355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Симаков » Животные анализируют мир » Текст книги (страница 11)
Животные анализируют мир
  • Текст добавлен: 12 октября 2016, 06:46

Текст книги "Животные анализируют мир"


Автор книги: Юрий Симаков



сообщить о нарушении

Текущая страница: 11 (всего у книги 16 страниц)

Информационное поле жизни

Картина развития организмов, или морфогенез, постоянно Протекает на наших глазах. И не зря видный американский биолог Э. Синнот сказал, что «морфогенез, поскольку он связан с самой отличительной чертой живого – организацией, – это перекресток, куда сходятся все пути биологических исследований… Именно здесь, вероятно, нужно ожидать в будущем самых крупных открытий».

Какие же знаки есть на этом перекрестке? Где хранится «живой прибор», следящий за тем, как генетическая запись с химического языка переводится в реальную объемную структуру, в тело?.Генетической программе в одиночку выполнить это невозможно. Да и опыты, о которых говорилось ранее, подтверждают, что не обойтись без организационного центра. Ведь в каждой клетке организма заложена одинаковая генетическая программа, в каждой клетке есть вещества, поступившие из организационного центра. А как совершается общее руководство пространственным расположением и формой клеток?

Клетки, строящие организмы, специализируются, а порой даже отмирают, чтобы получить необходимую пространственную структуру. Например, так образуются пальцы на конечностях зародыша, когда ткани между будущими пальцами гибнут, а из пластинки – зачатка кисти – формируется пятипалая рука. Неведомый скульптор, ваяя живое существо, не только перераспределяет, но и даже удаляет ненужный материал, чтобы создать то, что намечено генетической программой.

Молекулярная генетика выяснила пути передачи информации от ДНК к информационной РНК, которая, в свою очередь, служит матрицей для синтеза белков из аминокислот. Сейчас интенсивно изучается влияние генов на обмен веществ в клетке и на их синтез. Но для создания пространственной структуры, скажем, клубня редиски или причудливой раковины, вряд ли достаточно одних генов. Сомнения такого рода десятилетиями будоражат умы эмбриологов, людей, занимающихся пространственной дифференцировкой клеток, и в результате появилась концепция «морфогенетического поля». Смысл множества теории эмбрионального поля сводится к тому, что вокруг эмбриона, или зародыша, присутствует особое поле, которое как бы лепит из клеточной массы органы и целые организмы.

Наиболее разработанные концепции эмбрионального поля принадлежат австрийцу П. Вейсу и советским ученым А. Г. Гурвичу и Н. К. Кольцову. По их мнению, поле не обладает обычными физико-химическими характеристиками, а А. Г. Гурвич назвал его биологическим полем. В противоположность этому Н. К. Кольцов полагал, что поле, командующее целостностью развивающегося организма, сложено обычными физическими полями.

Исследователь П. Вейс писал, что первоначальное морфогенетическое поле действует на клеточный материал, формирует из него те или иные зачатки органов организма и что по мере развития образуются все новые и новые поля, командующие развитием органов и всего тела особи. Короче говоря, развивается поле, затем его зародыш, причем клетки организма весьма пассивны, ими руководит морфогенетическое поле. Концепция же биологического поля А. Г. Гурвича зиждется на том, что поле создается в каждой клетке организма. Однако сфера действия клеточного поля выходит за ее пределы, клеточные поля как бы сливаются в единое поле, которое меняется при пространственном перераспределении клеток.

Согласно обеим концепциям эмбриональное поде развивается так же, как и весь зародыш. Однако, по Вейсу, оно делает это самостоятельно, а по теории А. Г. Гурвича под влиянием клеток зародыша.

Но если взять за аксиому самостоятельное развитие морфогенетического поля, то наши знания не продвинутся вперед ни на шаг. Ибо, чтобы хоть как-то объяснить пространственное развитие самого морфогенетического поля, нужно вводить новые поля 2-го, 3-го порядков и так далее. Если же клетки сами строят себе морфогенетическое поле, а затем изменяются и перемещаются под его воздействием, то это поле выступает как орудие для распределения клеток в пространстве. Но тогда как объяснить форму будущего организма? Скажем, форму лютика или бегемота. К тому же, по теории А. Г. Гурвича, источником векторного поля является ядро клетки и только при сложении векторов получается общее поле.

А ведь неплохо себя чувствуют организмы, у которых только одно ядро. Например, трехсантиметровая одноклеточная водоросль ацетобулярия обладает ризоидами, напоминающими корни, тонкой ножкой и зонтиком. Как одно единственное ядро со своим полем дало такую сложную форму и как под его влиянием построилась такая сложная пространственная структура? Если у ацетобулярии отрезать ризоид, в котором содержится ядро, она не потеряет способности к регенерации. Например, если ее лишить зонтика, он снова вырастает. Где же тогда заключена пространственная память? Эксперименты с ацетобулярией убеждают, что концепция биологического поля А. Г. Гурвича не применима к одноклеточным организмам.

Можно ли найти выход из создавшихся противоречий? Давайте порассуждаем. Почему эмбриональное поле непременно должно меняться при развитии организма, как и сам зародыш? Не логичнее ли думать, что поле с первых же стадий развития не меняется, а служит той матрицей, которую зародыш стремится заполнить? Но откуда взялось само поле и почему оно столь четко соответствует генетической программе, присущей данному организму?

И не стоит ли предположить, что поле, управляющее развитием, порождено взаимодействием спиральной структуры ДНК, где. хранится изначальная генетическая запись, с окружающим пространством? Ведь это может дать как бы пространственную запись организма, будь то тот же лютик или бегемот. При увеличении числа клеток в ходе их деления поля, образованные воздействием ДНК на пространство, суммируются, общее поле растет, но не меняет своей пространственной организации и сохраняет присущую только данному организму структуру. Едва юный организм исчерпает наследственную программу, и контуры каких-то составляющих эмбрионального поля и самого организма совпадут, рост должен прекратиться. Поле организма, спаивающее воедино все части и командующее развитием, по-моему, точнее именовать индивидуальным информационным полем. Какова же его предполагаемая природа?

По одним понятиям, это комплекс физико-химических факторов, которые образуют единое поле (Н. К. Кольцов). По мнению других исследователей, морфогенетическое поле, возможно, вбирает в себя все ныне известные физико-химические взаимодействия, но представляющие собой качественно новый уровень этих взаимодействий. А так как каждому существу присуща индивидуальность, записанная генетическим кодом, то и информационное поле сугубо индивидуально. Никого не удивляет, что ядро любой клетки организма таит в себе всю герпетическую память. В ходе дифференцировки в разных органах начинает работать только та часть генетической программы, которая командует синтезом белков в данном конкретном органе или даже в отдельной клетке. А вот информационное поле, наверное, всегда целое. Иначе просто не объяснить его сохранности даже в малой части организма.

Такое предположение отнюдь не умозрительно. Чтобы показать целостность информационного поля в каждой части организма, возьмем удобные для этого живые существа.

Слизистый грибок миксомицет диктиостелиум. У него, как мы писали, любопытный жизненный цикл. Сначала все клетки |как бы рассыпаны и передвигаются по почве в виде «амеб», затем одна или несколько клеток выделяют вещество акразин, что служит сигналом: «Все ко мне». «Амебы» сползаются и образует многоклеточный организм плазмодий, который выглядит [червеобразным слизнем. Этот слизень выползает на сухое место и превращается в маленький тонконогий грибок с круглой (головкой, где находятся споры. Прямо на глазах из клеток собирается сложный организм, который как бы заполняет имеющееся у него информационное поле. Ну а если наполовину сократить количество сливающихся клеток, что получится – половина грибка или целый? Так и сделали в лаборатории. Из половины «амеб» получается той же формы грибок, только вдвое меньше. Оставили четвертую часть клеток – они опять слились и дали грибок со всеми присущими ему свойствами и генетически заложенными формами, только меньших размеров. Получается, что любое число клеток несет информацию о форме, которую им надо сложить, собравшись вместе. Правда, где-то предел есть, и малого количества клеток может не хватить для построения грибка. Однако, зная все это, трудно отказаться от вывода, что форма грибка заложена в информационном поле еще тогда, когда организм рассыпан на отдельные клетки. При слиянии клеток их информационные поля суммируются, но это суммирование выглядит скорее как разрастание, раздувание определенного поля.

А плоские черви планарии могут восстанавливать свой облик из трехсотой части своего тела. Если нарезать планарии бритвой на части и оставить их в покое на три недели, то клетки меняют свою специализацию и перестраиваются в целые. Через три недели вместо изрубленных на куски плоских червей по дну кристаллизатора ползают планарии, почти равные взрослым и едва заметные на глаз крошки. Но у всех видна головка с глазками и расставленными в стороны обонятельными ушками, все они одинаковые по форме, хотя различаются по размерам в сотни раз. Каждое существо сформировалось из разного количества клеток, но по одному «чертежу». Вот и выходит, что любой кусочек тела планарии нес целое информационное поле.

Сходные опыты я ставил и с одноклеточными организмами, с крупными, два миллиметра ростом, инфузориями спиростомами. Такую инфузорию можно разрезать микроскальпелем под микроскопом на шестьдесят частей, и каждая из них снова восстанавливается в целую клетку. Инфузории растут, но не бесконечно. Клетки, достигнув положенного им размера, как бы упираются в невидимую границу. Вот эту границу и может поставить информационное поле.

Получается, что информационное поле одинаково служит одноклеточным, колониальным и многоклеточным организмам. И не стоит ли предположить, что еще до оплодотворения половые клетки несут кодовые информационные поля? А при слиянии яйцеклетки и сперматозоида объединяются и их информационные поля, давая промежуточный, или обобщенный тип, несущий признаки отца и матери.

Клетки могут жить без ядер, но теряют способность к регенерации и самовосстановлению. Правда, отмечается иногда регенерация и при отсутствии ядра. Вспомним про ацетобулярию – у нее новый зонтик может отрасти и без ядра. Хотя регенерация зонтика у ацетобулярии при отсутствии ядра может осуществиться только один раз, но и этого уже достаточно, чтобы предположить невероятное: информационное поле некоторое время сохраняется вокруг клетки, даже если она лишена основного генетического материала!

Размеры живых существ закреплены генетически. Мышь-малютка и громадный слон вырастают из яйцеклеток, почти равных по размеру. Даже существа одного вида, у которых генетическая программа развития очень близка, которые легко скрещиваются, но размерам могут быть различны. Сравните, например, собачку чи-хуа-хуа, которую можно засунуть в карман, и огромного дога.

Условия для организма могут быть хорошие и плохие. Организм может расти быстро или медленно, но в норме он не перерастает невидимой, генетически закрепленной границы своих размеров. Пока, кроме информационного поля, пожалуй, нельзя предположить никакого иного механизма, управляющего ростом, который точно воспроизводил бы наследственную запись в ядре любой клетки и в то же время объединял бы все клетки в единое целое.

Много труда приложили биологи, чтобы выявить причины, побуждающие клетку начать деление-митоз. Научись люди управлять этим процессом – и над злокачественными опухолями, в которых пока неудержимы клеточные деления, будет занесен меч.

Взгляните на кончик своего пальца, вы увидите папиллярные линии – гребешки кожи, образующие узор, характерный только для вас. При повреждении они могут быть совсем уничтожены. Однако если не образуется рубца, после регенерации папиллярный рисунок опять появится. Трудно поверить, что на такое изощренное художество способны кейлоны. А вот информационное поле вполне подошло бы для роли живописца.

Недавно я экспериментировал с эпителием хрусталика глаза лягушки. Каждый раз при травмировании хрусталика митозы появлялись в неповрежденных частях эпителия, а полоса михозов точно повторяла конфигурацию травмы. И еще одна странная особенность: площадь, ограниченная полосой митозов, не зависит от величины травмы. Теории раневых гормонов и кейлонов здесь ничего не объясняют. При химической регуляции площадь, охваченная митозами, зависела бы от величины травмы. И не информационное ли поле передает форму травмы?

Конечно, выводы делать еще рано, а дальнейшие, рассуждения могут привести только к новым вопросам. Но все-таки я верю, что наступит время, когда на многое в биологии развития придется взглянуть по-другому.

Все сводится к тому, что развитием организмов и их формообразованием руководит как бы триада: генетическая программа, организационный центр и присущее только им информационное поле. Генетическая программа выступает как индекс, а организационный центр подбирает или создает свойственное данному организму поле, соответствующее индексу.

Самые различные взгляды

Итак, механизм морфогенеза пока не объяснен. У ученых, занимающихся его исследованием, складываются самые различные представления о формировании пространственных структур. Однако большинство из них сходятся во мнении, что пространственную организацию клеточной дифференциации только физическими и химическими методами не истолковать, что нужно обратиться к концепции морфогенетического поля, ведающего морфогенезом. Правда, не все морфогенетики принимают концепцию постоянно существующего вокруг развивающихся структур поля, которая была изложена в предыдущем разделе. Некоторые считают, что в процессе развития морфогенетические поля могут целиком заменяться на новые.

Такой точки зрения придерживается немецкий исследователь А. Гиерер. Его идея сводится к тому, что генетический аппарат генерирует сигналы для замены одного формообразующего поля другим. Если это так, то вокруг любого существа, как «рубашки», меняются поля, когда организм дорастает до границ очередной «одежды». С этой точки зрения, на развитие морфогенетического, или формообразующего, поля можно смотреть как на цепь скачков в перестройке пространственной информации. Таким образом, генетический аппарат в этой теоретической разработке показан как прибор, ведающий заменой одного поля на другое. Но автор этой гипотезы признает, что связь формообразующего поля с клетками и молекулярно-кинетическими процессами остается совершенно невыясненной.

А вот канадский морфогенетик Л. Трайнор, также обращающийся к концепции формообразующего поля, вообще считает, что это поле так же, как электрическое и магнитное поля в теории Максвелла, само по себе не обладает реальностью. Оно проявляется только в своих воздействиях на реагирующие на него объекты, и только в этих воздействиях оно становится предметом наблюдения. В таком случае отпадает вопрос о наличии или отсутствии морфогенетического поля, так как действие его мы наблюдаем во время развития организмов и при регенерации утраченных частей. Сами же клетки в живом организме ведут себя так, как будто бы они «знают» законы функционирования в морфогенетическом поле и команды, подаваемые для пространственного перемещения и направленной специализации.

Пожалуй, самым ярким примером пространственной дифференцировки, связанной с работой генов, вырабатывающих черные пигменты и образующих определенный рисунок на раковине моллюска скарабуса, служит работа секретируюших клеток мантии. Краевые клетки мантии, откладывающие слой за слоем вещество раковины, создают общий рисунок на пластинке как по имеющемуся уже плану. Дело в том, что раковина у скарабуса построена своеобразно. Она состоит из пластинок, все более и более увеличивающихся от верхушки раковины книзу. Изогнутые пластинки верхней и нижней сторон соединяются друг с другом, образуют приплюснутую раковину. Но самым интересным оказывается то, что рисунок на каждой пластинке повторяется. Он индивидуален для каждой отдельной особи, но на каждой пластинке копируется с необычайной точностью. Следовательно, при построении раковины программа пространственной работы генов проигрывается неоднократно. И каждый раз рисунки на противоположных пластинах и находящихся на одной стороне раковины полностью повторяются и увеличиваются согласно увеличению площади пластинки. Подобное может быть сделано только при одном условии – при проецировании пространственной программы на растущую пластинку раковины. Уже реализованный рисунок на пластинах грубо можно сравнить с телевизионными экранами. Чем больше экран, тем больше изображение.

Нельзя обойти стороной и еще одну интересную теорию так называемой позиционной информации, разрабатываемую рядом ученых во главе с английским морфогенетиком Л. Вольпертом. Эта теория развивалась из принципа физиологических градиентов и сводится она к тому, что клетки являются основным прибором, «узнающим» свое местоположение благодаря наличию в развивающейся системе градиента морфогена, то есть вещества, дающего сигнал к соответствующей пространственной дифференцировке. Чтобы яснее понять принцип позиционной информации, Л. Вольперт вводит такую модель, как изготовление французского трехцветного флага. Ближе всего к древку расположена синяя часть флага, затем идет белая, а за ней следует красная часть. Предположим, что каждый цвет соответствует определенному виду тканей. Так как же могло получиться, что за «синей» тканью идет сначала «белая», а потом «красная»?

Представим, что древко флага и есть тот организующий центр, о котором мы только что говорили. Он испускает вещество – морфоген, вещество распространяется по всему флагу, но его концентрация падает дальше от древка. Устанавливается своеобразный градиент концентрации – от самого большего у организующего центра до минимума на самом краю. А в клетках как бы заложены определенные пороги – при каких концентрациях во что им превращаться. Они воспринимают этот градиент до тех пор, пока концентрация не упадет до первого порога, формируют «синюю» ткань; еще больше падает концентрация морфогена, до своего порога, и клетки образуют «белую» ткань и, наконец, при самом низком градиенте клетки складываются в «красную» ткань. Вот это и есть позиционная информация, когда благодаря ощущению градиента морфогена клетки чувствуют свое местоположение и специализируются в ткань, соответствующую своему пространственному положению.

Ряд проведенных опытов действительно показал, что у различных зачатков эмбриона есть небольшие участки клеток, служащие источником морфогена. Это тоже своего рода организационные центры, только не всего организма, а отдельных органов. Так, в зачатке крыла птиц обнаружен такой активный участок. Обычно он расположен у основания крыла. Благодаря градиенту морфогена, который исходит из этого центра, закладывается нормальный порядок пальцев. Если же сверху подсадить еще один такой организующий центр, то пальцы на крыле удвоятся.

Уже упоминалось, что организационный центр в яйце стрекозы находится в задней части продолговатого яйца насекомого. Подобный центр обнаружил К. Зандер из Фрайбурского университета в яйцах других насекомых, например цикадки. Вспомним и опыт, который описан ранее, – лигатурой отделялась часть яйца, и насекомое возникало только в той части, где находился организационный центр. А Зандер видоизменил опыт, он передвинул часть цитоплазмы с организационным центром с заднего конца на середину яйца и только после этого перевязал яйцо лигатурой. Получился интересный результат: задние сегменты возникли по ту и другую сторону от организационного центра. Следовательно, и в этом случае действие организационного центра можно объяснить как работу регулировщика, испускающего позиционный сигнал.

Сразу же нужно отметить, что механизмы морфогенеза, основанные на позиционной информации, разумеется, не единственные, с помощью которых определяется форма развивающегося организма. Позиционная информация может определить крупные «блоки» тела, развертывающегося в пространстве. Изучая различные рисунки на раковинах, раскраску крыльев бабочек, раскраску птиц и рыб или же папиллярные линии на концах наших пальцев, можно понять, что посредством позиционной информации нельзя передать пространственный рисунок, сотканный живой материей.

Сами биологи признают, что они не имеют никакого представления о том, как осуществляется позиционная сигнализация, ведь она может передаваться и простыми ионами, и сложными нуклеиновыми кислотами. А как клетки, используя позиционный сигнал, точно узнают свое местоположение, – это еще одна загадка. И все же, несмотря на огромное количество белых пятен в этой концепции, отказываться от нее не стоит. Ведь позиционная информация наряду с морфогенетическим полем, может быть, как раз и «лепит» живые формы в пространстве.

Не получила достаточного экспериментального подтверждения также гипотеза, выдвинутая специалистом в области морфогенеза Б. Гудвином, но она вполне заслуживает серьезного обсуждения и привлекает к себе внимание многих биологов. В основе этой гипотезы лежит предположение, что важным фактором формообразующих процессов в развивающихся системах являются повторяющиеся периодические колебания, возникающие в самом организме. Такие колебания могут вызываться ионными потоками, идущими из активных центров, следовательно, они сопровождаются электрическими пульсирующими сигналами. Вспомним амеб слизистого грибка диктиостелиума, которые по сигналу собираются к центру агрегации, чтобы образовать многоклеточный грибок, – они ведь периодическими волнами движутся к месту сбора. Отрезаем у крупной водоросли ацетобулярии зонтик, начинается регенерация, опять можно зарегистрировать повторяющиеся электрические потенциалы.

У морских гидроидов – таких, как тубулярия и обелия, после отрезания части тела со щупальцами отмечена сначала миграция клеток в область среза. Через пять часов клетки собираются вблизи от места среза, и из этой зоны клеточного сгущения вначале наблюдаются неупорядоченные сокращения, а затем волнообразные сокращения принимают упорядоченный характер. Организованные периодические волны сокращений идут через каждые восемь – десять минут; а на последних фазах регенерации следуют более частые сокращения – с периодом четыре-пять минут. Вот такие сверхнизкочастотные сокращения и помогают гидроиду как бы «прозванивать» свое тело при регенерации, ощущать форму всего организма и «лепить» – нужную форму.

Исследователь Б. Гудвин считает, что не только при регенерации, но и при развитии зародыша по его оси могут проходить сигналы с определенным интервалом. Сигналы могут исходить даже из двух близко расположенных центров в виде колебаний с различной частотой. Там, где амплитуда колебаний будет входить в резонанс, могут возникать повышенные энергетические области, в которых может происходить активация одних и тех же генов. Действительно, теоретические выводы Б. Гудвина как бы подтверждаются. Достаточно посмотреть на развивающийся зародыш позвоночных – и можно отметить повторяющиеся одинаковые структуры, расположенные вдоль оси зародыша с равномерными промежутками. Так закладываются, например, сегментированные структуры – сомиты. Их можно найти и у рыб, и у птиц, и у человека, в зародышах всех позвоночных животных. Сегментированные структуры характерны также для большинства беспозвоночных животных.

Как гипотеза позиционной информации, так и привнесенная в биологию из математики и теоретической физики теория диссипативных или неравновесных структур, в которых совершаются колебания, требуют еще экспериментального подтверждения. Но можно надеяться, что именно разработка таких теорий привнесет новые успехи в науку, ибо сочетание интуитивных построений и экспериментальных данных подчас приводит к революционным сдвигам в познании. Профессор Московского университета Л. В. Белоусов – один из ведущих специалистов в области морфогенеза – считает, что оптимальное решение проблем формообразования, возможно, со временем включит в себя как теорию диссипативных структур, так и теорию морфогенетических полей. С этим мнением нельзя не согласиться. Однако процесс морфогенеза и регуляции формы живых организмов настолько сложен, что в процессах формообразования вполне могут принимать участие также позиционная информация и способность организмов к творчеству во время развития.

На первый взгляд может показаться, что произошла ошибка. Как это можно эмбриогенез рассматривать как творческий процесс? Однако американский исследователь В. Эльзассер именно так и считает. По его мнению, анализ молекулярнобиологических явлений в терминах физики и химии не является полным. Мысль приходит все к тому же, о чем мы говорили раньше: биологические объекты нельзя исследовать только методами классической механики, так как введение любых приборов или датчиков в живые клетки нарушает их структуру. Тогда живые объекты могут быть описаны законами статистической физики. Однако и здесь можно найти существенное отличие живых систем от физических и химических. Живые системы настолько гетерогенны, что невозможно произвести усреднение при исследовании их поведения обычными методами. К большинству систем мы применяем механистическое описание, выделяем отдельные части их поведения, упрощаем и стремимся понять общее по изучению отдельных частей. Для изучения развивающихся систем такой прием не подойдет. Ведь для формообразовательных процессов живые структуры отбирают такие информационные сигналы, которые энергетически почти не различимы с шумом. Вот эта способность живого выбирать нужные сигналы и может быть отнесена к творчеству. Большинство неживых систем стремится К равновесному состоянию, в них возрастает энтропия, а живые системы, наоборот, нарушают закон возрастания энтропии в процессах передачи информации. Особенно наглядно это видно в развивающихся системах, когда количество информации в ходе морфогенеза резко возрастает.

Какую же роль тогда можно отвести генам, если весь организм творчески подходит к своему развитию? Нужны ли они? Бесспорно.

Гены при таком подходе представляют собой как бы оперативные символы, с помощью которых реализуются творческие процессы в эмбриогенезе, регенерации и во всем индивидуальном развитии. Наличие генов необходимо для синтеза строго индивидуальных белков, но их недостаточно для развертывания тела в пространстве. Таким образом, В. Эльзассер, введя концепцию творческой способности развивающихся организмов, признает, что в природе существуют обобщенные закономерности, не сводимые к математически выражаемым законам, к физическому и химическому уровням развития материи.


    Ваша оценка произведения:

Популярные книги за неделю