Текст книги "Юный техник, 2002 № 05"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Принципы радиопередачи
Чтобы съесть яблоко, необязательно знать, как выглядит дерево, на котором оно растет. Вот так же и радиоприемник. Его можно слушать, не зная, как он работает. Что касается ботаники, тут мы объясняться не станем. Радио – иное дело.
В Москве по современному дорогому и хорошему по качеству звука приемнику можно слушать только Москву. (Станции Америки и Европы, например «Голос Америки» и «Свобода», ретранслируются станциями из ближнего Подмосковья.) А между тем по старенькому «Океану», «Спидоле» или по допотопно-ламповому «Фестивалю» можно слушать Париж, Лондон, всю Скандинавию – целый мир. Куда же завел нас прогресс? А вот еще вопросы.
Почему телевидение передается не на СВ и КВ, легко пересекающих океаны, а на ограниченных линией горизонта УКВ?
Почему в эфире не всем хватает места? Вспомните, какие громадные деньги платят телеканалы за частоту!
Ведь казалось бы, частота радиосигнала нечто придуманное человеком от большого ума. Частот должно быть не меньше, чем точек на линии. Тогда каждому жителю Земли можно было выделить свой телеканал. Мало того, можно было бы ловить передачи с Марса, из других галактик…
Но все эти «здравые» рассуждения разбиваются о единственный факт. Передать на какой-то одной частоте ничего нельзя. Точнее, можно, но лишь при условии, что для этого отведена вечность. Для любой передачи нужен целый набор частот.
Рассмотрим передачу звуков методом амплитудной модуляции (AM).
Вспомним, амплитуда колебаний соответствует громкости звука, а частота – высоте тона. Посмотрите при случае осциллограмму музыки. Довольно красивое чередование извилистых линий. Все это бесконечно развивающийся график зависимости напряжения от времени. Приглядевшись, можно усмотреть в них и дух музыкального произведения. Некоторые звуки, например, свист, чистая музыкальная нота, дают колебания, близкие к синусоидальным. Большинство же звуков дают колебания, более сложные по очертанию. Но их можно представить в виде суммы простых синусоид разных частот. (Не только осциллограмму звука, но и вообще любую линию можно разложить на отдельные синусоиды. Из них же ее можно составить вновь.) Зная набор частотных составляющих, говорят о спектре колебания.
Спектр нашего голоса содержит частоты примерно от 300 Гц до 3…4 кГц. Для хорошего воспроизведения музыки нужен спектр частот от 50 Гц до 10…12 кГц.
Вообще же человеческое ухо способно слышать в диапазоне от 16 Гц до 16 кГц, и чем ближе к этим значениям границы полосы частот всего тракта передачи, тем естественнее звучание.
Радиовещательные станции в диапазонах ДВ – КВ работают методом амплитудной модуляции. Посмотрим, что при этом происходит.
Возьмем генератор, стабилизированный кварцем. Ни одна сила в мире, в том числе изменение напряжения питания, не способна изменить его частоту более чем на 0,001 %. Подадим напряжение на усилитель. А усилитель будем питать постоянным напряжением, на которое наложено напряжение чистого тона звуковой частоты (рис. 1).
Тогда амплитуда высокочастотного напряжения будет меняться в такт с ним.
На экране осциллографа мы увидим, что на амплитуду высокочастотных колебаний генератора наложена и как бы огибает ее звуковая частота. Но генератор продолжает работать на своей прежней частоте. А то, что мы видели на экране осциллографа, не что иное, как графический результат действия синусоидального напряжения генератора на синусоидальное напряжение звуковой частоты.
Из тригонометрии нам известно, что произведение синусов двух разных аргументов раскладывается на сумму двух синусов: синуса суммы двух аргументов и синуса разности двух аргументов. Поэтому в дополнение к частоте генератора возникают две новые частоты.
Одна из них равна сумме звуковой частоты и частоты генератора, а другая их разности. Спектральная диаграмма сигнала, получаемого в этом случае, показана на рисунке 2.
Слева на ней в виде вертикальной линии показана звуковая частота F, в середине – так называемая несущая частота f. Это неизменная по амплитуде частота генератора. Сама несущая информации не несет, но на ее создание расходуется 90 % энергии передатчика. Отметим сей факт и поговорим о нем в следующий раз. По бокам от несущей еще две частоты: суммарная f + Fи разностная f – F. Их так и называют: боковые частоты, верхняя и нижняя. При отсутствии модуляции боковых частот нет.
Что же получится, если модулировать несущую не чистым тоном, а целым спектром звуковых частот речи или музыки?
Каждая компонента звукового спектра образует свою пару боковых частот. Образуется сложный спектр модулированного сигнала, содержащий несущую, верхнюю и нижнюю боковые полосы, как показано на рисунке 3.
Верхняя боковая полоса в точности соответствует спектру звуковых частот, но смещена по частоте вверх на величину несущей.
Нижняя боковая полоса так же точно отображает спектр звуковых частот, но по порядку их расположения является зеркальным отражением верхней.
Когда говорят, что радиостанция работает на такой-то частоте, например «Маяк» – 198 кГц, то это частота ее несущей. Сигнал радиостанции занимает не только одну эту частоту, но и некоторую полосу частот вокруг. По нашим стандартам при радиовещании в диапазоне ДВ и СВ могут передаваться звуки с частотой до 10 кГц. Такую же ширину, равную 10 кГц, имеет каждая боковая полоса. Полная ширина спектра частот сигнала радиостанции составляет 20 кГц.
Чтобы не мешать друг другу, радиостанции должны иметь несущие частоты, различающиеся не меньше чем на 20 кГц. Аналогичная ситуация и в других диапазонах.
В эфире тесно. Если музыка и речь могут передаваться полосой частот 10–20 кГц, то телевидению нужно 5–6 МГц. Во всем диапазоне от ДВ до КВ удалось бы разместить только два вещающих на весь мир телеканала. Это никого не устраивает. Потому на волнах длиннее десяти метров (ДВ, СВ, КВ), способных огибать земной шар, разместили несколько тысяч радиовещательных станций, а телевидению отвели УКВ.
Теперь, зная, что радиопередача занимает определенную полосу частот, можно понять, как образуются помехи радиоприему.
Если несущие двух станций отличаются меньше чем на 20 кГц, то их боковые полосы перекрываются и становятся одновременно слышны при приеме. Поэтому каждой станции отводится частота в соответствии с международными соглашениями. Предусмотрены в них и специальные диапазоны для работы любителей.
Включите приемник, щелкните выключателем от настольной лампы – услышите щелчок. Перестройте приемник на другой диапазон – результат тот же. Крохотная искра комнатного выключателя создает помеху в полосе частот шириною десятки МГц. Что же говорить о молнии! Слыша в приемнике треск, быть может, вы слышите отзвук грозы на другом берегу океана.
Поднесите приемник к телевизору или компьютеру – он противно загудит. По вечерам, особенно на ДВ и СВ, слышен отвратительный треск – «хор» от работы телевизоров, компьютеров и различных промышленных установок. Насколько вредны для человека волны, излучаемые домашними электроприборами, тема особого разговора.
Как защитить приемник от помех? Если они попали в пределы полосы частот принимаемой станции, то сделать это очень трудно. Правда, во многих случаях они достаточно слабы и не мешают приему. Гораздо страшнее то, что приемник конструктивно не совершенен. Он нередко принимает и другие частоты, далеко выходящие за пределы полосы частот принимаемой станции. Но если станция мощная, то и это не страшно. Она заглушает помехи и прекрасно слышна по самому примитивному по конструкции своей высокочастотной части приемнику.
Именно такие (и никакие другие!) приемники сегодня имеются в широкой продаже. А старые приемники делались по возможности так, чтобы частоты, выходящие за пределы полосы, излучаемой станцией, не принимать. Достигалось это применением сложных схем с большим числом контуров. По тем приемникам мы слушали «Голос Америки», вещавший из Франкфурта-на-Майне.
Но сегодня в крупных городах России, СНГ и Восточной Европы открылись новые радиостанции. Есть что послушать из Скандинавии, а если повезет, то и с другого берега океана. Некоторые любители даже слушают «передачи» – естественные шорохи и треск с Солнца и Юпитера. Постепенно и вам все это станет возможно, поскольку вы теперь понимаете основные принципы радиопередачи.
В.ПОЛЯКОВ, профессор
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос – ответ
«В одном из старых номеров вашего журнала была опубликована статья о том, как самому смастерить ветряной двигатель. Не могли бы вы мне подсказать, в каком именно».
А.Нерабеев
Украина, Бердянск,
В № 6 за 1983 г. «ЮТ» была опубликована статья «Ветроэлектростанция-малютка». Энергии, вырабатываемой этой ветроустановкой, хватит, чтобы включить насос для поливки огорода и сада, осветить дом. Само устройство представляет собой две половинки полого цилиндра, которые после разрезания раздвигаются в стороны от общей оси. Образовавшаяся конструкция обладает ярко выраженной аэродинамической несимметричностью. Набегающий поперек ее оси поток воздуха как бы соскальзывает с выпуклой стороны одного из цилиндров. Другой полуцилиндр, обращенный к ветру своеобразным карманом, оказывает значительное сопротивление. Когда барабан поворачивается, полуцилиндры меняются местами.
А придумал такую конструкцию Сережа Куриев, использовав известную еще в давние времена схему ветроустановки с вращающимся барабаном.
И наконец, в статье «Ветрячок на балконе» речь идет о ветроколесе, энергию которого можно направить на работу водяного насоса, перекачивающего за сутки до 300 литров воды. Согласитесь, солидная помощь садоводам! Более подробно о том, как построить ветроэлектростанцию, читайте в этом номере.
«В конце пятидесятых в одном из номеров был описан простейший микроскоп с линзой из капельки воды. Я мальчишкой делал такой, был очень доволен. Сейчас хочу сделать такой же для внука. Очень прошу описание и чертежи».
П.И.Николаев,
Вологодская обл.
Скорей всего вы ошиблись. Простейший микроскоп из капельки воды был очень давно опубликован в журнале «Наука и жизнь». Где-то в пятидесятых годах. Мы же хотим предложить вашему вниманию статью Ю.Прокопцева из № 7 за 2000 год «Не подведем Левенгука!». В ней подробно рассказывается, как самостоятельно построить «микроскоп Левенгука». В основе конструкции 2 – 3-миллиметровая пластинка из термопластической пластмассы. Для изготовления линзы берется кусочек оптического стекла размером не более спичечной головки. С помощью приспособлений расплавляется в газовой горелке для придания стеклышку необходимой формы.
Кстати, такой микроскоп относится к самым простым, состоящим всего из одной линзы и дающим увеличение от 300 до 900 крат.
Делали их в домашних условиях. В начале 60-х годов среди любителей возникло даже поветрие делать такие приборы самостоятельно. Советуем вам поискать этот журнал в библиотеке или у постоянных подписчиков «ЮТ». Желаем всего доброго.
«Застежка-молния, конечно, изобретение гениальное. Одна беда, стоит обломиться зубчику, и молния выходит из строя. Может быть, вы подскажете, как продлить срок ее службы.
Кирилл Савченко, 15 лет
г. Ставрополь,
Как и всякий механизм, молнию надо смазывать. Кусочком свечи или обмылком натрите половинки расстегнутой молнии и несколько раз откройте и закройте. Ход замка станет мягче, а значит, и застежка прослужит дольше. В пластмассовых молниях разъемные половинки живут дольше, чем металлические замки. Примерно через 800 – 1000 циклов замок разбалтывается, и молния начинает расходиться сама собой. Чтобы привести ее в порядок, аккуратно сожмите ограничительные бортики замка.
Если же молния целиком металлическая, «простучите» ее, положив на плоскую наковаленку, молотком через металлическую линейку. Реставрация продлит жизнь молнии циклов на 500. Повторная еще на 300. Но уже в третий раз починить молнию не удастся.
ДАВНЫМ-ДАВНО
Вскоре после окончания Второй мировой войны началась холодная война – война нервов и разума. В 1947 году на высоте 10 км с борта американского бомбардировщика В-29 стартовал самолет Белл-Х1, оснащенный ракетным двигателем. На высоте 21 800 м он развил скорость 1550 км/ч. Полет длился всего 2,5 минуты.
В нем испытывали тонкое прямоугольное крыло с малым сопротивлением, но выяснилось, что на таких скоростях оно неустойчиво. Вскоре американцы занялись разработкой стреловидного крыла, имевшего при больших скоростях малое сопротивление и лучшую устойчивость.
У нас же скоростной полет еще с 1934 года изучался на небольших моделях в аэродинамической трубе при скоростях до 500 м/с (1800 км/ч). Это позволило сразу же оценить сложность проблемы. Под Москвой, в Жуковском, построили огромную сверхзвуковую аэродинамическую трубу с двигателем в 25 тысяч кВт. На ней под руководством академика С.А.Христиановича работали ученые из ЦАГИ (Центрального аэрогидродинамического института). Они создали стреловидное крыло, с которым самолет мог взлетать с земли и летать на самых больших скоростях.
В 1950 году в разгар корейской войны ВВС США получили истребитель F-86, а мы МиГ-15. Они были похожи друг на друга. Но взгляните, насколько красив наш МиГ! А его красоту подкрепляли сверхмощный двигатель от бомбардировщика и грозные пушки.
12 апреля 1951 года в небе Китая в сражении за Аньдунский мост на реке Ялузянь советские МиГи впервые победили американцев. Это была решающая воздушная битва корейской войны. И выиграла ее наша наука.
ПРИЗ НОМЕРА!
Наши традиционные три вопроса:
1. До каких пределов можно уменьшать диаметр отверстия камеры-обскуры?
2. Температура в цилиндре двигателя внутреннего сгорания на 1000 градусов выше, чем на лопатках газовой турбины. Но цилиндр двигателя можно сделать даже из алюминия, а лопатки турбины только из жаростойких сплавов. Почему?
3. Как доказать электрическую природу Тунгусского взрыва?
Правильные ответы на вопросы
«ЮТ» № 12 – 2001 г.
1. Обшивка скоростных самолетов в полете греется, поэтому ее и стараются делать из тугоплавкого сплава, например, титанового.
2. Трехколесному автомобилю потребуется дифференциал в том случае, если два задних колеса будут ведущими.
3. Домашний кондиционер на основе вихревой трубы имел бы расход энергии в 20 раз больший, чем обычный, да и шумел бы, как отбойный молоток.
* * *
Спешим поздравить Дениса КОЛОДНОГОиз Ногинска с победой! Правильно и обстоятельно ответив на вопросы конкурса «ЮТ» № 12 – 2001 г., он становится обладателем радиоприемника с часами.
* * *
Подписаться на наши издания вы можете с любого месяца в любом почтовом отделении.
Подписные индексы по каталогу агентства «Роспечать»:
«Юный техник» – 71122,
45963 (годовая);
«Левша» – 71123,
45964 (годовая);
«А почему?» – 70310,
45965 (годовая).
По Объединенному каталогу ФСПС:
«Юный техник» – 43133;
«Левша» – 43135;
«А почему?» – 43134.
Дорогие друзья!
Подписаться на наш журнал можно теперь в Интернете по адресу: www.apr.ru/pressa .
Наиболее интересные публикации журнала «Юный техник» и его приложений «Левша» и «А почему?» вы найдете в дайджесте «Спутник «ЮТ» на сайте http: \junetech.chat.ru или http: \jteh.da.ru
* * *