355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2011 № 11 » Текст книги (страница 3)
Юный техник, 2011 № 11
  • Текст добавлен: 26 июля 2017, 13:30

Текст книги "Юный техник, 2011 № 11"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 3 (всего у книги 6 страниц)

ПРЕМИИ
21 год Игнобелю



Накануне вручения Нобелевских премий в Гарвардском университете (г. Бостон, CШA) ежегодно проходит церемония вручения Игнобелевских, или Шнобелевских, премий, которые присуждают за самые сомнительные достижения в науке.

Начало этой традиции было положено в 1991 году американским журналом «Анналы невероятных исследований» при участии соучредителя и редактора журнала Марка Абрахамса. С 1999 года ежегодно вручается 10 Шнобелевских премий, причем к классическим нобелевским номинациям – физика, химия, медицина/физиология, литература, экономика и борьба за мир – прибавляются категории, тематику которых каждый год утверждает Шнобелевский комитет.

В разные годы в число непостоянных номинаций входили: диетология, археология, биология, лингвистика, орнитология, акустика, гидрогазодинамика, сельское хозяйство, здравоохранение, психология, технология, гигиена, астрофизика, информатика, защита окружающей среды, социология, образование, энтомология, метеорология и т. д.

В качестве жюри выступает Совет управляющих, куда входят редакторы журнала Annals of Improbable Research, профессиональные ученые (в том числе и нобелевские лауреаты), журналисты и прочие симпатизирующие из разных стран. Для объективности прямо «с улицы» приглашают дополнительного арбитра с полноправным голосом.

Жюри никогда не собирается в полном составе, общение происходит по электронной почте.


Мэр Вильнюса Артурас Зуокас получил премию мира за оригинальный способ борьбы с незаконной парковкой автомобилей.

Кандидатов на соискание премии может выдвигать любой желающий, допускается и самовыдвижение. По официальной формулировке, Шнобелевская премия вручается «за достижения, которые сначала вызывают смех, а затем – раздумья».

Существует традиция, согласно которой зрители во время награждения запускают на сцену бумажные самолетики, которые после окончания мероприятия подметает профессор Гарвардского университета Рой Глаубер (нобелевский лауреат в области физики 2005 г.), назначенный официальным «хранителем метлы» Шнобелевского комитета.

Речь лауреатов Шнобелевской премии не должна длиться более 60 секунд, причем на представление самой научной идеи дается 24 секунды, а на ее формулировку отведено всего семь слов. Нарушивших этот лимит останавливает «Мисс Свити Пу» (Miss Sweetie Poo) – девушка, выходящая на сцену и капризно восклицающая: «Пожалуйста, прекратите, мне скучно!»

Форма шнобелевских наград различна: они могут быть выполнены в виде медали из фольги или клацающих челюстей на подставке. Сертификат, удостоверяющий ее получение, подписывается тремя лауреатами Нобелевской премии.

Интересно также, что некоторые из шнобелевских лауретов впоследствии удостаиваются и настоящих премий Нобеля. Свежий тому пример – нобелевский лауреат 2010 года по физике Андрэ Гейм в 2000 году получил Шнобелевскую премию вместе с сэром Майклом Берри из Бристольского университета за работу по магнитной левитации (парению в воздухе)… лягушки.

На сей раз в номинации «Физика» приза удостоились исследователи из Франции и Голландии, сумевшие выяснить, почему метатели дисков испытывают головокружение, а метатели молота – нет.

Ученые из Японии премированы за то, что изобрели химический датчик опасности. Например, в случае пожара устройство распространяет в воздухе запах острейшей японской приправы васаби, способный разбудить даже крепко спящего человека. Исследователи провели ряд экспериментов, точно определив идеальное содержание васаби в воздухе, которого достаточно, чтобы прервать самый крепкий сон.

Приз по математике получили предсказатели конца света: американцы Дороти Мартин (она предсказала, что конец света наступит в 1954 году), Пэт Робертсон, который предсказал, что конец света наступит в 1982 году, Элизабет Клэр Профет, предсказавшая конец света в 1990 году, а также их столь же «успешные» коллеги из Кореи, Уганды и других стран мира.

В области общественной безопасности награду получили исследователи из Канады, которые выяснили, как влияют на езду мотоциклистов по трассе закрывающее глаза забрало шлема. Интересно, неужто при этом они ездили по шоссе, ничего вокруг не видя?..

Премии мира удостоился мэр Вильнюса Артурас Зуокас, который якобы в августе 2011 года лично раздавил бронетранспортером автомобиль Mercedes, припаркованный в неположенном месте. Вскоре, впрочем, выяснилось, что мэр на самом деле не давил машину нарушителя, а позировал для съемок рекламного предвыборного ролика, который должен был показать, как глава города собирается бороться с нарушителями правил уличного движения.

Команда ученых из Великобритании, Нидерландов, Венгрии и Австрии получила приз за исследования в области физиологии под названием «Отсутствие заразительного зевания у красноногих черепах». То есть они доказали, что черепахи, в отличие от людей, вовсе не «заражаются» зевотой друг от друга.

А Шнобелевская премия по биологии досталась группе ученых из Австралии, США и Канады, которые выяснили, что самца жучка златки привлекают бутылки именно австралийского пива.


Свою речь каждый лауреат должен закончить всего за одну минуту.


Химики из Японии стали лауреатами 111 нобелевской премии, выяснив, какая концентрация запаха васаби в воздухе достаточна, чтобы разбудить человека в случае опасности.

В области медицины отличились ученые из Голландии, Великобритании, Бельгии, США и Австралии, которые выяснили, что человек, испытывая потребность сходить в туалет, принимает менее взвешенные решения, чем обычно.

Норвежский ученый из Университета Осло Карл Халвор Тейген получил премию в области психологии, написав научный труд о том, почему люди часто вздыхают в повседневной жизни.

Премия по литературе присуждена представителю Стэнфордского университета США Джону Перри, разработавшему «теорию структурной прокрустинации».

Согласно его выводам, легче добиться успеха, работая над чем-то более-менее важным, но избегая исследований в крайне важных областях.

У СОРОКИ НА ХВОСТЕ


«РЕАКТИВНЫЕ» ГАНТЕЛИ. Вместо популярных сегодня химических стимуляторов пятиборцы Древней Греции для улучшения спортивных результатов по прыжкам в длину с места использовали законы физики. Они брали в руки гантели, сделанные обычно из камня или свинца. Судя по археологическим находкам, такой прием использовался уже в 708 году до нашей эры.

Профессор Альберто Минетти и доктор Лука Ардиго из Manchester Metropolitan University установили: если в каждой руке атлет будет держать гантель весом около 3 кг, это увеличит силу отталкивания на 6 %.

Таким образом при помощи гантелей трехметровый результат в прыжках в длину древним атлетам удавалось улучшить на 15–17 см.

ИГРЫ ПРОТИВ БОЛИ. Арсенал медсестер отделения «Скорой помощи» Нью-Йоркского детского госпиталя имени Моргана Стенли в порядке эксперимента оснастили планшетными компьютерами. Теперь планшетники будут использоваться как отвлекающее средство для снятия боли и тревожности у маленьких пациентов.

Оказывается, независимо от того, с какой проблемой человек попадает в больницу – со сломанной рукой или приступом астмы, – компьютерная игра, музыка, видео на планшете улучшают его самочувствие, снимают острый стресс.

ЗОЛОТО КАТАСТРОФЫ. Все земное золото, которым сейчас располагает человечество, обязано своим появлением на планете космической катастрофе – столкновению нашей планеты с другим небесным телом размером примерно с Плутон. К такому выводу пришли Уильям Боттке и его коллеги из Института исследования Луны НАСА.

Они отмечают, что в процессе формирования планет земной группы тяжелые элементы, близкие по геохимическим свойствам к железу – платина, палладий, кобальт, никель, молибден, золото, иридий, осмий и некоторые другие, – должны мигрировать к центру планеты.

«Таким образом, золото или иные тяжелые элементы не должны находиться в земной коре, откуда мы их добываем, – говорит один из авторов работы, Ричард Уокер из университета Мэриленда. – Однако тот факт, что добыча металлов на Земле процветает тысячи лет, свидетельствует о том, что уже после формирования мантии и ядра некие процессы привели к дополнительному обогащению верхних слоев планеты тяжелыми элементами. Возможно, металлы в кору Земли попали в результате «бомбардировки» ее астероидами на поздних стадиях формирования Солнечной системы».

Правда, до недавнего времени ученые не знали, был это единичный удар космического объекта или же продолжительный «дождь». Боттке, Уокер и их коллеги с помощью компьютерного моделирования рассчитали параметры космического объекта, обеспечившего человечество золотом и другими металлами. Компьютер показал, что, скорее всего, космическое тело имело диаметр 2,5–3 тыс. км.

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Кто изобрел телевидение?

Мы настолько привыкли к телевизору, что кажется: он был всегда. На самом деле первый прибор с электронно-лучевой трубкой, предназначенный для приема «движущихся картинок», был создан 100 лет назад, в 1911 году профессором Петербургского технологического института Борисом Львовичем Розингом.


Для начала отметим, что сам термин «телевидение» первым ввел в употребление военный инженер русской армии, преподаватель кафедры электротехники Артиллерийской академии Константин Перски. Он использовал его для обозначения передачи по эфиру «движущихся картинок», выступая с докладом на I Международном конгрессе по электричеству.

Однако этот термин не сразу получил широкое распространение. Сначала употреблялось слово «телескопия» (видение на расстоянии). А когда в 1921 году была создана Нижегородская радиолаборатория во главе с профессором Бонч-Бруевичем, то созданный там аппарат для передачи изображения на расстояние был назван «радиотелескопом».

Но сейчас радиотелескопами называют устройства для наблюдения за жизнью Вселенной. Хотя и само телевидение, кстати, тоже стало вселенским – транслирует нам панорамы иных миров. Что же касается первых попыток передавать с помощью электрических сигналов изображения на большие расстояния, то они начались еще в середине XIX века, когда было предложено несколько проектов передачи «живых картинок». Так, скажем, в 1879 году португальский физик Адриан ди Пайва, опираясь на работы Вильяма Смита, открывшего в 1873 году внутренний фотоэффект, разработал принцип преобразования светового потока в электрические сигналы. Совершенно независимо от него этот же принцип открыл и теоретически разработал российский студент Бахметьев, ставший впоследствии знаменитым ученым.

Важным вкладом в развитие теории телевидения явились работы российских ученых Столетова, установившего в 1888 году основные закономерности внешнего фотоэффекта, и Попова, изобретшего в 1895 году радиосвязь.

Эти работы и позволили профессору Петербургского политехнического института Борису Львовичу Розингу разработать в 1907 году систему катодной телескопии и получить патент на схему первого в мире электронно-лучевого телевизионного приемника, главные принципы которого до сих пор лежат в основе действия всех современных телевизоров. А весной 1911года он продемонстрировал телевизионное изображение – пересекающиеся темные горизонтальные и вертикальные линии на экране электронно-лучевой трубки. Так было положено начало телевизионному вещанию, которое в наше время приобрело глобальный и даже космический размах.

Впрочем, скоро лишь сказки сказываются… Распространяться телевидение стало лишь в начале 30-х годов XX века. И сказать за это спасибо должны еще одному российскому изобретателю, ученику Розинга – Владимиру Козьмичу Зворыкину. Узнав, что его учитель арестован по ложному доносу и сослан в Архангельск, Зворыкин эмигрировал в США. Здесь он и усовершенствовал идеи своего учителя, создав в 1929 году вакуумную телевизионную приемную трубку – кинескоп, а в 1931 году завершил создание и трубки передающей – иконоскопа.

Впрочем, советские инженеры тоже старались не отстать. В 1930 году на базе Всесоюзного электротехнического института в СССР была создана лаборатория телевидения, где началась разработка и создание передающего и принимающего устройств для механического телевидения. В апреле 1931 года газета «Правда» опубликовала сообщение, что «впервые в СССР будет произведена опытная передача телевидения (дальновидения) по радио. С коротковолнового передатчика РВЭИ-1 Всесоюзного электротехнического института (Москва) на волне 56,6 метра будет передаваться изображение живого лица и фотографии».

Однако механическая развертка, хотя и позволяла передавать изображение на большие расстояния в среднем диапазоне радиоволн, не давала должной четкости изображения. И в СССР в конце концов тоже обратились к электронной развертке.

Тем временем в США Зворыкин уже возглавил научно-исследовательскую лабораторию RCA, выпустившую в 1939 году первый массовый электронный телевизор RCS ТТ-5. Это был ящик с 5-дюймовым экраном по диагонали, в то время как в СССР первые телевизоры имели экраны 3x4 см.

Примерно два десятка лет электронное и механическое телевидения конкурировали друг с другом, но к началу 1940-х годов механика все же сдалась. Первым массовым электронным телевизором в СССР стал КВН, сконструированный в 1949 году тремя конструкторами, первые буквы фамилий которых, собственно, и стали аббревиатурой – Кенигсоном, Варшавским и Николаевским. Перед телевизором, как правило, стояла большая линза-приставка, наполненная дистиллированной водой, которая позволяла увеличивать изображение так, чтобы видеть его могли несколько человек одновременно.

К 1960 году в СССР работали уже 100 телевизионных и еще 170 ретрансляционных станций.

Первый коммерческий цветной телевизор выпустила RCA в 1954 году, хотя саму идею Зворыкин запатентовал еще в 1928 году. В СССР цветные телевизоры получили распространение в 1960-х годах, когда было подписано соглашение о сотрудничестве с Францией об использовании системы SECAM. Вещание по системе SECAM-III в СССР началось 1 октября 1967 года. В то же время вся остальная Европа, а также Китай и Австралия перешли на стандарт PAL, а в США, Японии и Канаде к этому времени прижился стандарт NTSC.

В итоге началась путаница стандартов, распутывают которую и по сей день. Кроме того, цветные телевизоры оказались намного дороже черно-белых. Ведь в каждом из них, по существу, работали три электронно-лучевых трубки, каждая из которых давала изображение своего цвета – красное, синее или желтое. Смешение этих цветов и давало затем всю многоцветную палитру.

Ныне мы накануне нового качественного скачка – во многих странах, в том числе и в России, идет внедрение цифрового телевидения, позволяющего передавать изображение практически без искажений, с высокой четкостью. Но и здесь имеет место неразбериха в стандартах.

В Японии и Европе поначалу стали использовать аналогово-цифровые системы – соответственно MUSE и HD-МАС (в этих системах сигнал передается в аналоговой форме, а хранится и воспроизводится – в цифровой).

В США же в 1987 году был объявлен конкурс на лучший проект национального стандарта. Лишь в мае 1993 года четыре группы компаний объединились и представили единый проект, который и стал основой стандарта полностью цифровой телевизионной системы в США – MPEG-2. В то же время в Европе был принят проект DVB (Digital Video Broadcasting – «цифровое видеовещание»), также основанный на MPEG-2. Сегодня он принят и как стандарт цифрового вещания в России.

Прошлой весной Игорь Щеголев, министр связи и массовых коммуникаций, сообщил, что в 2015 году Россия перейдет на цифровое телевещание. Однако сбудется ли это предсказание, сказать трудно – уж слишком много в стране телевизоров старого образца.

Между тем, как показал опыт США и Японии, цифровое телевидение позволяет не только видеть более четкую картинку. Оно устойчивее к помехам, требует передатчиков меньшей мощности, позволяет в том же частотном диапазоне транслировать намного больше телепрограмм, а также вместе с телесигналом передает дополнительную информацию, дает возможность получать и записывать из архива уже прошедшие передачи… Наконец, благодаря цифровому формату появилось мобильное телевидение.

В Японии и Корее телепрограммы на мобильных телефонах могут смотреть уже больше четверти абонентов. Правда, при просмотре телепрограмм и доступе к Интернету на телефоне пользователь должен быть готов к тому, что его счета за передачу данных существенно вырастут.

В домах же на смену телевизорам с электронно-лучевыми трубками приходят плоские жидкокристаллические, плазменные и даже лазерные телеприемники.

Еще одной новинкой теле– и видеоиндустрии стало появление объемного 3D-изображения. Правда, пока многие телевизоры со стереоизображением требуют от зрителя ношения специальных очков. Последняя новинка в этой технологии – появление очков с жидкокристаллическими затворами в линзах, поочередно закрывающими то один, то другой глаз. На экране телевизора в это время в такт миганию очков поочередно отображается картинка то для левого, то для правого глаза.

Но в скором времени инженеры обещают выдать стереоизображение, которое можно будет видеть без всяких очков. Хотя, впрочем, некоторые телевизоры сами превратятся в очки, надев которые вы сможете смотреть телепередачи не только дома, но и, скажем, в вагоне поезда или метро, салоне самолета или каюте корабля.

А на очереди – массовое распространение голографических систем, которые будут обходиться вообще без экрана, создавая объемное цветное изображение как бы прямо в воздухе, посредине комнаты в вашей квартире. Так что ждите в гости многих знаменитостей телеэкрана.

Но и это еще не все. С развитием интерактивного телевидения у каждого зрителя появится возможность формировать свою собственную телепрограмму, заказывая на дом те или иные передачи. Говорят, что при желании любой из нас сможет даже управлять ходом событий в мультфильме или очередном телесериале. Для этого с самого начала режиссеры будут снимать несколько вариантов сюжета и дать возможность выбрать того или иного персонажа в главные герои, заказать счастливый конец истории или трагический.

Во время трансляции футбольного матча вы сможете самостоятельно менять угол зрения на футбольное поле. Кое-кто из энтузиастов нового направления в телевидении предлагает оснастить миниатюрной ударопрочной телекамерой даже футбольный мяч или хоккейную шайбу. Тогда вы сможете увидеть гол в совсем уж необычном ракурсе.




Подробности для любознательных

СТРОКИ ИСТОРИИ

В 1879 г. английский физик Уильям Крукс сконструировал первую в мире катодно-лучевую трубку и открыл люминофоры – вещества, светящиеся от воздействия катодных лучей.

В 1880 г. русский ученый Порфирий Бахметьев обосновал теорию телепередач и сформулировал один из фундаментальных принципов телевидения – разложение картинки на отдельные элементы для их последовательной пересылки на расстояние.

В 1884 г. немецкий инженер Пауль Нипков изобрел диск, который механически преобразует изображение в электрические импульсы.

В 1887 г. Генрих Герц обнаружил фотоэффект (когда из вещества под воздействием света вырываются электроны). А год спустя русский ученый Александр Столетов провел опыт, наглядно демонстрирующий это явление.

В 1907 г. Борис Розинг обосновал возможность получения изображения посредством электронно-лучевой трубки, разработанной ранее немецким физиком К. Брауном.

В 1925 г. шотландскому инженеру Джону Бэрду удалось впервые добиться передачи человеческих лиц и движущихся изображений.

В 1945 г. телецентр на Шаболовке в Москве возобновил работу, прерванную во время Второй мировой войны. И с 15 декабря первым в Европе начал регулярное вещание – дважды в неделю.

В 1951 г. на базе Московского телецентра создана Центральная студия телевидения, ведущая ежедневные передачи.

В 1960 г. фирмой Sony разработан первый полупроводниковый телевизор.

В 1964 г. впервые в СССР с помощью спутника осуществлена телетрансляция Олимпийских игр в Токио.

В 1990 г. образована Всероссийская государственная телевизионная и радиовещательная компания – ВГТРК.

В 2006 г. в Японии введено цифровое телевидение.

ВЕСТИ С ПЯТИ КОНТИНЕНТОВ

ГИДРОСАМОЛЕТ-ПАРУСНИК. Проект первого парусного гидросамолета Sailing aircraft создал американский дизайнер Елкин Октури. Этот футуристический самолет имеет пару крыльев, расположенных в режиме полета горизонтально (размах крыла 37,7 метра), а в режиме парусника вертикально. Он сможет взять на борт до четырех пассажиров, а приводиться в движение будет еще и двигателем Recchia&Husser, который передаст усилия на два соосных винта, расположенных под водой в хвостовой части корпуса.


НАДУВНЫЕ ДОМА начали выпускать в Японии. Они пригодны и для постоянного жилья, и для выезда с ними на природу. Дом 5-метровой высоты с прозрачным, пропускающим солнечный свет потолком, тремя спальнями, отоплением, освещением и водопроводом весит только 150 кг, а надуть его можно за три минуты.

Для гостей всегда можно надуть запасной боковой карман, и дополнительная комната готова! Дом сохраняет свою форму благодаря слабому давлению, создаваемому специальным вентилятором, и шлюзу, который препятствует утечке воздуха.

Обычное проветривание дому противопоказано, но уже разрабатывается система, благодаря которой можно будет производить вентиляцию, не снижая при этом давления.

ЗАВЯЗАЛИ МЕБЕЛЬ УЗЛОМ бельгийские дизайнеры из студии Atelier BLINK. Их творения и в самом деле выглядят как огромные морские узлы из синтетического материала, похожего на поролон. Тем не менее, создатели необычных диванов и кресел Эмилия Лекутюрье и Селин Понселе утверждают, что их творения можно использовать по назначению.


«ПОДУШКОВЕЦ» ДЛЯ СЕЛЬСКОГО ХОЗЯЙСТВА создан в Польше. Столь необычное название аппарат получил потому, что передвигается по полю на воздушной подушке, позволяющей не накатывать на земле колеи и не повреждая растений. Испытания показали, что «Подушковец» распыляет гербициды и вносит удобрения на полях аккуратнее, чем самолет или вертолет, а стоит такая обработка дешевле авиационной. Машина движется со скоростью 50 км/ч и может обработать в час 15–20 гектаров посевов.


АВТОБУС БУДУЩЕГО создан в г. Твенте (Нидерланды) группой студентов университета UT Delft под руководством Вуббо Оккелсона. Он сможет перевозить два десятка пассажиров со скоростью 250 км/ч, используя энергию новых сверхъемких аккумуляторов, созданных в Германии, и четыре электромотора, встроенных в ведущие колеса.

По внешнему виду Superbus – так прозвали этот футуристический автобус – напоминает лимузин и имеет шестиколесную платформу. Его кузов сделан из сверхлегкого карбона. Автобус также оснащен пневмоподвеской, которая автоматически изменяет дорожный просвет.


ЧУДО ТЕХНИКИ. Очередную концепцию автомобиля будущего предложил малазийский дизайнер Priyanka Martin. Это огромное колесо, внутри которого располагается водитель. Не падает оно, даже полностью остановившись, благодаря встроенному гироскопу. Разворот «на пятке» позволяет новому виду транспорта отлично маневрировать в потоке городского транспорта, а лампочки, расположенные на корпусе, дают возможность заметить чудо-колесо издалека.


БЕСШОВНЫЙ СКЛАДНОЙ ДИСПЛЕЙ создали инженеры из Технологического института при компании «Самсунг». В отличие от предшественников, экспериментировавших со сворачиванием дисплея в трубочку, авторы нынешнего прототипа научили экран закрываться словно книга. При этом в месте сгиба не видно никакой щели или складки, равно как и оптических искажений.

Две матрицы (правая и левая) прикрыты защитным стеклом и погружены в монолитную толщу прозрачной силиконовой резины. Когда дисплей раскрыт, матрицы, находящиеся на разной глубине, чуть-чуть перекрывают друг друга. Так что на изображении не остается никакого пропуска. Тесты показали, что после 100 тысяч складываний на дисплее не появилось повреждений.


    Ваша оценка произведения:

Популярные книги за неделю