Текст книги "Вода и жизнь на Земле"
Автор книги: Юрий Новиков
Соавторы: Маламагомед Сайфутдинов
Жанры:
Геология и география
,сообщить о нарушении
Текущая страница: 5 (всего у книги 14 страниц)
Вода и человек
Загрязнение воды и здоровье
Вода может оказывать на здоровье людей не только положительное, но и отрицательное влияние. Прежде всего это связано с качеством употребляемой воды: ее органолептическими свойствами, определяемыми цветом, вкусом и запахом, а также химическим и бактериальным составом. Влияние качества воды на здоровье человека было отмечено еще в глубокой древности. Например, Гиппократ рекомендовал употреблять кипяченую воду.
Еще до открытия существования болезнетворных микроорганизмов с водным фактором связывали многие эпидемии заразных кишечных заболеваний. После работ Пастера, Коха и других ученых стало известно эпидемиологическое значение воды в распространении таких инфекционных заболеваний, как холера, брюшной тиф, дизентерия, парафиты. Впоследствии была установлена возможность передачи через воду и других инфекционных заболеваний – туляремии, лептоспироз, инфекционного гепатита.
Фекалии человека и фекально-бытовые сточные воды являются основным источником патогенных микроорганизмов, распространяемых водой. Фекальное загрязнение воды ухудшает ее качество, а патогенные микроорганизмы, попадающие в нее с выделениями теплокровных животных, могут явиться причиной роста заболеваемости кишечными инфекциями. Среди патогенных микроорганизмов чаще других обнаруживаются сальмонеллы, шигеллы, лептоспиры, пастереллы, вибрионы, микобактерии, энтерозирусы человека, амебные цисты и личинки нематод. Сальмонеллы нередко встречаются в сточных водах, в воде рек, ирригационных систем и колодцев и в приливной морской воде. Другие патогенные микроорганизмы в воде находятся реже.
Быстрый рост городов приводит к непрерывному увеличению количества хозяйственно-бытовых стоков в водоемы. Биологическая очистка сточных вод не обеспечивает эффективного снижения микробного загрязнения – требуется еще дезинфекция стоков. Однако она не всегда осуществляется, и в результате в водоемах обнаруживаются возбудители кишечных инфекций.
Отрицательно влияет на процессы самоочищения воды и химическое загрязнение водоемов в результате спуска туда промышленных стоков, вызывающих торможение окислительных процессов и отмирание микроорганизмов. Неблагоприятными факторами, нарушающими процессы самоочищения, является спуск термальных сточных вод крупных тепловых электростанций, а также увеличение поступления биогенных элементов (азота, фосфора и др.).
Причины инфекционных заболеваний водного происхождения различны. И в первую очередь это – неудовлетворительный контроль за очисткой воды, загрязнение водосборной и распределительной (резервуары, сеть, трубы) систем, употребление воды поверхностных водоемов без очистки. Вода – один из специфических факторов передачи кишечных инфекций, и в первую очередь тифо-паратифозных заболеваний. При этом эпидемические вспышки возникают не только при непосредственном использовании для питья загрязненной воды, но и при косвенном ее участии: мытье посуды, оборудования, а также рук, приготовлении некоторых блюд. Так, Дьюмас и др. описали вспышку брюшного тифа, охватившую 197 человек. Они установили, что все семьи, члены которых заболели брюшным тифом, пользовались молоком, полученным с одной и той же фермы, где молочную посуду мыли необезвреженной водой из реки. Мобест сообщил о вспышке тифо-паратифозных заболеваний на корабле, вызванной тем, что члены экипажа употребляли сухое молоко, которое приготовляли в котлах, промывавшихся загрязненными водами гавани.
В 1925 г. в с. Лепино (недалеко от Москвы) вспыхнула эпидемия брюшного тифа. При обследовании выяснилось, что все заболевшие пользовались для питьевых и хозяйственных нужд водой из р. Медвянки, которая протекала через населенный пункт и была сильно загрязнена. При исследовании воды, взятой из этой реки, была выделена брюшнотифозная палочка. Затем заболевания распространились среди жителей деревень, находившихся ниже по течению реки; переболело более 100 человек. Только в двух населенных пунктах не было больных. Жители этих поселков пользовались водой из других источников.
Ранее всего связь водного фактора с распространением заболеваний стала очевидной в отношении холеры. Первая водная эпидемия холеры отмечена в Лондоне в 1854 г. В 1892 г. в Гамбурге, жители которого получали воду из реки через плохо устроенный водопровод, вспыхнула большая эпидемия холеры. Заболело 18 тыс. человек, проживающих во всех частях города. При этом умерло 8,605 тыс. человек. В 1908 г. водная эпидемия холеры потрясла Петербург, заболели 20,835 тыс. человек, из них 4 тыс. умерло. Подобные эпидемии наблюдались в Ростове-на-Дону (1908 г.), в ряде приволжских городов (1910 г.) и других населенных пунктах.
Возможность передачи вирусов водным путем лучше всего была продемонстрирована на примере возбудителей инфекционного гепатита. Самая большая вспышка вирусного гепатита водного происхождения зарегистрирована в Дели (Индия) в 1955–1956 гг. и включает более 20 тыс. клинических случаев.
По подсчетам специалистов, 800 млн. человек на земном шаре страдают от болезней, вызванных нехваткой питьевой воды. Среди них желудочно-кишечные заболевания, катары, болотная лихорадка и т. п. Всемирная организация здравоохранения совместно с другими международными организациями разработала программу «Здоровая вода для всех к 1990 году». Для осуществления этого грандиозного проекта понадобится 140 млрд. долларов.
По данным Всемирной организации здравоохранения, только 11 % жителей Азии обеспечены водой удовлетворительного качества; еще меньший процент людей живет в домах, имеющих водопровод и канализацию. В некоторых странах начали внедрять методы вторичного использования сточных вод и переработки отходов в удобрения. Однако, как правило, сточные воды все еще спускаются в реки и моря без предварительной очистки.
В реки и озера нашей планеты, воду которых мы потребляем, ежегодно сбрасывается до 7000 млрд. м 3неочищенных стоков. Особенно интенсивно загрязняют пресноводные источники крупные города.
«Клоака № 1», «крупнейшее помойное ведро Западной Европы» – так сегодня именуют некогда воспетый в легендах Рейн. Индустриальные комплексы на его берегах все больше загрязняют воду. Ежегодно она несет в море около 20 млн. т солей, 13 тыс. т окислов цинка, около 2 тыс. т окислов меди и другие отходы. Их список содержит до тысячи наименований. Поэтому в ФРГ запрещено употреблять в пищу рыбу из Рейна и купаться в нем.
Серьезность проблемы, вызываемой растущим загрязнением главной водной артерии, подчеркивается тем, что из нее от Базеля до Амстердама водоочистительные станции поставляют питьевую воду для 20 млн. людей. Меры властей прирейнских стран, по признанию печати, не в силах остановить катастрофическое развитие событий.
Для древних римлян Тибр – одна из крупнейших итальянских рек – был символом жизни, плодородия. В античной скульптуре Тибр изображался в виде мужчины, держащего рог изобилия. Однако если сегодняшние скульпторы решили бы изобразить великую реку, используя символы древних, то из этого рога вместо плодов должна была высыпаться мертвая рыба, больные птицы, отравленные фрукты и овощи.
При существующем уровне отравления воды Тибра, пишет итальянская печать, никакая форма жизни в реке просто невозможна. Столичные власти заявляют, что делают все возможное, чтобы спасти Тибр. С 1970 г. закон преследует тех, кто сбрасывает в реку промышленные отходы. Но степень отравления Тибра продолжает возрастать.
На промышленных предприятиях сточные воды образуются в результате использования воды в технологическом процессе.
Более половины потребляемой воды расходуется промышленностью. Так, для производства 1 т стали требуется 25 м 3воды, резины – 4000, синтетического бензина – 50–90, уксуса – 100, соды – 300, искусственного шелка – 400, нитроцеллюлозы – 750, бумаги – 1000 м 3.
Огромное количество воды потребляют современные крупные теплоэлектростанции. Только одна станция мощностью в 300 тыс. кВт расходует до 120 м 3воды в секунду или более 300 млн. м 3в год. Для получения 1 л нефти требуется 10 л воды, а на производство одной консервной банки овощей – 40 л; при убое скота и разделке туш тратится 500 л воды на одну голову; на 1 м 3молока затрачивается 5 м 3воды; на 1 т сахара при его производстве уходит 100 м 3воды. Только одной овощеконсервной промышленностью страны на технологические нужды ежегодно расходуется свыше 80 млрд. л воды.
Количество и степень загрязнения сточных вод зависят от вида перерабатываемого сырья и различных добавочных продуктов, уровня технологических процессов промышленных предприятий и ряда других факторов. Так, основными загрязнителями сточных вод предприятиями нефтяной промышленности является нефть и нефтепродукты. В сточных водах нефтеперерабатывающих заводов содержатся также серная кислота и сульфаты, сернистые щелочи и сероводород, смолы, растворимые газы и жирные кислоты.
Химическая промышленность в современных условиях представляет собой сложный комплекс производств. Их сточные воды содержат многочисленные примеси органических и неорганических соединений. К основным видам, дающим стоки, содержащие неорганические соединения, относятся заводы по производству минеральных удобрений, серной кислоты и соды. Сточные воды с органическими загрязнениями образуются в производствах нефтехимии, синтетического каучука, пластмасс, искусственного волокна, фармакологических, лакокрасочных, целлюлозно-бумажных, гидролизных и др. В производстве синтетического каучука вода используется в качестве растворителя, сорбента, компонента возгонки и разделения химических смесей и в других операциях, где происходит непосредственное соприкосновение с обрабатываемым сырьем. Здесь в основном сточные воды загрязняются спиртами, стиролом, этилбензолом, дивинилом, некалем и др.
Производственные сточные воды искусственного волокна загрязнены капролактамом, ацетоном, ацетилцеллюлозой, смолой, аммиаком, едким натром, содой, которые служат сырьем и вспомогательными продуктами. Сточные воды предприятий целлюлозно-бумажной промышленности характеризуются содержанием кислот, щелочей различных органических соединений древесины.
Нефть и нефтепродукты придают воде привкусы и запахи. Особенно чувствительна к нефтепродуктам рыба. Незначительное количество нефти придает мясу рыб неустранимые привкус и запах.
Фенолами загрязняются сточные воды коксохимических заводов, а также нефтехимических и других предприятий. При наличии фенолов в водоисточнике образуются хлорфенольные запахи в процессе хлорирования питьевой воды. Фенолы являются сильным нервным ядом для рыб, влияют на их запах и вкусовые качества.
Некаль, содержащийся в сточных водах производства синтетического каучука, уже в незначительных количествах ухудшает органолептические свойства воды: она приобретает специфический запах и для питья не пригодна.
Одним из самых распространенных загрязнений водоемов являются синтетические поверхностно-активные вещества (СПАВ). Эти вещества за рубежом называют детергентами. Они широко используются в различных отраслях народного хозяйства и в быту в качестве моющих средств. СПАВ плохо задерживаются на канализационных очистных сооружениях, способствуют появлению в воде обильной пены; придают воде запах и усиливают токсическое действие других загрязнителей воды.
В сточных водах могут содержаться не только специфические промышленные загрязнители, но и азот и фосфор. Эти химические вещества являются хорошей питательной средой для водорослей. Бурное развитие этих водорослей ниже места спуска таких сточных вод делает воду водоемов непригодной для хозяйственно-питьевых целей, вызывает гибель рыб вследствие попадания водорослей в их жабры и резкого снижения в водоеме содержания кислорода в период отмирания этих водорослей и их разложения с понижением температуры воды в осенне-зимний период.
На производствах черной и цветной металлургии вода используется для охлаждения металлургических печей и полученного металла, в качестве транспортирующей среды, для промывки и растворения реагентов, для обогащения сырья, топлива, очистки доменного газа и т. д. Здесь сточные воды загрязнены главным образом взвесью пустой породы, флотореагентами, ионами цветных и тяжелых металлов. Флотореагенты, в качестве которых в основном используются пенообразователи, придают воде неприятные запахи. Соединения тяжелых металлов отрицательно влияют на процессы самоочищения в водоемах, вызывают отравления гидробионтов (рыб и других).
В Японии за последние 20 лет сотни жителей р. Минамата отравились ртутью. Завод, принадлежащий химической компании «Тиссо», сбрасывал через канализацию в морской залив сточные воды, содержащие органические соединения ртути. Установлено, что эти соединения накапливались в рыбе, крабах и устрицах. При употреблении в пищу таких продуктов возникали симптомы поражения центральной нервной системы, у заболевших возникали параличи, потери слуха, зрения и др. Дети рождались парализованными, слепыми и глухими.
Помимо болезни «минамата» в Японии зарегистрирована еще болезнь «итай-итай» – отравление кадмием, который попадал в организм с загрязненной водой и пищей. Болезнь характеризуется появлением у больных острых болей в паховой и поясничной областях, в позвоночнике и суставах. Наблюдались деформации костей таза, нижних и верхних конечностей, нередко сопровождавшиеся сложными переломами.
Жители одного из районов бразильского штата Байя называют дьявольским недугом болезнь, которая сопровождается нестерпимыми болями во всем теле и приводит к размягчению костей. Как установлено, эта болезнь у населения возникает в результате использования воды р. Субае, куда сбрасываются промышленные отходы, содержащие свинец, кадмий и другие вредные для здоровья вещества. Основной источник загрязнения реки – это завод по производству свинца, принадлежащий иностранной компании.
Субае не единственный в Бразилии гибнущий водоем. Принадлежащие местным и иностранным владельцам химические, металлургические, сахарные заводы, текстильные и целлюлозно-бумажные фабрики губят все живое в реках и озерах во многих штатах страны.
До недавнего времени считалось, что главным источником загрязнения поверхностных вод пестицидами являются сточные воды промышленных предприятий, производящих эти ядохимикаты. Однако систематические наблюдения, проводившиеся в последние 15–20 лет различными контрольно-наблюдательными и научно-исследовательскими учреждениями СССР и других стран мира, показали, что определенные количества пестицидов поступают в водные объекты также и со стоком с сельскохозяйственных и лесных угодий, на которых они широко используются по целевому назначению. В связи с этим сельско– и лесохозяйственная деятельность стран, производящих и применяющих пестициды, стада рассматриваться как один из основных антропогенных факторов, влияющих на качество воды в природных водоисточниках.
Масштабы выноса пестицидов поверхностным и дренажным стоком с сельскохозяйственных угодий в водные объекты зависят от многих факторов, из которых важнейшими являются следующие: количество, способ и форма применения пестицидов; персистентность пестицидов, их растворимость в воде, способность сорбироваться почвой и мигрировать по ее профилю; тип почвы, степень ее эрозии и заселенности микроорганизмами; время между внесением пестицидов и выпадением стокообразующих осадков или сбросом возвратных вод орошения; объем и интенсивность выпадения осадков, объем поверхностного и подземного стока.
В соответствии с двумя последними факторами существенное влияние на вынос пестицидов с сельскохозяйственных угодий оказывает и вид землепользования. Наибольший вынос пестицидов наблюдается с орошаемых полей, в связи с чем на них применяются наименее персистентные пестициды.
Качество воды в реках и озерах подвержено изменению и под влиянием минеральных удобрений, которые во время дождя смываются в водоемы. По проведенной оценке в Швейцарии в результате интенсивного использования минеральных удобрений на сельскохозяйственных угодьях количество фосфора и азота, которые попали в открытые водоемы с обработанных полей, равно количеству всех загрязнений, внесенных неочищенными сточными водами.
Состав поверхностного стока зависит от санитарного состояния водосборной площади. Дождевые и талые воды характеризуются резким колебанием химического состава, имеют высокую бактериальную загрязненность, содержат яйца гельминтов. В некоторых случаях поверхностные стоки мало отличаются от хозяйственно-бытовых канализационных сточных вод. В ливневых водах содержатся большие концентрации нефтепродуктов.
Сброс так называемых термальных вод тепловыми электростанциями становится достаточно серьезным фактором влияния на санитарное состояние водоема. Основными водопотребителями на тепловой электростанции являются конденсаторы паровых турбин. Расход воды для мощных теплоэлектростанций достигает 100 м 3/с и более. Как правило, после использования воду возвращают в реку подогретой до 30 °C. Известно, что в подогретой воде уменьшается содержание растворенного кислорода и она стимулирует развитие вредных синезеленых водорослей. Все эти изменения служат причиной ухудшения качественных показателей воды, используемой населением.
В такой воде не может находиться рыба и другие живые организмы.
Загрязнение водоемов происходит также со стоками с судов речного и морского флота. Особенно опасны сбросы промывных вод танкеров и подсланевых вод судов, загрязненных нефтью и маслами. Водоемы загрязняются в результате утечки нефти при ее погрузке и разгрузке, а также во время транспортировки. Известно, что при работе подвесных лодочных моторов в воду попадают летучие и нелетучие нефтепродукты, токсические и канцерогенные вещества. Расчеты показывают, что при работе двигателя в течение 190 ч (средняя норма за навигацию) в воду поступает до 10 кг нефтепродуктов. Объясняется это тем, что в отличие от судовых дизельных двигателей лодочный мотор имеет подводный выхлоп и, кроме того, работа мотора обычно не регламентирована в части выбросов.
Проблема защиты водоемов от загрязняющего действия маломерного флота, общая численность которого в стране уже превышает несколько миллионов единиц, не менее серьезна, сложна и актуальна, чем широко известная проблема автомобиля и городской среды.
Источником загрязнения водоемов является не только сброс сточных вод, но и затонувшая в процессе молевого сплава древесина. В результате загнивания этой древесины происходит повышенное потребление кислорода. Вода с пониженным содержанием кислорода оказывает губительное действие на рыб.
Необходимо также учитывать загрязнение водоемов при их рекреационном использовании. В период массового отдыха в водоем поступают значительные количества органики и биогенных веществ, причем в дни с пиковой рекреационной нагрузкой эти количества соизмеримы с количеством загрязнений, поступающим с очищенными бытовыми сточными водами города на 25–30 тыс. человек.
Массовый отдых является одной из причин ухудшения бактериологического состава воды. Это особенно неблагоприятно, если водохранилище одновременно служит источником питьевого водоснабжения населения.
Вода, которую мы пьем
Чтобы жить, человеку требуется в сутки, как уже говорилось, 2–3 л воды. В климатических условиях средней полосы нашей страны суточная потребность в воде составляет примерно 2,3–2,7 л.
В районах с жарким климатом потребность в воде увеличивается до 3,5–5 л в сутки. В Средней Азии при температуре воздуха 39–40° и низкой влажности людям, работающим на открытом воздухе, необходимо 6–6,5 л воды.
Значение воды не исчерпывается употреблением ее для питья и приготовления пищи. Вода тратится и на другие нужды: поддержание чистоты тела, жилых домов, культурно-просветительных и лечебных учреждений, для оздоровительных и спортивных мероприятий, для поливки зеленых насаждений, борьбы с уличной пылью и др. (табл. 10).
Расход воды на душу населения – один из основных показателей благосостояния народа. В Москве самый высокий в мире уровень потребления воды. И качество ее также занимает одно из первых мест. Если на жителя Лондона или Копенгагена приходится 250 л, Парижа – 450, то на каждого москвича – 700 л воды в сутки.
Об увеличении потребления воды говорят следующие цифры. В 1890 г. в Москве на одного человека расходовалось в сутки всего 11 л воды, в 1914 г. – 66, в 1922 г. – 119, в 1959 г. – 570, в 1979 г. – 700 л. Потребление воды на каждого жителя столицы продолжает увеличиваться. В перспективе суточное потребление воды возрастет до 1 тыс. л на человека.
Однако чрезвычайно важно не только количество воды, но и ее качество. Советские медики впервые установили предельно допустимые концентрации посторонних примесей в питьевой воде, которые вошли в государственный стандарт Советского Союза. Этот стандарт стал первым в Европе нормативом качества воды. Наш стандарт – самый строгий в мире, по нему контролируется качество водопроводной воды. Стандартная вода должна быть безопасной в эпидемическом отношении и безвредной по химическому составу.
В СССР в дополнение к ГОСТу на питьевую воду существует ГОСТ на выбор водоисточника, чего нет за рубежом и что обесценивает надежность водоснабжения.
Таблица 10. Нормативы хозяйственно-питьевого водопотребления
Здания с водопользованием из водоразборных колонок (без канализации) | 30—50 |
Здания с внутренним водопроводом и канализацией (без ванн) | 125—150 |
Здания с водопроводом, канализацией, ваннами и водонагревателями, работающими на твердом топливе | 150—180 |
То же, с газовыми нагревателями | 180—230 |
Здания с водопроводом, канализацией и системой централизованного горячего водоснабжения | 275—400 |
Известно, что водопровод принес горожанам не только радость. В конце XVIII – начале XIX в. газеты всего мира сообщали трагические новости о вспышках эпидемии холеры и брюшного тифа во многих городах Европы. Выяснилось: причиной тому стал поток плохо очищенной или совсем не обеззараженной воды из водопровода.
В 1892 г. знаменитый бактериолог Роберт Кох сделал важное открытие. Если в миллилитре воды можно насчитать не более 100 безвредных бактерий, она не опасна. При таком голодном пайке болезнетворным микробам-паразитам не выжить. Но если критическая сотня преодолена, надо срочно бить тревогу. Кох впервые в мире дал объективный критерий оценки качества воды. Этим нормативом пользуются до настоящего времени.
Прямое определение болезнетворных микробов – дело весьма сложное и трудоемкое. Поэтому вопрос о доброкачественности воды в бактериальном отношении решают косвенным методом: путем определения количества кишечных палочек в 1 л воды. Кишечная палочка – это микроб, постоянно обитающий в кишечнике человека и животных. Кишечная палочка не является возбудителем какого-либо заболевания, она безвредна для человека. Однако ее присутствие в воде свидетельствует о загрязнении выделениями людей и животных и о возможности заражения воды болезнетворными бактериями.
Чем больше кишечных палочек находится в воде, тем больше вероятность одновременного присутствия в ней болезнетворных микробов. Если нет кишечных палочек или их очень мало, то в воде нет и других микробов, вызывающих инфекционные заболевания. Согласно ГОСТ 2874—73 в 1 л питьевой воды допускается не более трех кишечных палочек, т. е. так называемый коли-индекс должен быть не более 3. Обратная величина (количество кубических сантиметров воды, в котором находится одна кишечная палочка) называется коли-титром. Безупречная в бактериальном отношении вода должна иметь коли-титр не менее 300.
Большую роль при оценке качества питьевой воды играют ее органолептические свойства: запах, вкус, прозрачность и цветность, которые человек определяет с помощью органов чувств. Питьевая вода не должна иметь постороннего запаха, привкуса, мутности и цвета, даже если вещества, их вызывающие, сами по себе безвредны. Человек обладает защитной реакцией – чувством отвращения к воде с необычным запахом и вкусом.
Содержащиеся в природной воде взвешенные вещества портят ее вкус. Кроме того, они служат благоприятной средой для развития болезнетворных бактерий. Поэтому нормы строго ограничивают содержание взвесей в воде. В водопроводной воде допускается их не более 1,5 мг/л.
В природной воде содержатся минеральные соли. Вода считается хорошей, если минерализация не превышает 1000 мг/л. Воды с большим содержанием солей относятся к соленым и не пригодны для питья. Очень малая минерализация воды (до 100 мг/л) тоже ухудшает вкус воды, а лишенная солей (дистиллированная) вода вообще считается вредной. Она способна нанести здоровью человека непоправимый ущерб (нарушается пищеварение и деятельность внутренней секреции).
ГОСТ 2874—73 отличается от прежнего еще и тем, что выделяет в отдельную группу химические включения, которые раньше всего обнаруживают органы чувств – обоняние, зрение. Так, микрочастицы меди придают воде некоторую мутность, железа – красноту. Однако повышенное содержание солей железа в воде придает ей неприятный болотистый вкус. После стирки в такой воде на тканях остаются ржавые пятна. Такие же пятна появляются на посуде, раковинах и ваннах. Допустимое содержание железа в воде – до 0,3 мг/л.
В малых концентрациях медь обнаруживается в подземных водах. Она не является кумулятивным ядом. Концентрация меди 1,5 мг/л ощутима на привкус. Предельно допустимая концентрация принята на уровне 1 мг/л.
В природных подземных водах цинк встречается в небольших концентрациях. Суточная потребность цинка не превышает 18 мг. Хронические отравления цинком не известны. При концентрации цинка 30 мг/л вода приобретает молочный вид, при 10 мг/л – она мутная. Металлический привкус исчезает при 5 мг/л. Эта концентрация является предельно допустимой.
Иногда в питьевой воде встречается много солей соляной и серной кислот (хлориды и сульфаты), придающие воде соленый и горько-соленый привкус. Употребление такой воды приводит к нарушению деятельности желудочно-кишечного тракта. Вода, содержащая более 350 мг/л хлоридов и более 500 мг/л сульфатов, считается неблагоприятной для здоровья.
С содержанием в воде солей кальция и магния тесно связано другое ее качество – жесткость. Вода, сильно насыщенная солями, причиняет много неудобств: в ней труднее развариваются овощи и мясо, уменьшается их питательная ценность, при стирке увеличивается расход мыла, накипь портит чайники и котлы, засоряет водопроводные трубы.
Высокая температура воздуха в жарком климатическом поясе приводит к усилению влагоотдачи внепочечным путем (потение, саливация), к обезвоживанию организма, а следовательно, и к повышению концентрации мочи, что, в свою очередь, может способствовать камнеобразованию. Вода повышенной жесткости распространена именно в южных районах страны. Эксперименты показали, что потребление жесткой питьевой воды животными, содержащимися в условиях повышенной температуры внешней среды (30°), вызывает еще большее увеличение камнеобразования у подопытных животных.
Избыточное содержание в питьевой воде солей кальция и магния нарушает каллоидно-кристаллоидное равновесие мочи и способствует возникновению мочекаменной болезни. В реальных жизненных условиях заболевание мочекаменной болезнью чаще всего, вероятно, вызывается не какой-либо одной причиной, а несколькими. Однако солевой состав питьевых вод – один из факторов, способствующих развитию этой болезни.
Таким образом, жесткость питьевой воды на уровне 7 мг*экв/л не вызывает возражений. Исследования показали, что употребление воды с жесткостью на уровне 7 и 10 мг*экв/л не оказывает влияния на липидный обмен при длительном введении холестерина и, следовательно, не может способствовать развитию атеросклеротических изменений артерий. Допустимый уровень общей жесткости равен 7 мг*экв/л (А. А. Гаголи, 1972 г.).
В природных подземных водах марганец содержится в виде бикарбонатов и других хорошо растворимых солей. Вместе с тем перманганат калия (KMnO 4) применяют в практике водоснабжения как реагент: он хорошо устраняет посторонние привкусы и запахи, обусловленные различными органическими соединениями, а также снижает содержание железа и марганца. Перманганат калия употребляют и как альгицидное средство, обеспечивающее гибель водорослей, которые забивают фильтры или вызывают появление запахов и привкусов в воде. Помимо дезодорирующего и альгицидного действия, перманганат калия проявляет бактерицидный эффект.
В технологическом процессе семивалентный марганец переходит в двухвалентную и четырехвалентную форму. Четырехвалентный марганец практически нерастворим в воде и задерживается на фильтрационных установках, а остаточные количества двухвалентного марганца могут обнаруживаться в питьевой воде.
Изучение влияния семивалентного иона марганца на органолептические свойства воды вскрыло ведущий признак в этом отношении – изменение окраски воды. По этому признаку пороговой, определенной в столбе воды высотой 20 см, является концентрация перманганата калия 0,1 мг/л. При концентрации марганца в воде 0,5 мг/л опущенная в нее ткань после стирки приобретает слабо выраженный коричневый оттенок. При концентрации 0,1 и 0,05 мг/л разницы между контрольными и обработанными образцами ткани не было. Допустимое остаточное количество марганца в воде при полном переходе из семивалентного состояния в четырех– и двухвалентное и с учетом его неблагоприятного действия на белье не должно превышать 0,1 мг/л (по иону Mn).
Токсичность марганца не зависит от валентности иона. Недействующей концентрацией всех соединений марганца (по влиянию на здоровье людей) является концентрация 2 мг/л в пересчете на ион Mn. Более высокие концентрации марганца вызывают изменения со стороны высшей нервной деятельности, усиливают накопления фосфора в костях, уменьшая его выделения с мочой. Кроме этого, происходит снижение активности ферментов холинэстеразы и церулоплазмина крови. При цитогенетических исследованиях обнаружено увеличение процента митотической активности клеток костного мозга (C. А. Шиган, Б. Г. Витвицкая, 1971).
На водопроводных станциях в качестве коагулянта широко применяется сернокислый алюминий. При коагуляции избыточными дозами этого коагулянта мутность воды может возрастать. При содержаний остаточного алюминия в воде на уровне 0,5 мг/л мутность воды не изменяется. Избыточные концентрации алюминия придают воде неприятный вяжущий привкус. Пороговые концентрации определены на уровне 0,6–0,8 мг/л.