмана. – И все-таки, несмотря на это и многие другие свидетельства, – продолжал свой рассказ Имянитов, – шаровой молнии долгое время официальная наука отказывала даже в самом факте ее существования. Почему? Уж очень странно она себя ведет... Действительно, зачастую огненные шары ведут себя столь необычно, что ученые, слушая рассказы людей, видевших это чудо природы, скептически полагали, что свидетели "врут, как все очевидцы". В самом деле, разве легко поверить, скажем, такому случаю: "Кажется, в 1826 году удар грома разразился над домом одного из моих приятелей в Антоне, где я занимался медицинской практикой. Дом этот находится на высоте от 30 до 40 метров над уровнем Эльбы. Друг мой, доктор Ван дер Смиссен, прохаживался по своей гостиной, когда раздался удар грома; в то же самое мгновение огненная масса появилась на полу комнаты и пробежала в виде овального шарика величиной с куриное яйцо, близ стены, покрытой по здешнему обыкновению лаком. Шарик катился к двери со скоростью бега мыши; там, произведя новый взрыв, он перескочил через перила лестницы, ведущей на нижний этаж, и исчез точно так же, как и явился, не причинив никакого вреда..." А вот вам другое свидетельство: "Полный месяц светил с небесной высоты. На минуту я остановился и увидел впереди себя какой-то странный свет. Кто-то навстречу мне шел с фонарем. "Вот чудак! – подумал я. – В такую-то светлую ночь кто-то идет с огнем." Через несколько секунд я увидел, что фонарь был круглый и матовый. "Вот диво! – снова подумал я. – Кому в голову могла прийти мысль идти по тайге с китайским бумажным фонариком?" Странный свет приближался. Местность была неровная, и свет то приближался к земле, то поднимался вверх... Тишина была полная, ни голосов, ни шума шагов .не было слышно. Тогда я окликнул и спросил, кто идет. Мне никто не ответил. И вдруг я увидел, что фонарь движется не по тропе, а в стороне от меня, над зарослью. Мне стало страшно оттого, что я не мог объяснить, с кем или с чем имею дело. Это был какой-то шар величиною в два кулака матово-белого цвета. Он поравнялся со мной, и я хорошо мог его рассмотреть. Раза два его внешняя оболочка лопалась, и тогда внутри него был виден яркий бело-синий свет. От шара тянулся тонкий, как нить, огненный хвостик..." Таковы литературные свидетельства начала века. Первый фрагмент взят из упоминавшегося труда Ф.Араго, второй – из воспоминаний хорошо известного исследователя Дальнего Востока В.К.Арсеньева. А вот вам и третий факт, относительно недавний. На шкафу известного альпиниста Иосифа Кахиани стоят альпинистские ботинки. Ботинки эти "лопнули по всем швам, когда на хребте Улу-тау-Чаны в меня ударила шаровая молния, – вспоминал Кахиани. – Случай этот называют то уникальным – фотоаппарат на груди расплавился и одежда в клочья, а человек выжил, то курьезным – человека вышвырнуло из ботинок...". И это только три случая из многих тысяч, собранных человечеством за последних три столетия. Таков был один источник сведений о шаровой молнии. Вторым источником послужили письма читателей, пришедшие в качестве откликов на одну из книг И.М.Имянитова о шаровой молнии. И наконец, был третий источник – подобную же работу проделали в Окридже (США), в Лаборатории атомной энергии. Ее сотрудники провели опрос 15 923 человек. Из них 513, то есть 3,2%, видели своими глазами шаровую молнию. Аналогичный опрос также проводился НАСА. И вот какие свидетельства были собраны по другую сторону океана: "...Молния, вероятно, ударила в наш дом или около. Проволока внешней антенны была расщеплена, но не расплавилась. Там, где антенна входила в комнату, окно было немного раскрыто. Казалось, что шар возник на окне, очень быстро полетел к центру комнаты и вылетел". "...Я видел, как огненный шар спустился с неба и ударился о колючую проволоку, прикрепленную к деревянному забору. В течение нескольких минут шар двигался вдоль проволоки и затем исчез. Появление шара сопровождал странный шуршащий звук. Сначала шар казался больше, чем в конце. Полагаю, что диаметр шара был не менее 4 дюймов, но и не более 18 дюймов. Я осмотрел забор через несколько минут после исчезновения шара и обнаружил, что концы зажимов были теплыми и немного обгоревшими..." "...Через несколько секунд после того как в окрестности ударила молния, мы обнаружили, что около дома короткими змеевидными толчками передвигается яркосветящаяся сфера величиной с кулак. Затем этот светящийся шар проник через закрытое окно в комнату, на глубине примерно трех футов он совершил неожиданный поворот на девяносто градусов параллельно стене и продвинулся еще на фут дальше в глубь комнаты. Затем он взорвался, и светящаяся сфера исчезла с коротким оглушающим звуком..." Когда специалисты собрали все эти описания вместе, проанализировали их, стало понятно, что огненные шары вовсе не выдумка очевидцев; в каждом из "портретов" проглядывают типичные черты. – Вот какое описание шаровой молнии было создано общими усилиями, продолжал рассказ Имянитов. – Чаще всего огненный шар представляет собой сферу, овал или диск. Изредка он похож на стержень. Средний диаметр светящегося шара от 15 до 40 сантиметров. 75 процентах случаев наблюдатели видели белые, желтые и розовые молнии. Чаще всего огненные шары возникают во время грозы и живут от 5 до 30 секунд. Иногда несколько минут. Как правило, они заканчивают свое существование взрывом, хотя могут исчезнуть и тихо, бесшумно... Теперь нужно как-то объяснить существование в природе столь странных образований. "Силясь все понять – откуда явился летучий неба огонь и куда повернулся, и как через стены внутрь он проник и оттоль, похозяйничав, выбился снова", как писал Лукреций, ученые выдвигали одну гипотезу за другой. Ученый XIX века Пфейль считал, к примеру, что шаровая молния представляет собой ком, состоящий из "космической пыли, перемешанной со снежными кристаллами и окруженной горючими газами, которые образуются сжатием насыщенных электричеством туч". Араго и Хильденбрасен видели в шаровой молнии уплотненные соединения азота с кислородом, "сильно пропитанные молниевой материей". Наш соотечественник Н.А.Гезехус в начале XX столетия пришел к выводу о существовании шаровых молний двух типов: шар-конденсатор с азотом и молния-вихрь... И добро бы, эти споры велись только с чисто теоретических позиций. Нет, огненные шары интересовали некоторых деятелей от науки и чисто практически. Одним из первых, вероятно, на это обратил внимание наш известный писатель-фантаст Александр Беляев. В 1939 году он пишет ныне почти забытую повесть "Замок ведьм". Сюжет повести незамысловат. Где-то в Судетах, на территории, захваченной нацистами Чехо-Словакии, в заброшенном замке начинает работать некая секретная лаборатория. И вот однажды ночью местный житель Иосиф Ганка видит, как "вдруг в окне показался ослепительно яркий огненный шар величиною с крупное яблоко. Как при свете молнии, ярко озарились стволы сосен. Шар пролетел в отверстие окна и остановился в воздухе как бы в нерешительности, куда направить путь. Потом медленно двинулся вперед от башни по прямой, пролетел несколько десятков метров и начал поворачивать вправо, все ускоряя движение по направлению к одиноко стоящей старой сосне. Вот шар совсем близко подлетел к дереву, скользнул по суку, расщепив его, и с оглушительным треском вошел в ствол. Сосна раскололась и тотчас запылала, окруженная дымом и паром. Из окна в башне раздался торжествующий крик и показалась голова старика со взлохмаченными седыми волосами, освещенная красным пламенем горящей сосны". В общем, некий профессор Губерман не только создает искусственные шаровые молнии, но и пытается управлять их движением, чтобы превратить "небесный огонь" в надежное оружие. Лично мне пока так и не удалось докопаться, знал ли А.Р.Беляев, когда писал эту повесть, об опытах с искусственной шаровой молнией, проводимых в ставшем ему родным Ленинграде. Но такие опыты действительно велись. Причем они были продолжены даже в кольце осады. В грозном 1942 году журнал "Техника – молодежи" писал: "...Медные полудуги многослойным кольцом охватили основание громадного стеклянного баллона. Постукивает вакуум-насос. Из баллона откачивается воздух. У приборов доктор технических наук Г.И.Бабат и его молодые помощники Игорь Капралов, Наум Айзенбер и Григорий Левенец. – Включить высокую частоту! – командует Г.И.Бабат. Щелкает рубильник, и в баллоне возникает багрово-огненное кольцо. – Повысить давление! В баллон с легким шипением начинает поступать воздух. Багровое кольцо по мере повышения давления стягивается в шар. Цвет его изменяется от фиолетового до зеленого. Давление приближается к атмосферному. В баллоне уже пульсирует ослепительно белый шар. С его поверхности вырываются языки пламени..." Профессор Бабат и его коллеги получили безэлектродный электрический разряд в переменном поле высокой частоты – 60 миллионов колебаний в секунду. В кварцевой трубке возникала обычная электрическая дуга. Затем электроды раздвигались, и огненный шар некоторое время жил самостоятельно. Бабат считал, что шаровая молния – это плазма, созданная линейной молнией, и что она находится в стремительном вращательном движении. Но в природе нет источника энергии, подобного тому, что был использован в опытах Бабата, и поэтому трудно предположить, что шаровая молния в природе образуется именно таким образом. Громоздкость же лабораторной установки, большое энергопотребление лишали возможности хоть как-то использовать модель Бабата на практике. Но начало плазменным разработкам шаровой молнии было положено. Уже после окончания войны в 1965 году академик П.Л.Капица подсчитал, что собственных запасов энергии в шаровой молнии должно хватить на ее существование в течение... сотых долей секунды. Шаровая же молния в природе существует иногда несколько минут, причем довольно часто кончает свое существование взрывом значительной силы. Откуда берется на это энергия? "Если в природе не существует источников энергии, еще нам неизвестных, писал по этому поводу П.Л.Капица, – то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник вне объема шаровой молнии". И он нашел такой источник. Академик Капица теоретически показал, что шаровая молния, наблюдаемая в природе, представляет собой высокотемпературную плазму, существующую довольно длительное время в результате резонансного поглощения или интенсивного поступления энергии в виде радиоволнового излучения. Он высказал мысль, что искусственная шаровая молния может быть создана с помощью мощного потока радиоволн, сфокусированного в небольшой области пространства. Естественная шаровая молния представляет собой шар диаметром около 20 см, что соответствует длине волны около 70 см. А лет пять тому назад в одной из лабораторий НИИмеханики МГУ под руководством А.М.Хазена была создана еще одна теория огненного шара, которая органично соединила в себе достоинства предыдущих. Исследования показали, что в грозовую погоду природа не только мечет молнии, в это время в атмосфере проносятся невидимые энергетические волны. В грозу под действием разности потенциалов в атмосфере начинается направленный дрейф электронов, их перетекание из облака в землю. При этом электроны то и дело сталкиваются с атомами воздуха. Причем данные столкновения происходят, казалось бы, вопреки здравому смыслу: чем выше скорость электронов, тем... реже они сталкиваются с атомами. Это приводит. к тому, что отдельные атомы, достигшие некой критической скорости, скатываются вниз, словно бы с горки. Такой "эффект горки" перестраивает войско заряженных частиц. Они начинают скатываться не беспорядочной толпой, а шеренгами, подобно тому, как накатываются волны морского прибоя. Только "прибой" в данном случае обладает колоссальной скоростью – 1000 км/с! Энергии этих волн, как показывают расчеты А.М.Хазена, вполне достаточно, чтобы, настигая плазменный шар, подпитывать его своим электростатическим полем, поддерживать в нем электромагнитные колебания. Словом, на базе физики и математики создана теория, которая дает ответ на многие вопросы, в том числе и на самые главные. Как возникает шаровая молния? Почему она живет столь долго? С помощью этой теории удалось ответить и на такой, казалось бы, каверзный вопрос. Почему, как отмечают многие наблюдатели, огненный шар частенько движется над землей на одной и той же высоте, точно копируя рельеф местности? Это явление можно объяснить так. С одной стороны, светящаяся сфера, обладая более высокой температурой по отношению к окружающей среде, стремится всплыть наверх под действием архимедовых сил. С другой стороны, под действием электростатических сил шар притягивается к влажной проводящей поверхности почвы. На какой-то высоте обе силы уравновешивают друг друга, и шар словно бы катится по невидимым рельсам. Иногда, правда, шаровая молния делает и резкие скачки. Их причиной может послужить либо резкий порыв ветра, либо резкое изменение в направлении движения электронной лавины. Нашлось объяснение и такому вопросу: почему шаровая молния стремится попасть внутрь построек? Любое строение, особенно каменное, поднимает в данном месте уровень грунтовых вод, а значит, здесь нарастает электропроводность почвы, концентрация поля. Вот эти то факторы и привлекают плазменный шар. И наконец, почему шаровая молния по-разному заканчивает свое существование: иногда бесшумно, а чаще – взрывом? В этом тоже виноват электронный дрейф. Если к шаровому "сосуду" подводится слишком много энергии, он в конце концов лопается от перегрева или, попав в область повышенной электропроводности, разряжается словно обычная линейная молния. Если же электронный дрейф по каким-либо причинам затухает, шаровая молния тихо угасает, рассредоточивая свой заряд в окружающем пространстве. Таким образом А.М.Хазеном создана интересная теория одного из самых загадочных явлений природы. Насколько она верна? Ответить на этот вопрос может лишь эксперимент. Схему этого эксперимента А.М.Хазен представляет себе так. "Возьмем проводник, проходящий через центр антенны передатчика сверхвысоких частот (СВЧ). Вдоль проводника, как по волноводу, будет распространяться электромагнитная волна. Причем проводник надо взять достаточно длинный, чтобы антенна электростатически не влияла на свободный конец. Подключим этот проводник к импульсному генератору высокого напряжения и, включая генератор, подадим на него короткий импульс напряжения, достаточный для того, чтобы на свободном конце мог возникнуть коронный разряд. Причем импульс высокого напряжения надо сформировать так, чтобы возле его заднего фронта напряжение на проводнике не падало до нуля, а сохранялось на каком-то уровне, недостаточном для создания короны, то есть постоянного светящегося заряда на проводнике. Если менять амплитуду и время импульса постоянного напряжения, варьировать частоту и амплитуду поля СВЧ, то в конце концов на свободном конце провода даже после выключения переменного поля должен остаться и, возможно, даже отделиться от проводника светящийся плазменный сгусток". Почему до сих пор такой эксперимент не поставлен? Причин тому две. Во-первых, на его проведение необходимо большое количество энергии, а если брать ее из электросети, то при нынешней дороговизне это обойдется в копеечку, и немалую. И наверное, имеет смысл прежде поискать – не найдется ли энергетический источник для такого эксперимента в природе? Ведь существуют же природные шаровые молнии без всяких электростанций... Писатель-фантаст А.Беляев, на которого мы ссылались в начале этой главы, полагал, что генератором, поставляющим необходимую энергию, "служит само небо". И это предположение фантаста недавно подтвердили ученые. Как сообщает американский журнал "Тайм", профессор физики Джеймс Фоллин, работающий в университете имени Дж.Гопкинса, после долгих исследований высказал предположение, что накопление электрического заряда в тучах происходит под действием космических лучей. Более того, сам разряд молнии также начинается под непосредственным возмущением этими же лучами. Ученый полагает, что космические лучи, попадая в атмосферу Земли, разбивают на частицы атомы газов. Эти частицы, словно душ, сыплются на низлежащие облака и выбивают из молекул воды электроны. Далее образуется электронная лавина, о которой мы уже говорили, и в конце концов происходит разряд молнии. Однако шаровые молнии появляются и при ясном небе. Откуда они берут энергию? Как она передается непосредственно в сравнительно небольшой объем, поддерживая существование огненного . шара в течение десятков секунд? В этом еще предстоит разобраться. И ученые продолжают работу. Вторая причина, по которой не имеет смысла переходить очень уж скоро от теории к эксперименту, заключается в опасности этих самых экспериментов. Судьба Рихмана еще не забыта, и никому не хотелось бы повторения истории с участием собственной персоны. На это же, кстати, указывает и А.Р.Беляев. Профессор Губерман в повести понес заслуженное наказание. Вышедшая из под его контроля шаровая молния погубила своего создателя.


    Ваша оценка произведения:

Популярные книги за неделю