355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2011 № 04 » Текст книги (страница 5)
Юный техник, 2011 № 04
  • Текст добавлен: 26 июля 2017, 14:00

Текст книги "Юный техник, 2011 № 04"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Чудеса в капле

Чудеса можно найти даже в капле воды. Вот куда-то уверенно плывет инфузория-туфелька. Тело ее неподвижно, словно льдинка. Но за секунду туфелька проплывает расстояние, многократно превышающее ее собственную длину. Трудно поверить, что к нему может быть как-то причастно движение микроскопических ворсинок, покрывающих ее тело.

Подобные загадки встречаются не только в микромире. Вот молодая щука неподвижно зависла в зарослях водорослей. Вдруг появилось нечто съедобное – и хищница, не совершив ни единого движения ни хвостом, ни плавниками, бросается на нее. Не менее удивительна и форель, неподвижно стоящая в воде быстрого горного ручья, не шевеля плавниками. В чем же секрет?


Микроорганизм со всех сторон окружен молекулами воды. Их давление по всем направлениям одинаково, и микроорганизм неподвижен.


Микроорганизм с одной стороны своего тела начал выделять вещества, уменьшающие силу поверхностного натяжения. Равновесие молекулярных сил нарушено, и он пришел в движение.

Конкретного объяснения всех этих чудес наука пока не дала. Но нам ничто не мешает построить свои догадки. Если вырезать из картона лодочку с щелью посередине, вложить в эту щель кусочек камфары и опустить лодочку на воду, то она бойко двинется вперед. Объясняется это тем, что камфара, растворяясь, повышает поверхностное натяжение воды позади лодочки, и оно толкает ее вперед.

Твердая камфара бывает в аптеках не часто, поэтому можно поставить другой опыт. Наломайте 5–6 мелких кусочков пенопласта и уложите их на воде по кругу. Если в воду в центре круга окунуть кусочек мыла, то кусочки разбегутся. Чтобы собрать их, достаточно коснуться воды кусочком сахара.

В этих опытах, возможно, таится механизм движения инфузории, щучки и неподвижности форели в потоке. Движители обычного типа – плавники или пароходные винты, – отбрасывая воду, действуют на реактивном принципе. Когда же в нашем опыте кусочки пенопласта реагируют на сахар и мыло, то ими движет изменение силы поверхностного натяжения воды.

Поверхность воды можно сравнить с тончайшей резиновой пленкой. Под действием сахара ее натяжение возрастает, и кусочки пенопласта сближаются. Мыло же, наоборот, снижает поверхностное натяжение воды, и более сильное натяжение круга кусочки пенопласта растаскивает.

И инфузории, и крохотная щучка теоретически могут двигаться за счет изменения сил поверхностного натяжения воды. Для этого они должны уметь выделять вещества, управляющие этим напряжением.

Рассмотрим это на примере инфузории, имеющей форму шарика (есть и такие). В чистой воде на поверхности ее тела имеется примерно такая же равномерно натянутая пленка молекул воды. Все действующие в ней силы уравновешены, и инфузория неподвижна. Но вот она с одной стороны выпустила вещество, снижающее поверхностное натяжение. Равновесие тотчас нарушится, на противоположной стороне более упругая пленка начнет сжиматься, и инфузория придет в движение.

Если инфузория умудрится на одном из полушарий своего тела снизить силу поверхностного натяжения воды в три раза, то, как показывают расчеты, она сможет развить скорость 16 м/с. При такой скорости возможного запаса вещества ей хватит лишь на доли миллиметра пути, но при скорости в десятые доли миллиметра в секунду ей хватит ресурсов, чтобы бесконечно долго плавать по своему океану – капле воды.

На том же принципе могла бы двигаться и щучка. Если она может повысить силу поверхностного натяжения воды в 2 раза, то при длине тела в 10 см, те же 10 см она преодолеет всего за 0,03 секунды. От такого броска не ускользнет ни одна добыча!

Однако с увеличением размеров тела сопротивление возрастает быстрее, чем возникающее на его поверхности давление. Для существ большого размера и тем более подводных лодок такой способ передвижения, к сожалению, не пригоден.

А. ИЛЬИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Солнечная энергетика – своими руками


Поток солнечной энергии в средних широтах не так уж и мал – до 600 Вт на квадратный метр. Поэтому в местах, где много солнечных дней, всерьез думают о ее промышленном использовании. В Калифорнии, например, в пустынной местности, непригодной для сельского хозяйства, построен целый завод по производству электроэнергии, где люди кажутся букашками рядом с панелями солнечных батарей.

Когда-нибудь и мы будем строить такие заводы, а пока начнем с малого и обеспечим экологически чистым питанием хотя бы электронные часы и радиоприемники. Они станут «вечно ходящими» и «вечно говорящими», избавив вас от хлопот и расходов на замену батареек.

Солнечный элемент представляет, по сути дела, полупроводниковый диод с большой площадью контакта двух слоев полупроводника p и n типов проводимости. При освещении контакта на выводах появляется напряжение, а через подключенную нагрузку протекает электрический ток. Один элемент развивает небольшое напряжение, до 0,5 В, поэтому отдельные элементы соединяют последовательно в батарею, часто называемую солнечной панелью (СП или SP – solar panel).

Солнечный свет бывает далеко не всегда, поэтому СП всегда оснащают буферной аккумуляторной батареей. А чтобы аккумулятор не разряжался ночью на небольшое внутреннее сопротивление солнечных элементов, используют защитный диод VD1, как показано на рисунке 1а.


Рис. 1а

Именно так устроена СП «Электроника», выпускавшаяся когда-то в Зеленограде под Москвой (фото на стр. 73). Небольшое отступление: я решительно не понимаю, зачем надо было разваливать хорошо налаженную полупроводниковую промышленность Зеленограда, специально для того и построенного в 60-х годах прошлого века, чтобы теперь, на пустом месте и «с чистого листа», строить Сколково, вбухивая миллиарды! Когда-то я ездил в Зеленоград читать в местном вузе лекции по радиотехнике, и электронные наручные часы, тогда одни из первых, купленные там, исправно служат до сих пор не один десяток лет!

Эта СП, размером с записную книжку, имеет 20 солнечных элементов, а с обратной стороны корпуса – ячейки для пяти щелочных дисковых аккумуляторных элементов. Номинальное напряжение – 6 В. Однако при ярком солнечном свете СП выдает больше – до 10 В при токе до 30 мА. Это может привести к перезаряду, особенно если забыть СП где-нибудь на подоконнике на несколько суток в солнечную погоду, что вредно сказывается на аккумуляторах.


С подобным недостатком пришлось столкнуться при конструировании «солнечных часов» (на фото вверху).

СП от сломанного калькулятора, содержащая 4 элемента, развивала до 2 В светлым днем даже при отсутствии прямых солнечных лучей. Этого много для стандартного аккумуляторного элемента размера АА. Щелочные, никель-кадмиевые и металлогидридные аккумуляторные элементы с номинальным напряжением 1,2 В не рекомендуют заряжать до напряжения более 1,4–1,6 В. Чтобы ограничить напряжение на элементе уровнем 1,5 В, параллельно элементу следует включить в прямом направлении цепочку из трех кремниевых диодов. Тогда по достижении напряжения 1,5 В диоды откроются и замкнут излишний ток СП на себя.

Механизм электронных стрелочных часов использован самый обычный, со скачкообразным перемещением секундной стрелки. Он не подвергается никаким переделкам, только вместо гальванического элемента установлен элемент аккумуляторный. Под контактные площадки в отсеке элемента подсунуты тонкие проводнички (можно использовать выводы ограничивающей цепочки из трех кремниевых диодов), а к ним припаяны выводы СП и защитного диода VD1.

Таким же образом решается проблема перезаряда и для других СП и аккумуляторных батарей (рис. 1б).


Например, для 6-вольтовой батареи предельное напряжение заряда составит 7–7,5 В. Тогда параллельно батарее следует включить стабилитрон VD3 на указанное напряжение. Если есть стабилитрон на меньшее напряжение, например 6,8 В (КС168), то последовательно с ним включают кремниевый диод VD2, общее напряжение стабилизации составит уже 7,3 В.

Вполне разумно использовать в ограничивающей цепочке и светодиоды. Их напряжение открывания обычно 1,8–2 В, а свечение будет свидетельствовать о том, что аккумулятор заряжен полностью.

Другой крупный недостаток СП заключается в том, что при частично заряженном аккумуляторе они не работают при малой освещенности. Действительно, пока напряжение СП Uo меньше напряжения аккумулятора Uакк = Uпит (рис. 1), защитный диод VD1 закрыт и СП не отдает никакого тока. Это отображено зарядной кривой 1 на рисунке 2.


В пасмурный день, например, моя зеленоградская СП развивает от 1,5 до 5 В, но этого недостаточно. В то же время весьма желательно использовать и этот рассеянный свет, а не дожидаться солнечной погоды.

Этот недостаток устранить сложнее, но тоже удается. Поможет нам в этом импульсный преобразователь напряжения – обратноходовый инвертор, схема которого показана на рисунке 3.


Рис. 3

Он содержит маломощный транзистор VT1, импульсный трансформатор Тр1 и цепочку смещения R1, С2, определяющую период повторения импульсов. Схема напоминает блокинг-генератор, уже описывавшийся на страницах нашего журнала.

Работает он так: допустим, напряжение СП невелико, защитный диод VD1 закрыт, но генератор вырабатывает импульсы, амплитуда которых намного превосходит напряжение СП. Положительные выбросы напряжения с коллектора VT1 через защитный диод VD1 передаются в нагрузку – аккумуляторную батарею. И хотя средний ток заряда при слабой освещенности СП невелик, единицы, а то и доли миллиампера, все же это лучше, чем ничего, а батарея заряжается и утром, и вечером, и в пасмурную погоду. Кривая заряда 2 для этого случая также показана на рисунке 2. Генератор начинает работу при напряжении СП 0,6–0,7 В, частота повторения импульсов – несколько десятков килогерц.

Если же проглянуло солнце и напряжение СП стало больше Uпит, то защитный диод VD1 откроется постоянно, а генерация импульсов прекратится, поскольку обмотка Тр1 будет зашунтирована диодом и низким внутренним сопротивлением аккумулятора. Теперь вся зарядная установка работает так же, как и простейшая, собранная по схеме рисунка 1, а их кривые заряда (рис. 2) совпадают. Небольшим током транзистора VT1, приоткрытого через резистор R1, вполне можно пренебречь по сравнению со значительно большим током заряда батареи.

Два слова о деталях: конденсатор С1 накапливает энергию СП, способствуя генерации более мощных импульсов. Его емкость некритична, можно поставить и 470, и 1000 мкФ. Рабочее напряжение – не меньше, чем напряжение СП на ярком солнце. Трансформатор Тр1 намотан на ферритовой «шпульке» внешним диаметром 10 и высотой 15 мм (таких полно в старых мониторах и телевизорах). Допустимо использовать обломок ферритового стержня длиной 20–30 мм, насадив на него пару картонных щечек. Намотка ведется «внавал» любым изолированным проводом диаметром 0,15 – 0,25 мм.

Сначала наматывают коллекторную часть обмотки (правую по схеме) из 300 витков, затем делают отвод и доматывают (в ту же сторону!) базовую часть обмотки (левую по схеме) из 150 витков, можно более тонким проводом.

Транзистор VT1 – любого типа, кремниевый, маломощный. Защитный диод VD1 – также любой, маломощный, желательно германиевый, но будет работать и кремниевый. Налаживание инвертора сводится к подбору резистора и конденсатора цепочки R1, С2 по максимуму тока, отдаваемому инвертором при малой освещенности СП. Очень полезно проконтролировать наличие и форму импульсов на коллекторе VT1 с помощью осциллографа. Увеличивая освещенность (поднося СП к настольной лампе), наблюдают увеличение длительности импульсов, что соответствует росту зарядного тока, а затем и срыв колебаний при дальнейшем росте тока.

Автор очень надеется, что читатели повторят, а затем и усовершенствуют это простое устройство – «кирпичик» будущей Солнечной Энергетики.

В. ПОЛЯКОВ, профессор

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ


Известно, что вскоре наша милиция превратится в полицию. Интересно, а сколько стоит такое переименование?

Алексей Дубнов,

г. Тула

Около 1 млрд. рублей намерено потратить МВД только на изготовление номерных жетонов и нашивок для будущих российских полицейских. Причем речь идет только о тех сотрудниках органов правопорядка, которые будут нести службу непосредственно на улицах российских городов. В целом же переименование милиции в полицию должно обойтись государству в 2,2 млрд. рублей.

Сейчас в России на 1000 жителей приходится 13 сотрудников милиции.

Для сравнения: в Италии – 5,5, в Германии, Венгрии и Испании – 2,9, в Польше – 2,6, в Индии – 0,95, а в Коста-Рике – 0,37 полицейских на тысячу жителей. При этом криминогенная ситуация там не в пример спокойнее, чем в России. Похоже, там берут не числом, а умением.


По радио слышал, что Нобелевскую премию по экономике получили двое американцев и один британец за то, что предложили уменьшить величину пособия по безработице. Как же так: человек лишился работы, ему не на что жить, а ему еще и урезают пособие… И за это дают премию!..

Елена Соколова,

г. Вятка

Американцы Питер Даймонд и Дейл Мортенсен, а также британец Кристофер Писсаридес на самом деле получили премию «за проведенный анализ рынков с поисковыми помехами». В переводе на обычный язык, как сказал британец, «мы должны следить за тем, чтобы безработный не был без работы слишком долго, мы должны ему дать опыт работы, чтобы он не потерял ощущение причастности к рабочей силе».

Таким образом, теория направлена на то, чтобы человек побыстрее находил себе работу. Вместе с тем лауреаты указали и на парадокс, который имеет место в странах, где социальные пособия довольно высоки. Здесь отмечены случаи, когда люди всеми правдами и неправдами увиливают от вакансий, которые предоставляют им биржи труда, предпочитая годами ничего не делать, пользуясь пособием. Например, в ФРГ улицы подметают, убирают мусор, работают на конвейере в основном приезжие выходцы из Турции. В то время как сами безработные немцы предпочитают жить на пособие. Стало быть, имеет смысл сократить величину этого пособия, чтобы и у местных жителей появился стимул работать.


Читал, что на американских космических кораблях-шаттлах установлены взрыватели. Если во время взлета «челнок» отклонится от заданного курса, дежурный офицер в центре управления должен нажать «красную кнопку», и взорванный шаттл упадет в океан. Правда ли это?

В. Тричкин,

г. Саранск

Системы самоуничтожения обычно ставят на ракеты, летающие без пилотов. Что же касается шаттла, то при взлете он проходит несколько контрольных точек. При сбое систем в первой он может развернуться и сесть на взлетно-посадочную полосу, откуда только что взлетел. Вторая предусматривает посадку в Европе или Африке. И наконец, при выходе на орбиту экипаж в случае аварии должен дожидаться старта с Земли второго шаттла-спасателя. Так называемые тяжелые аварийные режимы разработаны на случай больших повреждений корабля и оканчиваются его посадкой на воду.

На российских «Союзах» тоже установлены системы аварийного спасения – если возникнет внештатная ситуация, экипаж катапультируется.

Именно так в 1983 году при аварии на старте спаслись космонавты Владимир Титов и Геннадий Стрекалов.

ДАВНЫМ-ДАВНО


Какая, казалось бы, связь между зубной болью и освещением? А вот американский физик Уильям Кулидж сумел эту связь уловить. И благодаря этому прославил свое имя, а все человечество получило дешевые и более-менее надежные электролампочки.

Случилось же это так…

Основной элемент лампочки накаливания – вольфрамовая нить, которая при нагревании током раскаляется и начинает светиться. Однако в первых лампочках Эдисона, созданных им в 1878 году, нить накаливания делали из обугленного бамбука. И горела такая лампа в среднем всего-навсего 48 часов. Немногим лучше обстояли дела и с нитями из обугленного хлопка, бумаги.

В 1892 году наш соотечественник Александр Лодыгин в заявке, поданной в патентное бюро, писал, что лучше изготовить нить накаливания из платины, хрома, а также вольфрама, хотя и отметил сложности обработки последнего. Дело в том, что вольфрам имеет очень низкую пластичность и из него практически невозможно тянуть проволоку.

Тогда технологи пошли на хитрость и стали смешивать порошок вольфрама с клейстером. Полученную массу продавливали через фильеру с маленькой дырочкой, а затем тонкую нить прокаливали в огне, выжигая клейстер. Однако какая-то часть органики в нити все же оставалась, что приводило к появлению на стенках колбы слоя углерода, и лампа светила все менее ярко.

В 1905 году этой проблемой занялся сотрудник лаборатории General Electric (штат Нью-Йорк) Уильям Кулидж. Он бился над проблемой так и этак, пока не попал… в кресло стоматолога. И тут он увидел, как врач смешивает серебро с ртутью, изготавливая пластичную массу – амальгаму серебра, которой тогда пломбировали больные зубы.

И в голове физика мелькнула мысль: «А нельзя ли подобную амальгаму найти и для вольфрама? Вскоре решение было и в самом деле найдено: вольфрам смешивали с амальгамой кадмия и из полученной пластичной массы изготавливали нить.

ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Чем отличается невесомость на орбите от невесомости в глубоком космосе?

2. Почему на тяжелые грузовики часто ставят сдвоенные колеса?

3. Какие в лесу вездеходы лучше – шагающие, колесные или гусеничные?

ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ

«ЮТ» № 11 – 2010 г.

1. Луноход на вираже легче опрокинуть на Луне, так как сила тяжести там в 6 раз меньше, а центробежная сила такая же, как на Земле.

2. Плавающие танки держатся на воде за счет герме…

… остаток текста автор скана прикрыл «заплаткой»…

* * *

За правильные и обстоятельные ответы приз – цифровой тестер – получает Владимир ФИЛИНОВ из пос. Уакит, Республика Бурятия.

Близки были к успеху М. Бахтин из с. Елховка, Э. Витько из г. Ставрополя и Р. Талипов из г. Казани.

* * *

А почему? Что такое звуковой барьер? Кто построил первый паровоз и первую железную дорогу? Занимались ли рыцари и мушкетеры спортом? Как дельфины лечат людей? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в дом-музей Константина Эдуардовича Циолковского.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.

ЛЕВША Многоцелевой самолет-амфибия БЕ-200 «Альтаир» может быть и пожарным, и санитарным, и пассажирским. О его истории и конструкции вы узнаете в рубрике «Музей на столе» и сможете выклеить макет БЕ-200 по представленным разверткам.

Пользователи компьютеров много узнают об устройстве флэшпамяти, а любители механики смогут построить НЛО, «зависший» над озером.

Владимир Красноухов порадует вас новыми головоломками. И конечно, «Левша» даст несколько необходимых полезных советов.


* * *



    Ваша оценка произведения:

Популярные книги за неделю