355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Свет невидимого » Текст книги (страница 6)
Свет невидимого
  • Текст добавлен: 6 октября 2017, 13:00

Текст книги "Свет невидимого"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Очень стройная и красивая картина мира вырисовывается при изучении радиоактивности. В холодной материи Вселенной идет непрерывное, эволюционное, превращение элементов от больших к меньшим – таковы неумолимые последствия радиоактивного распада. В горячей материи – картина обратная. Элементы развиваются от меньших к большим и тоже эволюционно. И лишь затем при большом накоплении количественных изменений, звезда, ее элементы скачком, революционно переходят в принципиально новое качество.

Трудно представить боле выразительную иллюстрацию, более наглядное подтверждение основных положений марксистской материалистической диалектики. И мне очень приятно, что поводом для этого стало изучение радиоактивности.


* * *

Исследования, связанные с изучением радиоактивности как общего свойства материи, позволили сказать веское слово в еще одной космогонической проблеме – теории происхождения планет. А как возникли планеты – интересно не только астрономам, интересно всем, потому что только на планетах…

* * *

…Только на планетах могла зародиться и развиваться жизнь во Вселенной. Конечно, только на планетах – не на звездах же, на самых холодных из которых температура составляет несколько тысяч градусов, не на метеоритах или астероидах, которые лишены и воды, и атмосферы. Только на планетах.

Нам очень хочется иметь соседей во Вселенной. Хочется, чтобы неизменно волнующие научно-фантастические повести когда о добрых, когда о свирепых – смотря по настроению автора – пришельцах из планетных систем в созвездии Скорпиона оказались, ну, хотя бы чуточку правдой.

Лишь в последние два десятилетия проблемой обитаемости Вселенной ученые занялись всерьез, с позиций современной науки. Во имя решения этого вопроса радиотелескопы обшаривают небо. Собираются представительные научные конференции. И даже ставятся эксперименты.

Один из центральных вопросов в этой проблеме – происхождение планет. Если возникновение планетной системы – дело случая, игры природы, то, естественно, надежд на то, что жизнь распространена во Вселенной, мало. Если же окажется, что образование планет вокруг звезды – закономерный этап развития этой звезды, то на проблему соседей по космосу можно смотреть куда оптимистичнее.

Я снова, уже не впервые на страницах этой книги, возьму на себя смелость классифицировать астрономические теории. И если в этой классификации окажутся какие-либо неточности, прошу астрономов извинить меня, хотя бы во имя этой смелости.

Одна группа теорий предполагает, что планетные системы, в частности, наша Солнечная система, образуются после того, как сформировалась и начала функционировать звезда. Другие теории отстаивают положение, согласно которому планеты и звезда, которой они принадлежат, образуются одновременно.

Научная теория, хорошая научная теория, как и хорошая версия хорошего следователя, должна включать и объяснять все известные факты. Так вот, одним из таких фактов, которыми проверялась каждая теория происхождения планет, служит внутреннее тепло планеты.

Говоря откровенно, наука до сих пор не очень хорошо представляет себе, как устроены глубинные слои нашей планеты. До сих пор по этому поводу идут споры, выдвигаются и обсуждаются различные, часто взаимно исключающие друг друга гипотезы (пока только лишь гипотезы).

Что поделаешь? Познать процессы, протекающие от нас за десятки, а то и сотни световых лет, бывает подчас легче, чем узнать, что происходит у нас под ногами на глубине нескольких тысяч, а то и сотен километров. Ведь телескоп с легкостью пробивает толщу в миллиарды километров, отделяющую нас от какой-нибудь звезды, но не может заглянуть в глубь Земли даже на полсантиметра. Впрочем, он для этого и не предназначен. Но и специальные приборы для исследования Земли отвечают на интересующие геологов вопросы далеко не с той точностью, какая нужна сегодня науке. С помощью специального сверхглубокого бурения можно проникнуть в земную кору на расстояние до полутора десятков километров. С помощью специальных взрывов можно «прощупать» планету в глубину на несколько десятков километров. Можно добыть сведения об электропроводности вещества на глубине в несколько сот километров. Пожалуй, все. Об остальном судят на основании различных косвенных измерений, выводов, предположений.

Однако что бы там в глубинных слоях планеты ни происходило, «хозяин» тех областей – высокая температура. Вулканическая лава, нагретая до нескольких сот градусов, – достаточно красноречивое тому подтверждение. С глубиной температура быстро растет – об этом говорят прямые замеры в глубоких и сверхглубоких скважинах, а также элементарная физика, справедливо утверждающая, что с повышением давления должна расти температура пород земной тверди.

Сегодня мы уже не просто предполагаем, а знаем с исчерпывающей полнотой, что раскалена внутри не только Земля, но и наши соседи по Солнечной системе, во всяком случае, ближайшие соседи. Явные следы извержения вулканов найдены на Луне, Марсе и Меркурии; на Луне советскому астроному Козыреву удалось даже наблюдать само извержение. На Луне и на Марсе проведены непосредственные измерения температуры поверхности и в скважинах (правда, пока неглубоких).

Невозможность объяснить происхождение глубинного тепла планет погубила те теории происхождения планетных систем, согласно которым планеты образовались из «своей» звезды уже после того, как звезда сформировалась, и следовательно, планеты должны были получить тепло от родительницы, так сказать, в готовом виде.

В предыдущей главе уже рассказывалось о расчетах Кельвина, расчетах, полностью подтвержденных многими другими учеными, расчетах, согласно которым расплавленный шар размером с Землю должен был совершенно остыть за каких-нибудь два с половиной десятка миллионов лет. Уничижительное «каких-нибудь» по отношению к внушающему почтение сроку 25 000 000 лет в данном случае оправдано, так как эти 25 миллионов лет – миг по сравнению с истинным возрастом нашей планеты.

А ведь Земля не только не остыла за свой немалый век – 4,5 миллиарда лет – но и сохранила, причем хорошо сохранила, глубинное тепло, которое, по утверждениям геологов, за последние несколько сотен миллионов лет остается на одном уровне.

Стало быть, у Земли, как и у ее сестер и братьев по Солнечной системе, тепло свое, не заимствованное. А раз так, то какие печки поставляют это тепло? Что горит в этих печках и кто их кочегарит?

А печки и впрямь внушительные. За год из недр нашей планеты на ее поверхность поступает 2·1018 – два миллиарда миллиардов – килоджоулей тепла. Это очень много. Для того чтобы выделилось такое количество тепла, надо сжечь 1014 – сто тысяч миллиардов – тонн хорошего каменного угля или 5·1013 – пятьдесят тысяч миллиардов – тонн нефти. Столько угля и столько нефти не только не было добыто за всю историю человечества, но и, наверное, столько их не содержалось никогда в земных недрах.

Единственное, даже напрашивающееся, указание на источник внутреннего планетного тепла дали исследователи радиоактивности. Им хорошо, еще с первых исследований этого явления, было известно, что радиоактивный распад сопровождается выделением тепла. Так, грамм урана в год выделяет 3 джоуля, грамм калия – 0,00002, две стотысячных джоуля.

Две стотысячных джоуля – величина ничтожная, да и три джоуля – не бог весть как много. Но урана в земной тверди достаточно много, а калия и вовсе астрономическое число тонн. А кроме того, имеются и другие радиоактивные элементы.

Словом, когда подсчитали, какое количество тепла должны выделять все радиоактивные элементы, находящиеся в земных недрах, получилось 2·1018 килоджоулей. Совпадение из числа тех, которые принято сопровождать эпитетом «впечатляющее».

Оказывается, внутреннее тепло планет имеет радиоактивное происхождение. Каких-то «несчастных» джоулей, на которые раньше и внимания-то не обращали, вполне достаточно, чтобы поддерживать недра планет в расплавленном состоянии.

Теперь понятно, что горит в планетных печах и кто эти печи кочегарит? «Горят» радиоактивные элементы, кочегаром же служит радиоактивный распад.


Открытие источника внутреннего планетного тепла относится к числу тех основных аргументов, которые позволили с достаточной категоричностью утверждать, что Солнце и его спутники возникли примерно в одно время. А поскольку возраст Земли по радиоактивным часам был определен достаточно точно, стал известен и возраст Солнечной системы, и многое, очень многое о том, как вообще могут возникать планетные системы.

На страницах этой книги уже не раз приходилось вспоминать слово «мировоззрение». Разное оно может быть, мировоззрение.

Можно думать, что Земля – центр мироздания, а следует знать, что наша планета – малая из частиц безбрежной Вселенной.

Можно считать, что человек – предопределенное свыше творение «высшей силы», а следует знать, что человек – один из этапов развития органической жизни во Вселенной.

Можно предполагать, что образование планетных систем – редчайший, уникальный случай во Вселенной. Но можно стать и на иную точку зрения: образование планет – закономерное следствие процессов концентрирования материи в поле тяготения.

Разное оно бывает, мировоззрение…


* * *

Мал человек в сравнении со Вселенной, ничтожны его силы в сравнении с силами, вызывающими к жизни звезды, мал срок его жизни в сравнении с жизнью планет. Но всесилен его разум. Разум, благодаря которому уже сегодня, на заре развития человечества – потому что человечество будет существовать счастливо и долго, – человек доказал, что Вселенная бессмертна, что процессы, протекающие в ней, неизбежно ведут к обновлению, что во Вселенной всегда весна!

Глава IV
О Наполеоне Бонапарте, растворимости и многом другом

Мироздание, космогония, возраст Земли, происхождение элементов… Здесь радиоактивность сказала решающее слово. И вот еще одно обширное поле, к которому приложена деятельность радиоактивности – химия.

* * *

Известия с острова Святой Елены доходили скупо. Цензура свирепо вычеркивала из газет любое упоминание о низложенном императоре. И все же вся Франция и весь мир знали, что происходит на острове, затерявшемся в южной части Атлантического океана.

Нет, не все обстояло идиллически в резиденции Наполеона! Бывший император вел размеренный образ жизни, принимал последовавших за ним в ссылку подчиненных, ежедневно выезжал на конные прогулки, устраивал приемы, диктовал письма и мемуары.

Но борьба императора с Англией не прекращалась. Правда, теперь ему противостояла не великая морская держава, а всего лишь худосочный гарнизон Джемстоуна, добрая половина офицеров которого, кстати, относилась к Наполеону с нескрываемой почтительностью. А переговоры Наполеон должен был вести не с правительством Георга III, не с хитрым и велеречивым Питом Младшим, не с изворотливым Персевалем, а всего-навсего с губернатором острова – тупым и ограниченным служакой Гудсоном Лоу.

Наполеон презирал губернатора. Он отказывался принимать его в своей резиденции, а на неискренние приглашения отобедать разражался солдатской бранью такого свойства, что маршал Бертран и генерал Монтолон поспешно уводили своих жен.

Гудсон Лоу смертельно ненавидел своего пленника, ненавидел и… боялся. Он боялся этого человека, которого, по крайней мере внешне, не сломили ни потеря престола, ни позорное пленение. Он трусил перед всяким письмом, которое шло с острова в Европу и из Европы на остров: поди узнай, в каком из писем содержатся зашифрованные планы побега, а в каком – насмешки над его, Гудсона Лоу, персоной. В каждом приходившем к острову корабле ему чудился флот повстанцев, приплывший сюда, чтобы освободить императора.

А кроме того, бог мой, сколько еще ему, Гудсону Лоу, сидеть на этом острове?! И ведь никаких надежд, что можно будет скоро вернуться в Европу. Наполеону идет всего 52-й год. И здоровье его, закаленное в многочисленных кампаниях, не позволяет губернатору надеяться на скорый отъезд в Англию.

Но вот в конце 1820 года император занемог. Он прекратил прогулки. Доктор Антомарки, полуграмотный знахарь, специально присланный из Франции для наблюдения за здоровьем Наполеона, озабоченно ходит по комнатам императорской резиденции и невнятно шепчет латинские слова, не забывая поглядывать, какое впечатление это производит на окружающих.

К весне диагноз как будто бы прояснился: рак. Эта болезнь считалась в семье Наполеона наследственной. От нее в сравнительно молодом возрасте умер отец императора Карло Бонапарте. Диагноз не сочли нужным скрыть от больного, и тот, сильно страдая от болей, все же находил силы подшучивать над своей болезнью. Но как ни был озабочен мосье Антомарки, как ни крепился больной, роковой исход был близок: в начале мая 1821 года император скончался.

Спустя несколько недель губернатор Святой Елены отбыл в Европу, где его ждали почести, награды и новое назначение. На том же корабле следовал мосье Антомарки, который, запершись в каюте, уже не бормотал заумную латынь, а отчетливо, хотя и гнусаво, пел скабрезные провансальские песни…

Следствие по делу о смерти Наполеона Бонапарта, родившегося 15 августа 1769 года на острове Корсика и скончавшегося 5 мая 1821 года на острове Святой Елены, началось в английском городе Глазго спустя 140 лет после кончины императора.

Впрочем, английское правительство ничего не знало о начавшемся расследовании. Оставались в неведении и судебные органы: прокурор не возбуждал подобного дела и ни в один из полицейских участков не поступали просьбы наследников о выяснении обстоятельств смерти человека по имени Наполеон Бонапарт.

Могли подозревать кое-что лишь хранители музейных коллекций. Именно они получили в последнее время письма, текст которых весьма озадачивал: «Не может ли глубокоуважаемый мистер имя рек подарить авторам письма несколько волосков императора Наполеона Бонапарте, если, разумеется, таковые хранятся в собраниях, опекаемых почтенным адресатом? Искренне Ваши X. Смит и С. Форшуфвуд, врачи факультетской клиники Глазго».

Но мало ли что могут коллекционировать любители?

Между тем Смит и Форшуфвуд занялись поисками волос Наполеона всерьез. После того, как из всех музеев были получены отказы, иногда пространные, иногда сухие, иногда иронические, иногда безразличные, но неизменно вежливые, коллеги решили обратиться к верному средству – газетным объявлениям. Чего только нельзя получить через газетные объявления! И спустя несколько дней воодушевленные коллеги держали в руках редкую реликвию: несколько отлично сохранившихся волосков, срезанных с головы императора через два-три часа после его кончины. Это было именно то, что нужно.

У Смита и Форшуфвуда имелись все основания заниматься поисками волос Наполеона. Они недавно закончили исследование, результаты которого показали: мышьяк, попавший в организм человека, накапливается в волосах. Вот почему было решено использовать это обстоятельство для выяснения причин смерти Наполеона.

Ведь версия о раке желудка давно внушала недоверие. Не говоря о том, что рак – болезнь не наследственная, клиническая картина, описанная приближенными из свиты Наполеона, говорила скорее не о раке, а о самом обычном и даже не очень искусно обставленном отравлении. Недаром в завещании, продиктованном за неделю до смерти, Наполеон писал: «Я умираю не своей смертью. Меня убила английская олигархия и ее наемный убийца». Раньше эти слова толковали в образном их смысле. А что, если император говорил прямо, без обиняков?


В прошлом веке было уже известно достаточное количество всевозможных ядов, но самым верным и самым испытанным оставался древнейший из них: мышьяк. Да и некоторые подробности, приводимые в мемуарах, заставляли предполагать, что здесь дело не обошлось без мышьяка. Вот почему надлежало определить, содержится ли в волосах Наполеона мышьяк.

Волосы были переданы специально приехавшему в Англию для исследований по делу Наполеона шведскому физику А. Вассену. А спустя несколько дней в урановый реактор английского атомного исследовательского центра в Харуэлле был помещен алюминиевый цилиндр, в котором находились драгоценные волоски. Прошло еще три дня – и подтвердились худшие предположения.

Да, император, несомненно, был отравлен. Содержание мышьяка в волосах Наполеона в 13 раз (в тринадцать!) превышало норму. Похоже, что к пище английского пленника примешивали дозы яда, способные отправить на тот свет не одного здоровяка гренадера.

Оставалось, правда, неясным, отравили ли императора сразу, доброй порцией яда, или давали мышьяк малыми порциями на протяжении длительного времени. Неясно-то неясно, но ведь и свидетелей по этому делу не допросишь… Свидетели и впрямь помочь не могли, но оказалось, что и более чем столетие спустя можно отыскать улики.

Через пару дней после того как в газетах появились первые публикации об исследованиях в Харуэлле, в Глазго первым утренним поездом приехал, нет, примчался пожилой почтенный господин, отрекомендовавшийся отставным полковником Мэдсоном. Полковник сообщил, что в его семье, переходя от поколения к поколению, хранится как реликвия связка волос Наполеона, остриженных с головы низложенного императора незадолго до его кончины. Ради истины он готов пожертвовать реликвией и надеется, что наследники его поймут.

Впрочем, от полковника Мэдсона большого самопожертвования не потребовалось, реликвия осталась почти невредимой – Вассен взял всего несколько волосков, что оказалось с лихвой достаточно для совершенно четких заключений.

Волоски были разрезаны на участки, каждый из которых соответствовал двум неделям жизни их обладателя. Отрезки были помещены в ядерный реактор, и последующее исследование показало, что на протяжении по меньшей мере последнего года жизни бывший император регулярно получал добрые дозы мышьяка. Яд, постепенно накапливаясь в организме, привел к роковому исходу.

Кто же убил Наполеона? Кому это было необходимо? Многим, слишком многим! Но ведь свидетелей по этому делу уже не допросишь. А то, что очень весел был губернатор Гудсон Лоу, возвращаясь в Англию, и что уж слишком громко распевал песни в своей каюте Антомарки, этого к делу не подошьешь. Мало ли чему могли радоваться эти господа. Хорошей погоде? Отличному обеду? Выигрышу в баккара? Или…


* * *

Пока читателю, конечно, непонятно, зачем здесь, в книге о радиоактивности, рассказывается об обстоятельствах, которые свели в могилу низложенного императора Франции. Правда, мельком дважды упоминался ядерный реактор. Но остается неясным, к чему он и как с его помощью можно установить, что причиной смерти Бонапарта был именно мышьяк.

* * *

Чем меньше изучаемый объект, тем более изощренным и сложным должен быть прибор, предназначенный для его изучения. Это утверждение, смахивающее на своеобразный естественно-научный закон (но тем не менее никак не претендующее на столь высокий ранг), может быть подтверждено многими примерами.

Биолог, которого вы попросите продемонстрировать одноклеточный организм, подвинет к вам обычный школьный микроскоп, размером чуть больше портативного радиоприемника и весом несколько килограммов. Микроскоп, позволяющий рассматривать внутриклеточную структуру, куда более внушительное устройство – со множеством объективов, с лампами и лампочками, проводами и проводочками, полками и полочками. Для изучения же вирусов применяется электронный микроскоп – сооружение, занимающее отдельную немалую комнату и работа на котором сложностью своей внушает смешанное чувство уважения и робости.

А что говорить об исследованиях вещества в физических или химических лабораториях! Здесь наш закон оправдывается на каждом шагу.

Чтобы взвесить грамм вещества, вполне достаточно обычных весов, например аптечных (таких, какие держит в правой руке богиня правосудия Фемида; прибор, как понимаете, несложный).

Определить точный вес крупинки в несколько тысячных долей грамма – задача посложнее. Для этого необходимы аналитические весы. Такие весы – сложное сооружение, состоящее из нескольких сот деталей и покрытое стеклянным колпаком (чтобы, упаси боже, не попала пыль).

Но весы, позволяющие взвешивать с точностью до одной миллионной доли грамма, размерами походят на магазинный холодильник. Работа с ними требует таких предосторожностей, что одно перечисление их занимает три страницы убористого текста.

А как обстоит дело с определением еще меньших количеств веществ? Ну, скажем, 10-7-10-10 долей грамма. Для этого служит прибор, называемый масс-спектрографом. Впрочем, просто прибором его назвать неудобно. Это громадная установка, которая, даже не работая, внушает благоговейное почтение. Но когда она работает, тогда…

Тогда у масс-спектрографа хлопочут двое, а то и трое операторов. Они прислуживают ему с беззаветной преданностью и самопожертвованием. У них бездна различных обязанностей. Они должны накормить масс-спектрограф электроэнергией, напоить его жидким азотом, одеть в глубокий вакуум. Но они не ропщут на своего «повелителя». Они благодарны ему за каждое верное показание. Ох, как благодарны! Это я знаю точно: сам работал на масс-спектрографе и скажу, что эти дни отнюдь не самые радостные в моей жизни.

Итак, можно считать, что закон, сформулированный в начале этого раздела, бесспорно соблюдается.

А сейчас познакомимся с прибором, позволяющим наблюдать за отдельными атомами, то есть за совершенно ничтожным количеством вещества – примерно в 10-21 грамма. Очевидно, что более мелких объектов (для химика, во всяком случае) быть уже не может.

Запаянная с обоих концов стеклянная трубочка, именно трубочка, а не трубка. Внутри трубочки тоненькая, с волос, проволочка. Впаянные в трубку электроды. Все вместе это называется счетчиком радиоактивного излучения Гейгера – Мюллера и является блестящим опровержением столь поспешно сформулированного мною закона.

Именно этот счетчик позволяет регистрировать радиоактивный распад одного отдельного (одного!) атома. Достигается это за счет остроумного приема.

Нитка, протянутая вдоль оси счетчика, присоединена к одному из электродов. Другой электрод ни к чему не присоединен. Упирается, так сказать, в пустоту. Впрочем, в «пустоту» – сказано не совсем верно. Потому что в счетчике отнюдь не пустота. Заполнен он каким-либо инертным газом, например аргоном, к которому примешано некоторое количество паров спирта или йода.

Чтобы счетчик мог действовать, к его электродам подводят высокое напряжение. Из рисунка видно, что размеры каждого из электродов сильно разнятся; один из них – довольно солидная по размерам металлическая пластинка, а другой – тонюсенькая ниточка. И в этом-то различии – вся изюминка счетчиков Гейгера. Потому что при включении счетчика создаются около электродов поля неоднородной напряженности.


Этот скучный термин станет абсолютно понятным, если вспомнить то, чему всех нас учили в школе на уроках физики. Вокруг любого заряженного предмета создается электрическое поле. И понятно, что напряженность электрического поля вокруг электрода-нити во много-много раз больше, чем вокруг электрода-пластинки. Запомним это.

Когда в счетчик попадает радиоактивный снаряд, вылетевший из распадающегося ядра (скажем, гамма-квант), то он, преодолев стеклянную ограду, попадает во внутреннее пространство счетчика. Здесь на своем пути частица обязательно повстречает молекулу газа и ионизирует ее, иными словами – разобьет на части: положительную и отрицательную.

Предположим, что электрод-нить заряжен положительно, электрод-пластинка – отрицательно. Тогда образовавшаяся пара ионов поведет себя по-разному: положительный ион будет притягиваться пластинкой, а отрицательный – нитью. Но напряженность поля у пластинки гораздо меньше, чем у нити. Поэтому положительный ион движется к пластинке с неторопливостью толстяка, только что прикончившего двойной обед. Зато отрицательный ион ринется к нити со скоростью курьерского поезда.

Сравнение это не очень точное. Потому что отрицательный ион несется к нити со скоростью, превышающей скорость поезда раз… в 50, не меньше.

Представьте себе поезд, мчащийся со скоростью не меньшей, чем километр в секунду, и сталкивающийся при этом с другим поездом. Говорите, полетят осколки? Так почему же по-иному должны вести себя молекулы?

Стремительно летящий к нити ион на своем пути сталкивается с молекулами газа и разбивает их, если не вдребезги, то по крайней мере на две части: положительную и отрицательную. При этом вновь образовавшийся положительный ион поплетется к пластинке, а отрицательный устремится за своим отрицательно заряженным коллегой.

Чем ближе к нити, тем выше скорость. Поэтому дружная пара отрицательных ионов с еще большей силой врезается в подвернувшиеся на пути молекулы газа. Образуется уже четыре иона. Через неуловимую долю секунды их уже будет восемь, потом шестнадцать, а затем количество ионов неумолимо нарастает, точно так же, как число зерен пшеницы в известной легенде о хитроумном изобретателе шахматной игры и жадном правителе.

Вот почему к нити подходит уже солидная компания отрицательных ионов – несколько миллионов, а то и больше. При столкновении отрицательных ионов с положительно заряженной нитью происходит разряд, и поскольку количество ионов, повторяю, весьма велико, то этот разряд может быть зафиксирован специальным и, кстати, не очень сложным устройством. Вот и все.

Как видим, счетчик Гейгера – Мюллера устроен просто, но очень хитро: один-единственный ион он превращает в несколько миллионов. И поэтому такой своеобразный микроскоп позволяет регистрировать распад одного отдельного атома.

Физика и химия не знают другого прибора, который был бы столь же простым и позволял в то же время определять такой ничтожный эффект, как распад отдельного атома.

Итак, с помощью радиоактивности можно определить то наименьшее количество вещества, меньше которого оно, собственно говоря, уже перестает быть веществом. Последняя фраза походит на каламбур. Но если вы расщепите атом, то это будет уже не тот элемент, который вас интересовал, а совсем другой. Поэтому химическим пределом вещества является именно атом. А что получается дальше – это уже забота физики.

Был бы атом элемента радиоактивен, а обнаружить его благодаря такому отличию несложно. Но вот ведь беда – далеко не все элементы радиоактивны, во всяком случае в такой степени, чтобы можно было достаточно быстро уловить акт распада атома элемента. Поэтому с помощью измерения радиоактивности можно определить ничтожные в весовом выражении количества лишь элементов с ярко выраженными радиоактивными свойствами – радия, полония, радона, тория, урана. Но ведь это лишь малая доля всех известных нам естественных химических элементов. Как же быть с остальными?


* * *

Формула «не ждать милостей от природы» в настоящее время, когда беспокойство за природу (называемой в таких случаях по-канцелярски официально «окружающей средой») стало осознанным, звучит не столь завораживающе, не столь бесспорно, как, скажем, лет 40–50 назад. И тем не менее рискну заметить, что по отношению к той проблеме, о которой сейчас пойдет речь, эти «не ждать милостей…» звучат актуально, очень уместно.

* * *

Если мы захотим обозреть средства, которыми пользовались ученые для расщепления атомных ядер на заре развития атомной физики, то можно будет только дивиться скудости и малоэффективности этого арсенала. Альфа-частица (ядро атома гелия) и протон (ядро атома водорода). Вот и все.

Быть может, в моих словах не содержится достаточной почтительности к испытанным и верным солдатам – ветеранам ядерной физики: альфа-частице и протону. Но полагаю, они меня извинят. Извинят, потому что сами признают свою малую эффективность для получения сколь-нибудь больших количеств искусственных элементов.

В самом деле, представим себе, как происходит обстрел атомных ядер этими снарядами. Вот летит нацеленная в ядро положительно заряженная альфа-частица. Первое препятствие на ее пути – электронная оболочка атома: каждый из вращающихся вокруг ядра электронов, притягиваясь (закон Кулона!) к ядерному снаряду – альфа-частице, – урывает свою долю ее энергии движения.

Прорвавшись через ограду, воздвигнутую электронами, альфа-частица продолжает путь к ядру уже значительно менее резво, чем прежде. Однако главные испытания альфа-частицы еще предстоят – ведь мишень, в которую она направлена, атомное ядро, заряжена так же, как и снаряд – положительно. И поэтому мишень всеми силами отталкивает летящий в нее снаряд. Отталкивание может быть настолько сильным, что снаряд подходит к цели, совсем потеряв скорость. Понятно, что ядерная реакция при этом произойти не может.

Но случается подчас и совсем неожиданное: подойдя к ядру, альфа-частица разворачивается и летит в обратном направлении (энергия отталкивания значительно превысила энергию, с которой альфа-частица подлетала к ядру). Не сомневаюсь, что такие снаряды смутили бы самого отважного из артиллеристов.

Однако физикам не приходится ни смущаться, ни унывать: они сконструировали ускорители, в которых ядерные снаряды разгонялись до таких скоростей, что без труда преодолевали все кулоновские преграды – и электроны, и ядра.

В начале 30-х годов был открыт превосходный снаряд для целей ядерной бомбардировки – нейтрон. Не обладая никаким зарядом, он с полным равнодушием проходит через рой суетящихся вокруг ядра электронов, невозмутимо приближается к ядру и так же спокойно внедряется в него, увеличивая его атомную массу на единицу. При этом энергия ядра, естественно, увеличивается, и это становится причиной его последующей радиоактивности.

Радиоактивности – в этом все дело. Потому что при ядерных реакциях, в частности реакциях с участием нейтронов, образуются искусственные радиоактивные изотопы химических элементов.

Впрочем, сдается, я несколько идеализировал свойства нейтрона как ядерного снаряда. Чтобы осуществилась ядерная реакция, нейтрон все же должен двигаться с хорошей скоростью, иначе при столкновении с ядром он не внедрится в него, а отскочит, подобно теннисному мячику. Поэтому нередко нейтронам необходимо для целей ядерной бомбардировки сообщать энергию, и притом довольно значительную. Значит, и нейтроны следует разгонять в ускорит… Стоп, нейтроны ведь в ускорителях не разгонишь! Оно и понятно: нейтроны не заряжены и поэтому не реагируют на внешнее электрическое поле.

Вот почему физики должны были изыскивать какие-то способы ускорения нейтронов. Один из них был найден достаточно быстро. Я бы назвал этот способ биллиардным. Не претендую на то, чтобы это определение вошло в учебники, но суть дела оно все-таки передает.


    Ваша оценка произведения:

Популярные книги за неделю