Текст книги "Теория организации: учебное пособие"
Автор книги: Юрий Лапыгин
сообщить о нарушении
Текущая страница: 6 (всего у книги 21 страниц) [доступный отрывок для чтения: 8 страниц]
1. Что понимают под моделью чаще всего?
2. По каким признакам можно классифицировать модели?
3. Какие пределы истинности можно допустить по отношению к моделям?
4. Что называется языковой моделью?
5. Дайте первое определение системы.
6. Что представляют собой цель и проблема как модели?
7. Что такое модель «черного ящика»?
8. Приведите пример модели «черного ящика».
9. Что является причиной множественности входов и выходов в модели «черного ящика»?
10. Что представляет собой модель состава?
11. Что называется элементом системы?
12. Приведите пример модели состава.
13. Что представляет собой модель структуры? Приведите пример.
14. После построения какой модели можно приступить к построению модели структуры?
15. Дайте второе определение системы.
16. Что называется графом? Приведите примеры графов, используемых в теории систем и теории управления.
17. Какие подсистемы включают естественные системы?
18. Какие подсистемы включают искусственные системы?
19. Какие подсистемы включают смешанные системы?
20. Чем детерминированные системы отличаются от вероятностных?
21. Приведите пример сложных детерминированных систем.
22. Охарактеризуйте содержание классификации систем по способам управления.
23. Приведите примеры подсистем, управляемых извне.
24. В чем состоит суть регулирования систем?
25. В чем заключается управление по параметрам?
26. В чем заключается управление по структуре?
27. Каковы особенности самоуправляемых систем?
Глава 5
Анализ систем
5.1. Анализ и синтез системСистемный подход способствует выработке правильного метода мышления о самом процессе управления, но любая система является частью большей системы и постоянно изменяется. В том случае, когда нет достаточной информации о существе проблемной ситуации, тогда для того, чтобы организовать процесс принятия решений, менеджер применяет системный анализ.
В общем виде процедуры системного анализа включают методики проведения исследования и организацию процесса принятия решения. Предмет же системного анализа представляют собой «органически целостные системы, в разряд которых попадают биологические, психологические, социальные, экономические, сложные технические системы, а также комплексные климатические, географические и геологические образования» [37]. Сам термин «системный анализ» (далее – СА) появился в работах корпорации РЭНД, организованной в конце 1940-х гг. в США для решения глобальных военных задач и ряда слабоструктурированных общих проблем и социально-экономических процессов.
Основу системного анализа составляет общая теория систем, которая позволяет осуществлять исследование проблем, не решаемых аналитически. Как правило, подобного рода проблемы содержат неопределенность ситуации, которая затрудняет принятие решений. Системный подход объединяет формальные знания и интуицию специалистов и стимулирует целенаправленное аналитическое мышление. Он предусматривает разбиение процесса исследования на подпроцессы, моделирует процессы целеобразования и позволяет выработать алгоритм принятия решения, направленный на устранение накопившихся проблем.
В процессе системного анализа осуществляется не только системное формулирование проблем, но и установление между ними причинно-следственных связей и определение наиболее значимых среди них, для того чтобы затем сформулировать цель и определить способы ее достижения. При этом часто логический анализ сопровождается математическими, статистическими вычислениями и вербальными оценками как проблем, так и целей и вариантов их достижения.
Суть анализа (декомпозиции) состоит в разделении целого на части, в представлении сложного в виде простых составляющих.
Особенность системного анализа – использование формальных и неформальных процедур определения целей и функций систем управления. Этот анализ применяется для решения проблем в ситуации неопределенности, когда следует использовать экспертные методы принятия решений.
Под анализом понимается процесс исследования систем, основанный на их декомпозиции с последующим определением статических и динамических характеристик элементов, рассматриваемых во взаимосвязи с другими элементами систем и окружающей средой. Цели анализа проявляются в стремлении повысить эффективность функционирования системы, а также в определении наилучшего варианта среди всех альтернативных.
В отношении систем управления задачи анализа сводятся к следующим процедурам:
• определение объекта анализа;
• структурирование системы;
• определение функциональных особенностей системы управления;
• исследование информационных характеристик системы;
• определение количественных и качественных показателей системы управления;
• оценка эффективности системы управления;
• обобщение и оформление результатов анализа.
В этом процессе исследователь может избрать одно из двух направлений анализа: определение состояния системы, чтобы обозначить зоны, требующие улучшения, и стимулирование изменений либо исследование альтернативных вариантов вновь создаваемой системы с целью выбора лучшего варианта.
Синтез (агрегирование) является центральным звеном создания систем, его суть состоит в соединении (мысленном или реальном) простых составляющих объекта в единое целое.
Рассмотрим аналитические и синтетические методы исследования систем.
Еще Р. Декарт, французский философ и математик, предлагал: расчлените изучаемую задачу на столько частей, чтобы легко и удобно было ее решать. Именно так и поступают математики: когда интеграл не «берется в лоб», – его «берут» по частям.
Другой подход известен из рассуждений древних философов: все люди смертны; Каин – человек, значит, Каин смертен.
В первом случае использовались методы анализа, во втором – синтетический метод исследования.
Основные этапы рассматриваемых методов приведены в табл. 5.1.
Таблица 5.1
Процедуры исследования систем
Агрегирование и декомпозиция, упомянутые в табл. 5.1, являются процедурами исследования систем и представляют собой следующее. Декомпозиция – процедура разложения целого на части. Агрегирование – процедура объединения частей в целое.
Особенности синтетических методов заключаются в том, что вклад каждой части в общесистемный эффект зависит от вклада других частей. Поэтому, например, если каждую часть заставить функционировать наилучшим образом, то эффект не будет наивысшим. Например, если каждый игрок футбольной команды будет нацелен на ворота противника так, что будет стремиться забить гол, то свои ворота останутся незащищенными и многие из игроков окажутся вне игры. То есть акцент делается не просто на рассмотрение отдельных частей, а на их взаимодействие.
Сложность системного анализа заключается в том, что при расчленении целого на части не были утрачены свойства системы (свойства целого).
Области применения системного анализа в экономике. Особенность системного анализа состоит в том, что он позволяет формировать модель окружающей действительности постепенно, обосновывая ее адекватность на каждом шаге. Начинается анализ с изучения проблемной ситуации и формулировки проблемы.
Выделим основные области применения системного анализа с точки зрения решаемых задач:
анализ окружения системы;
анализ внутреннего содержания системы;
анализ социально-экономических параметров системы;
анализ целей и функций;
• повышение эффективности процедур анализа проблем и принятия решений;
• разработка организационной структуры;
• определение содержания системы и связей между ее частями.
5.2. Модели систем как основания декомпозицииПод основаниями декомпозиции здесь понимается совокупность элементов системы (частей), вглубь которых не проникает описание, т. е. они являются условно неделимыми.
Известно, что качество построенных структур зависит от применяемой методики декомпозиции. При этом набор частей, с одной стороны, должен быть полным, а с другой – не должен быть избыточным. Таким образом, основанием всякой декомпозиции является модель состава рассматриваемой системы.
Вопрос о полноте декомпозиции – это вопрос завершенности модели: частей должно быть столько, сколько элементов содержит модель, взятая в качестве основания.
Иногда полезно в качестве оснований декомпозиции не только перебирать разные модели целевой системы, но и брать сначала модели надсистемы, затем – самой системы и, наконец, модель подсистемы. Часто достаточно организовать простой перебор формальных типов моделей (фреймов): «черного ящика», состава, структуры, структурной схемы, модель жизненного цикла, модель масштаба и т. д.
Проблема полноты моделей заключается в том, что содержательная модель строится по образцу формальной. Важно отыскать компромисс между полнотой и простотой.
Набор полных моделей (фреймов), по большому счету, только открывает перед исследователем поле возможных вариантов изучения систем и направлен на то, чтобы вызвать определенные ассоциации по поводу исследуемой системы. К числу полных моделей относится и схема К. Маркса любой деятельности человека (рис. 5.1).
Если говорить о ресурсах как о средствах, то формальный перечень типов ресурсов состоит из энергии, материи, времени, информации, кадров и финансов.
При анализе ресурсного обеспечения любой конкретной системы этот перечень не дает возможности пропустить что-либо важное. Главная цель при этом заключается в том, чтобы свести сложный объект анализа к конечной совокупности простых под-объектов либо объяснить конкретную причину неустранимой сложности.
Рис. 5.1. Общая схема деятельности
Алгоритм декомпозиции как способ упрощения сложного заключается в следующем:
1) определение объекта анализа (все что угодно – любое высказывание, раскрытие смысла которого требует структурирования);
2) определение целевой системы (определить, зачем нужно то, что мы собираемся делать; в качестве целевой выступает система, в интересах которой осуществляется анализ);
3) выбор формальных моделей (набор фреймов и правил перебора);
4) определение модели основания (строится с помощью классификаторов на основании изучения целевой системы);
5) анализ очередного объекта декомпозиции;
6) осуществление процедуры декомпозиции;
7) анализ полученных фрагментов;
8) проверка очередного фрагмента на элементарность;
9) проверка использования всех фреймов;
10) проверка детализированности всех оснований;
11) отчет – окончательный результат в форме графа.
В реализации приведенного алгоритма компромисс достигается с помощью понятий существенного (необходимого), элементарного (достаточного), а также постепенной нарастающей детализацией базовых моделей и итеративности алгоритма декомпозиции.
5.3. Агрегирование и эмерджентность системАгрегирование как процедура объединения нескольких элементов в единое целое позволяет получить систему, которую принято в этом случае называть агрегатом. Рассмотрим подробнее агрегаты-операторы и агрегаты-структуры.
Все агрегаты обладают одним и тем же свойством – эмерджетностью (от англ. emergere – появляться, возникать). Эмерджентность – особенность систем, состоящая в том, что свойство системы не сводится к совокупности свойств частей, из которых она состоит, и не выводится из них.
Приведенное определение основано на том, что при объединении частей в целое возникает нечто качественно новое, такое, чего не было и не могло быть без этого объединения. Например, осветительная система помещения, в том числе и учебного, состоящая из проводов, осветительных элементов, переключателей, крепежных элементов и т. д., становится системой и приобретает новое качество (освещать помещение) только тогда, когда перечисленные элементы будут объединены и связаны между собой вполне определенным образом. То есть, несмотря на то что ни один из перечисленных элементов не обладает способностью освещать помещение, вместе они образуют систему освещения.
Кратко эмерджентность системы иногда иллюстрируют простым математическим выражением: 2 + 2 > 4.
В самом общем виде агрегирование можно определить как установление отношений на заданном множестве элементов. Если теперь представить, что отношения будут описаны на разных языках (экономическом, философском, юридическом, техническом и др.), то можно получить несколько агрегатов одного и того же объекта.
Агрегат, состоящий из качественно различных языков описания системы и обладающий тем свойством, что число этих языков минимально, но необходимо для заданной цели, называется конфигуратором.
Обычно, рассматривая кандидатуру на замещение вакантной должности, лицо, принимающее решение, составляет подобный конфигуратор на претендентов. Рассматриваются профессиональные данные (образование, опыт работы и т. д.); анализируются деловые качества (характеристики, продвижение по работе и т. д.); определяется состояние здоровья (возраст, хронические заболевания и т. д.) и др.
В реальной жизни не бывает проблем чисто физических, химических, экономических, социальных или иных. Эти термины отражают не саму проблему, а точку зрения специалиста в какой-либо области знаний.
Агрегаты-операторы. Их можно рассматривать как механизмы уменьшения размерности исследуемой системы. Простейший способ агрегирования состоит в установлении отношения эквивалентности между агрегируемыми элементами, т. е. в образовании классов.
Рассмотрим классификацию на примере учебной группы студентов. Множество студентов (состоящее, скажем, из 20 человек) можно представить в виде двух агрегатов – девочек (15) и мальчиков (5).
Принцип классификации, примененный еще К. Линнеем, лежит в основе морфологического анализа систем.
Агрегаты-структуры. Структура является моделью системы и, следовательно, определяется тройственной совокупностью: объектом, целью и средствами моделирования. Этим объясняется многообразие типов структур.
Проект любой системы должен содержать столько структур, сколько языков включено в его конфигуратор. Описание связей должно осуществляться на всех языках конфигуратора. Если говорить о типах структур, то к ним можно отнести уже известные нам сети, матрицы, древовидные и линейные структуры.
5.4. Система методов анализаСистемный анализ применяется для решения таких проблем, которые не могут быть сформулированы и решены с помощью отдельных формальных методов. В системном анализе используются как формальные методы, так и методы качественного анализа, направленные на активизацию творческого мышления экспертов.
Системный анализ можно рассматривать не только как одно из направлений развития общей теории систем, но и идей кибернетики: он исследует общие закономерности, относящиеся к сложным системам, которые изучаются любой наукой.
Системный анализ сформировался в 60-х гг. XX в., когда на основе теории эффективности, теории игр, теории массового обслуживания появилась синтетическая дисциплина – «Исследование операций». Затем она постепенно переросла в системный анализ, который явился синтезом исследования операций и теории управления. Он применяется главным образом в исследовании искусственных социотехнических систем.
Возникающая острая проблема в соответствии с системным подходом должна быть рассмотрена как нечто целое, как система во взаимодействии всех ее компонентов между собой и во взаимодействии целого с внешней средой. Однако материальные системы настолько сложны, что для целей их анализа используются, как правило, модели систем.
В этом смысле системный анализ представляет собой совокупность методов и средств исследования и конструирования сложных объектов, методов обоснования решений при создании и управлении техническими, экономическими и социальными системами.
Применительно к социальным системам системный анализ используется как один из важнейших методов системного управления организацией. Построение данных моделей начинается со сбора информации и анализа разрозненных фактов, позволяющих сделать обобщения и выявить эмпирические закономерности. Далее переходят к определению механизмов, реализующих эти закономерности, поскольку если существует какая-то подтвержденная фактами закономерность, то существуют и механизмы, обеспечивающие проявление этой закономерности.
Споры о том, можно ли считать системный анализ наукой, продолжаются до сих пор. Наибольшие сложности возникают с исследованием систем, в которых присутствуют люди. Подобные системы слабо формализуются в силу многофакторности связей между элементами. Тем не менее общий алгоритм проведения системного анализа заключается в следующем: формулирование проблемы, выявление целей, формирование критериев, генерирование альтернатив и выбор варианта решения для последующей реализации.
Можно сделать заключение о том, что системный анализ – «это дисциплина, занимающаяся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы» [8]. Отсюда следует вывод, что истоки системного анализа и его методические концепции лежат в дисциплинах, ориентированных на проблемы принятия решений, в теории исследования операций и общей теории управления.
Но, несмотря на значительную составляющую системного анализа, ориентированную на формальный инструментарий и точные методы, традиционные приемы анализа, основанные на интуиции человека и его склонности к ассоциациям (и еще многое другое, что лежит вне математики и пока еще не присуще искусственному интеллекту), продолжают активно использоваться в системном анализе.
Главное достижение системного анализа состоит в разработке методов перехода от неформальных задач к формальным, от моделей типа «черного ящика» к моделям типа «белого ящика». Большая часть этих методов имеет неформальный характер, но они достаточно конкретны и пригодны для использования как технология решения проблем.
В системном анализе используются следующие методы:
• строго формализованные (экспериментальные исследования, построения моделей);
• слабо формализованные (экспертные оценки, коллективный выбор);
• в принципе неформализованные операции (формулирование проблем, выявление целей, определение критериев, генерирование альтернатив).
Если рассматривать вопрос алгоритмизации системного анализа, то необходимо отметить, что любой процесс исследования по своей природе алгоритмичен. Алгоритм является планом этого процесса. В то же время очевидно, что для каждой проблемы может потребоваться особый алгоритм анализа.
Классификация, разработанная в свое время Ю. И. Черняком, разделяет методы анализа на четыре основные группы по принципу их применения в системных исследованиях: неформальные, графические, количественные и моделирования. Кроме того, единая система методов системного анализа представлена в учебнике В. Н. Волковой и А. А. Денисова «Основы теории систем и системного анализа» [4].
Аналитические методы позволяют описать ряд свойств многомерной и многосвязной системы, отображаемой в виде одной-единственной точки, совершающей движение в л-мерном пространстве. Это отображение осуществляется с помощью функции f (s) или посредством оператора (функционала) F(S). Также возможно отобразить точками две или более системы или их части и рассматривать взаимодействие этих точек. Каждая из них совершает движение и имеет свое поведение в л-мерном пространстве. Это поведение точек в пространстве и их взаимодействие описываются аналитическими закономерностями и могут быть представлены в виде величин, функций, уравнений или системы уравнений. Аналитические методы являются основой классической математики и математического программирования. Они применяются лишь в том случае, когда свойства системы могут быть представлены в детерминированных параметрах или в виде зависимостей между ними.
Статистические методы отображают систему с помощью случайных (стохастических) событий, процессов, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. В данном случае система представляется в виде «размытой» точки (области) в л-мерном пространстве, в которую переводится система, с учетом ее свойств, посредством оператора Ф[?х;]. Статистические методы применяются для исследования сложных недетерминированных (саморазвивающихся, самообучающихся) систем, а также в прикладной информатике для создания программ моделирования различных систем.
Теоретико-множественные методы представления систем являются основой построения общей теории систем по М. Месаровичу. Эти методы позволяют описывать систему в универсальных общих понятиях: множество, элемент множества и отношения на множествах. Множества могут задаваться двумя способами: перечислением элементов (а1, а2,...,an) и названий характеристического свойства (имя, отражающее это свойство), например: А, В. При использовании таких методов допускается введение любых отношений между элементами на основе математической логики, которая является формальным языком описания отношений между элементами, относящимися к разным множествам. Теоретико-множественные методы позволяют описывать сложные системы на формальном языке моделирования. Они используются в том случае, когда большая и сложная система не может быть представлена лишь методами одной предметной области, а требует взаимопонимания между специалистами разных наук. Теоретико-множественные методы системного анализа становятся основой развития новых языков программирования и автоматизации проектирования систем, которые применяются в прикладной информатике.
Логические методы являются языком описания систем в понятиях алгебры логики, которая лежит в основе функционирования микроэлементов любого компьютера. Наибольшее распространение логические методы получили под названием Булевой алгебры как бинарного представления о состоянии компьютерных схем. Каждое состояние элемента рассматривается в качестве 1 или 0. Эти методы используются для создания моделей сложных систем, адекватных законам математической логики построения устойчивых структур.
Лингвистические, семиотические методы предназначены для создания специальных языков описания систем в виде понятий тезауруса (множества смысловыражающих элементов языка с заданными смысловыми отношениями и связями). Лингвистические методы используются в прикладной информатике для формального представления правил (грамматики) соединения понятий в содержание смысловых выражений. Семиотика базируется на понятиях «символ» (знак), «знаковая система», «знаковая ситуация», т. е. для символического описания содержания в вычислительной технике.
Лингвистические и семиотические методы стали широко применяться в том случае, когда для первого этапа исследования невозможно формализовать принятие решений в плохо формализуемых ситуациях и нельзя использовать аналитические и статистические методы.
Графические методы позволяют наглядно отображать объект в виде образа системы, ее структуры и связей в обобщенном виде. Графические методы могут быть линейно-плоскостными и объемными. Наиболее употребляемые методы изображения системы – в виде графика Ганта, диаграмм, гистограмм, рисунков и структурных схем. Графические представления наиболее наглядно описывают ситуацию или процесс для принятия решения в динамично меняющихся условиях. Такие методы применяются для структурно-функционального анализа сложных систем и происходящих в них процессов, особенно при моделировании информационно управляющих систем. В них необходимо учитывать взаимодействие человека и структурных организаций, технических устройств. Графические методы широко применяются на практике для получения управляющих решений на основе сетевого планирования.
В системном исследовании, как правило, используются все типы методов. На каждом этапе исследования выбирают те из них, которые при наилучшем сочетании позволяют создать аргументированную и доказательную платформу исследования.