355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2012 № 08 » Текст книги (страница 4)
Юный техник, 2012 № 08
  • Текст добавлен: 7 июля 2017, 15:30

Текст книги "Юный техник, 2012 № 08"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ПОЧЕТНЫЙ ДИПЛОМ



В нынешнем выпуске «ПБ» мы поговорим о том, как потушить пожар в космосе, каким образом вызвать дождь, каким может быть бытовой дозиметр и каким будет транспорт будущего.

ЕСЛИ В КОСМОСЕ ПОЖАР…

«Всем известно, какой огромный ущерб ежегодно наносят народному хозяйству пожары. Горят леса, торфяники, строения… Но, пожалуй, наибольшую опасность представляют пожары на нефтяных платформах, кораблях, подводных лодках, самолетах и космических кораблях. Здесь людям отступать некуда. И если они не победят огонь, то погибнут. Причем применять воду, как это бывает при тушении пожаров на открытых пространствах, в закрытых помещениях бывает далеко не всегда удобно – влага может вызвать короткие замыкания в электрооборудовании, испортить ценное имущество.

Тогда в ход идут пенные, порошковые и газовые огнетушители. Но и они не эффективны в космосе, где царит невесомость. Тот же порошок может зависнуть облаком в воздухе космической станции, забить дыхательные пути космонавтов…

И тогда я вспомнил: на уроке физики наш учитель Андрей Юрьевич как-то сказал, что пламя представляет собой плазму. А плазма, как известно, это полностью или частично ионизированный газ. На ионы же можно воздействовать электромагнитным полем. Так что если создать направленное поле, то с его помощью можно оторвать пламя с поверхности горящего предмета. Оказавшись без топлива, огонь погаснет…»

Вот такое предложение получили мы от Алексея Калашникова из г. Калуги. Что можно сказать по его поводу? Алексей нащупал весьма актуальную проблему.

Одно из самых драматических происшествий, выпавших на долю многострадальной станции «Мир», был пожар на ее борту, случившийся 23 февраля 1997 года. Экипажу с большим трудом удалось справиться с огнем, накрыв горящие шашки для выработки кислорода плотной тканью. Но с той поры ни сами космонавты с астронавтами, ни специалисты, обслуживающие их полет, не забывают о такой опасности и ведут эксперименты по изучению поведения пламени в условиях невесомости.

Недавно исследователи из группы профессора Джорджа М. Уайтсайдса из Гарвардского университета провели серию опытов, в ходе которых убедились, что частицы сажи, находящиеся в пламени, и в самом деле имеют электрические заряды, что, в свою очередь, заставляет пламя терять стабильность при появлении сильных магнитных полей.

Гарвардское устройство представляет собой генератор электромагнитных волн мощностью 600 Вт, подключенный к специальной антенне, которая дает направленное излучение определенной частоты. Стоит направить излучатель на очаг пламени, и оно погаснет. Однако пока созданное устройство требует серьезной доработки, прежде чем оно сможет заменить обычный огнетушитель. А потому на борту Международной космической станции ведут дополнительные исследования в рамках программы Flame Extinguishment Experiment (FLEX). Их целью является поиск ответов на вопросы, почему пламя в условиях космоса ведет себя совершенно иначе, чем на Земле, и как с ним бороться.


Идет подготовка к очередному опыту. Вверху-справа: картина горения в невесомости заметно отличается от той, что мы привыкли видеть на Земле.

К примеру, на Земле продукты сгорания удаляются вверх от пламени за счет сил гравитации – нагретые газы становятся легче и поднимаются вверх, а на их место поступает свежий воздух, поставляющий кислород, необходимый для горения. Уберите силу тяжести – и горячие газы не смогут подниматься вверх. В этом случае горение поддерживается за счет диффузионного притока кислорода, процесса, который протекает в сотни раз медленней, чем это происходит на Земле. Но при этом оказалось, что пламя в космосе может гореть в присутствии меньшего количества кислорода и при более низких температурах, поэтому покрывала, используемые для гашения пламени, должны иметь более высокую плотность.

Следующий этап исследований – испытания прототипа системы мгновенного подавления открытого пламени (Instant Fire Suppression) с использованием электромагнитных полей.

Так что Алексей Калашников не только четко определил актуальность данной проблемы, но и нашел правильный подход к ее решению. За что и получает почетный диплом.


Есть идея!

КАК СДЕЛАТЬ ДОЖДЬ?

«Довольно часто можно услышать, как самолеты рассыпают специальные порошки, позволяющие уничтожить дождевые тучи, не дают непогоде испортить праздник, – пишет нам из Майкопа Наталья Калинина. – Но у нас на юге довольно часто возникает иная проблема: нужен дождь, а его все нет и нет. Приходится использовать дождевальные установки на полях. Однако они все-таки довольно плохая замена настоящим дождям.


«Дождеделательные» установки.

Вот я и подумала: «Можно ли помочь природе образовывать дождевые тучи там, где они нужны?»

И придумала вот что. Все мы знаем про круговорот воды в природе. Вода, вылившаяся из дождевой тучи, постепенно испаряется с поверхности земли. Пар затем в верхних слоях атмосферы, где холодно, снова конденсируется в дождевые капли, которые опять-таки выпадают на землю…

Количество водяного пара в атмосфере можно увеличить, усовершенствовав дождевальные машины. Предлагаю в особо жарких местах устраивать искусственные фонтаны, посылающие струи в небо. А каждому фонтану пусть помогает ветряк, который своими лопастями разбивает водяные капли, превращает их в мельчайший аэрозоль. Такой водяной туман частично будет сразу опускаться на землю в виде влаги, а частично подниматься в небо,

где послужит своеобразным катализатором к образованию дождевых облаков. Как вам моя идея?..»

Идея замечательная. Ее единственный недостаток в том, что Наташа не пишет подробно, где именно должны стоять такие «дождеделательные» установки.

Этот недостаток устранил инженер из Эдинбургского университета Стивен Солтер. Не так давно он предложил идею плавучего ветряка, который бы поднимал водяные испарения высоко над морем и нагонял на сушу дождевые облака. Для этого Солтер предлагает использовать конструкцию, известную в технике как турбина Даррьеуса. Она похожа на огромную взбивалку для яиц. Ветер вращает лопасти турбины вокруг вертикальной оси.

Согласно замыслу изобретателя, трубы, встроенные в лопасти турбины, будут забирать морскую воду из океана. Установленные на выходе из труб форсунки – превращать ее в аэрозоль и подбрасывать на сотни метров.

Солтер полагает, что эти капельки заметно увеличат количество воды, которая способна перейти в парообразное состояние. Турбина также поможет преодолеть одно из основных препятствий на пути океанского испарения. Ведь на поверхности воды имеется тончайший слой застойного влажного воздуха, который не позволяет молекулам воды отрываться от основной массы.

По расчетам Солтера, при скорости воздушного потока 8 м/с каждая «распылительная турбина» способна поднимать около 1 куб. м. воды в секунду. Если в жарких районах мира разместить сотни, а то и тысячи таких установок, то они смогут полностью устранить угрозу засухи.


Рационализация

ЧТОБЫ ВОВРЕМЯ ЗАМЕТИТЬ РАДИАЦИЮ

«Чернобыль и Фукусима показали, что многим людям на нашей планете неплохо было бы иметь при себе индикаторы радиации, – пишет Виктор Некрасов из Мурманска. – Вот я и предлагаю наладить, например, выпуск значков, которые бы меняли свой цвет или сигнализировали бы светодиодами о наличии поблизости источников радиации».

Идея хорошая. Неплохо бы взять ее на вооружение нашим промышленникам. Можно также позаимствовать и зарубежный опыт. Например, недавно немецкий дизайнер Ниле Фербер придумал оригинальный дозиметр под названием «тарелка Фукусима».

Разработка представляет собой на первый взгляд обычную тарелку белого цвета. Уникальность ее в том, что в нее встроен небольшой микрочип для измерения радиации. Если пища не радиоактивна, то тарелка останется белоснежной. Если в еде присутствуют следы радиации, то загораются светодиодные кольца, расположенные по краям посуды.

Новый дозиметр показывает три уровня опасности. Когда горят два внутренних кольца, это означает, что в продуктах радиация хоть и есть, но еще не превысила опасного для человека уровня. Если горит последнее красное кольцо, то пища опасна для жизни.

Новый прибор уже смогли протестировать японцы, для которых вопрос об экологической чистоте пищи встал особо остро после аварии на атомной станции «Фукусима-1».


«Тарелка Фукусима».


Новая жизнь старых идей

ТРАНСПОРТ БУДУЩЕГО


Идея питания транспорта ВЧ-энергий была предложена ленинградским профессором Г. Бабатом еще в начале 40-х годов XX века. Но тогда дело не пошло дальше лабораторных экспериментов из-за больших потерь энергии при передаче.

А недавно к ней решили вернуться вновь. В Сеуле (Южная Корея) запустили первую дорогу с беспроводной подзарядкой электромобилей. Под днище каждой машины вмонтированы приемные устройства. Сама подзарядка осуществляется периодически, на остановках транспорта. Это позволяет экономить энергию при передаче.

Эксперты полагают, что такая схема может оказаться перспективной для общественного транспорта, который обычно ходит по одним и тем же маршрутам, делая остановки в строго определенных местах.

НАШ ДОМ
Домашний склад



Со временем в каждом доме скапливается столько вещей, что сам собой возникает вопрос: «Куда их девать?» Каждый решает проблему по-своему. Известный артист, например, может отвести под склад домашних вещей одну из комнат в своей квартире. Однако у большинства людей такой возможности нет. А потому давайте попробуем решить эту проблему по-своему.


Гардероб-комната

В некоторых 2-комнатных квартирах, так называемых «хрущевках», есть чуланчики – небольшие комнатки без окон. Вот такую комнату и есть смысл превратить в гардеробную. Только для этого ее нужно оборудовать соответствующим образом. Например, у противоположной от входа стены прикрепить одну или две штанги-перекладины из алюминиевой трубы или прочной древесины. А на них цеплять вешалки с одеждой. Подальше – зимнюю одежду в чехлах, поближе – ту одежду, которой ваше семейство пользуется почти круглый год.

А по боковым стенкам неплохо поместить вместительные стеллажи, куда можно аккуратно положить джинсы, свитера, юбки, кофты…

На нижних полках стеллажей удобно хранить сезонную обувь, а также чемоданы и дорожные сумки. А для мелких вещей, таких, как носки, лучше использовать особые ящики, коробки, корзины… Идея, кстати, не нова – во времена, когда о шкафах еще и не слыхивали, те же сундуки по праву считались надежными хранилищами домашнего скарба. Сегодня коробки делают из прочного картона и ткани, на каркасе, обтянутом кожей, из яркого пластика, плетенные из лозы…

Короба не только вместительны, но и оригинально дополняют интерьер, имеют большой выбор форм, фактур и размеров, оберегают вещи от пыли и выгорания.

Не забудьте, пожалуйста, только об одном. Такое хранилище вещей надо тщательно оберегать от нашествия моли. Впрочем, пакетики с лавандой, таблетки от моли, периодическое опрыскивание вещей специальными спреями позволяют решить и эту проблему.

Кроме того, помните: моль обожает грязные вещи. А потому перед тем, как поместить их на хранение, вещи следует постирать или отдать в химчистку.


Современная многосекционная гардеробная.


Стеллаж многоликий

Так можно назвать этот предмет домашней обстановки. Стеллажи выполняют скорее второстепенную, но, тем не менее, далеко не последнюю роль домашнего хранителя. Они хорошо вписываются в пространство не только чулана-гардероба, но и любой комнаты, начиная от кухни и заканчивая лоджией или балконом.

Их используют в качестве домашней библиотеки, расставляя на полках книги, как настенные полки для хранения массы нужных мелочей (с небольшими выдвижными ящиками), для размещения аудио– и видеоаппаратуры или в качестве ажурной стены для зонирования пространства – то есть разделения комнаты на две зоны – рабочую и для отдыха.

Деревянные стеллажи довольно тяжелы, поэтому для устойчивости их необходимо крепить к полу или к стене. Очень практичны модели на телескопических ножках, высота которых регулируется.

Стеллажи удобны функциональностью (есть масса мобильных частей, которые легко варьировать), практичностью (их можно поместить в любое пространство, подобрав необходимое количество модулей, причем систему можно менять и дополнять новыми необходимыми деталями), а также отличным сочетанием с современным стилем интерьера. Ведь ныне существует бесконечные вариации моделей – можно подобрать для любых нужд и помещений.

Взгляните на иллюстрации, и вы увидите, что стеллажи можно выполнять не только в виде примитивных прямоугольников, но и делать их ромбическими, в виде полых кубиков и даже выстраивая целые стеллажи-лабиринты.


Стеллажи типа «лабиринт» и с ромбическими ячейками.

На кухне как вариант стеллажа очень удобно использовать закрытые полки с дверцами, которые вешают на стены. Они экономят площадь и вмещают огромное количество всякой всячины. Наиболее надежными считаются полки из ДСП, долговечными – с кованой основой, интересными и модными – с потайными креплениями.

Впрочем, полки любого вида удобны простотой и незатейливостью конструкции, компактностью. Их также несложно в случае необходимости переместить на другое место.


Многоуважаемы шкаф

Шкаф – это тяжелая квартирная артиллерия. Этот предмет мебели в любой его модификации по-прежнему самое популярное место для всевозможных вещей в доме.

Появившись в доме лет двести тому назад, шкаф с той поры все продолжает совершенствоваться. Кроме двух-дверных, появились более вместительные трехдверные шкафы. А дополнительные антресоли до потолка еще больше повысили их вместимость.

Одно время были очень модны шкафы-стенки; они состояли из множества секций и в самом деле могли занимать одну из стен комнаты полностью. Их покупают в разобранном виде, выбрав среди множества моделей наиболее подходящую по габаритам и по цене.

Можно и заказать такую стенку, точно подогнав ее размеры под то место, где эта стенка будет затем размещаться. Именно так чаще всего поступают со шкафами-купе, получившими свое название за раздвижные, словно в железнодорожном купейном вагоне, а не распашные двери.

Желающим сэкономить пространство лучше выбирать узкие длинные модели (глубиной не менее 500 мм, иначе будет невозможно разместить вешалки с верхней одеждой) с дверцами-купе либо с раздвижными системами типа «гармошка» – они особенно удобны для малогабаритных жилищ.

Последнее время реклама усиленно расхваливает шкафы из натуральной древесины. Нет слов, они прочны и долговечны, хотя и дороговаты. Однако имеют слабое место – их нельзя размещать рядом с приборами отопления – рассохнутся.




КОЛЛЕКЦИЯ «ЮТ»


Авианосец класса Zumwalt (назван в честь американского адмирала Элмо Замвалта, прославившегося во время войны во Вьетнаме 1967–1973 гг.) разрабатывается как многоцелевой эсминец, предназначенный, в основном, для атаки наземных целей.

Корабли класса Zumwalt имеют малую заметность для радаров, интегрированную компьютерную систему управления работой электродвигателей привода и оружия, например, электромагнитных пушек и лазеров на свободных электронах, а также автоматизированных систем пожаротушения.

Корабль вооружен радиолокационной установкой AN/SPY-3, ракетами «Томагавк», двумя 155-мм пушками, двумя зенитными пушками, 80 противокорабельными ракетами, противолодочной установкой RUM-139 VL-Asroc, зенитной ракетной установкой RIM-162 ESSM.

Авиационная группа включает вертолет SH-60 LAMPS и три беспилотных летательных аппарата MQ-8 Fire Scout.

В настоящее время ведется строительство трех кораблей, каждый из которых будет стоить около 3,8 миллиарда долларов, не считая затрат на исследовательские работы и проектирование.


Тактико-технические характеристики:

Длина корабля… 183 м

Ширина… 24,6 м

Осадка… 8,4 м

Водоизмещение… 14 798 т

Мощность силовой установки… 78 МВт

Скорость… 30 узлов (55,56 км/ч)

Экипаж… 148 человек


Кроссовер Toyota Venza был представлен в январе 2008 года, а в конце того же года поступил в продажу. Автомобиль, построенный на платформе Toyota Avalon, оснащается 3,5-литровым двигателем с шестью цилиндрами и четырехцилиндровым с объемом 2,7 литра. Трансмиссия – 6-ступенчатая автоматическая. Версия Venza с 3,5-литровым двигателем стала первым серийным автомобилем Toyota, оснащенным 20-дюймовыми колесными дисками. Полный привод выполнен по схеме AWD, и при проскальзывании передних колес часть тяги передается на заднюю ось.

Основные опции включают интегрированные фары дальнего света с автоматической установкой угла освещения, двухзонную систему отопления, кожаные сиденья, панорамный стеклянный люк, смарт-ключ, 13 динамиков, аудиосистему с Bluetooth, навигационную систему и многое другое. Все модели оснащены электронным управлением передачи.


Технические характеристики (3,5 л V6):

Длина автомобиля… 4,8 м

Ширина… 1,90 м

Высота… 1,60 м

Клиренс… 0,20 м

Снаряженная масса… 1835 кг

Снаряженная полная масса… 2311 кг

Объем двигателя… 3456 см3

Мощность… 268 л.с.

Максимальная скорость… 175 км/ч

Расход топлива:

в городе… 10,0 л/100 км

на трассе… 6,8 л

Объем топливного бака… 67 л

Время разгона до 100 км/ч… 9,2 с

НАУЧНЫЕ ЗАБАВЫ
Ботаники с гальванометром

Так называется книга, написанная учеными С.Г. Галактионовым и В.М. Юриным и выпущенная издательством «Знание» еще в 1979 году. Если вам удастся обнаружить эту книгу в библиотеке или в Интернете, не поленитесь и прочтите ее. Несмотря на то, что книга рассчитана на взрослых и местами сложновата для понимания, вы узнаете немало интересного о том, какую большую роль играет электричество в жизни растений, животных и даже людей. Ведь каждая клетка живого организма представляет собой по существу электрический элемент.

Здесь же мы более-менее подробно рассмотрим лишь одну тему, затронутую в книге и дополненную недавними экспериментами итальянского исследователя Дж. Карбони. А именно поговорим об органических электрических элементах, которые вы, сами того не подозревая, каждый день видите на кухне вашего дома.

В России начало исследованиям электрических явлений в растительных тканях было положено в середине XIX века Н. Леваконским, опубликовавшим в «Записках» Петербургской академии наук обстоятельное исследование, в котором идет речь об электрических токах в различных органах мимозы и других растений. А в 1901 году вышла в свет книга Т. Вяземского «Электрические явления растений», уже целиком посвященная данной теме.


Опыт с помидором.

Какое же электричество удалось открыть в растениях ботаникам, а точнее – биофизикам, взявшимся за гальванометры, в начале «века пара и электричества»?

Рассмотрим в качестве примера опыт, поставленный в 1912 году И. Бейтнером и К. Лебом. Объектом этого опыта было… обыкновенное яблоко. Исследователи разрезали его пополам и вынули сердцевину. Затем они убедились, что если оба электрода гальванометра приложить к яблоку с наружной стороны – к кожуре, то прибор не фиксирует никакой разности потенциалов.

А вот если же один электрод приложить к мякоти, гальванометр отметит появление тока. При извлечении части мякоти от центра к периферии величина потенциала долгое время не изменяется и начинает падать лишь после удаления последних слоев мякоти, прилегающих изнутри к кожуре.

Схема опыта Бейтнера и Леба с яблоком.

Впоследствии выяснилось, что некоторая разность электропотенциалов существует и между различными элементами неповрежденных растений. Убедиться в этом можете и вы сами, проведя серию довольно несложных экспериментов.

Для первого опыта вам понадобятся: лимон, медная и цинковая пластинки, гальванометр, два провода с зажимами-крокодильчиками.

Покатайте лимон ладонью по столу, чтобы несколько размять его, разрушить некоторые клетки, содержащие лимонный сок. Вставьте две металлических полоски в лимон, стараясь, чтобы они не касались друг друга. С помощью гальванометра (можно использовать тестер) измерьте напряжение, возникающее между двумя пластинками. Оно должно составлять около 1 вольта. Этого уже достаточно, чтобы обеспечить питание, например, электронных часов и термометра с ЖК-дисплеем.

Как работает такая батарея? Атомы меди (Сu) способны притягивать электроны сильнее, чем атомы цинка (Zn). В нашем опыте непосредственного контакта между пластинами нет. Электрическую проводимость обеспечивает лимонный сок, который мы использовали в качестве электролита.

Как и любая батарейка, наша имеет ограниченный срок службы. Электроды подвергаются химическим реакциям, которые блокируют поток электроэнергии.

Электродвижущая сила уменьшается, и батарея через какое-то время перестает работать.

Вы можете самостоятельно выяснить, какая «батарея» мощнее и дольше работает, проведя аналогичные эксперименты, например, с томатом и яблоком.

Причем не надо думать, что растительные батарейки так уж маломощны. Индийский исследователь Дж. Бос как-то соединил внешнюю и внутреннюю части зеленой горошины с гальванометром и затем нагрел ее до 60 °C.

При этом был зарегистрирован электрический потенциал 0,5 В. Ученый полушутя-полусерьезно прокомментировал полученный результат следующими словами:

«Если 500 пар половинок горошин собрать в определенном порядке в серии, то конечное электрическое напряжение составит 500 вольт, что вполне достаточно для гибели не подозревающей об этом жертвы. Хорошо, что повар не знает об опасности, которая ему угрожает, когда он варит гороховый суп, и, к счастью для него, горошины сами по себе не соединяются в упорядоченные серии».



    Ваша оценка произведения:

Популярные книги за неделю