355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2013 № 05 » Текст книги (страница 2)
Юный техник, 2013 № 05
  • Текст добавлен: 7 июля 2017, 15:30

Текст книги "Юный техник, 2013 № 05"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ
Атомный автомобиль



В середине XX века, когда были созданы первые атомные электростанции, многие конструкторы пытались предложить проекты атомных самолетов, локомотивов, танков и даже автомобилей. Однако прижились ядерные реакторы, как известно, лишь на подлодках и ледоколах, да еще на некоторых межпланетных исследовательских аппаратах.

Сейчас, похоже, начинается новая волна интереса к атомным силовым установкам.

В 2009 году американский изобретатель Лоуренс Кулесус на выставке автомобилей Chicago Auto Show продемонстрировал концепцию атомной силовой установки для автомобиля. А инженеры компании Laser Power Systems во главе с Чарлзом Стивенсоном смогли не только разработать концепцию ядерного двигателя, но и с успехом воплотить ее в жизнь. Новый концепт получил название Cadillac World Thorium Fuel (Cadillac WTF).

В качестве топлива группа разработчиков использовала слаборадиоактивный металл торий (Thorium (Th)).

По замыслу создателей, используемые материалы и техническая начинка автомобиля позволят не заботиться о ремонте машины в течение 100 лет при ежедневной эксплуатации! Причем, по подсчетам разработчиков, грамм тория с успехом заменит около 30 тыс. литров обычного топлива. Так что всего 8 г полностью хватит владельцу автомобиля для езды на всю жизнь.

Чтобы обеспечить такую долговечность конструкции, многие ее системы и узлы многократно дублированы.

Так, концепт-кар имеет 24 колеса, каждое из которых снабжено встроенным электромотором. Такие колеса нужно будет осматривать раз в 5 лет, без необходимости замены, – уверяют разработчики.

Все основные узлы автомобиля также продублированы на случай непредвиденной поломки. Сама конструкция Cadillac WTF очень гибкая, автомобиль способен трансформироваться, обходясь без вышедших из строя узлов.

Реактор автомобиля в целях безопасности расположили в задней части концепт-кара и заключили в особую капсулу, которая, по мнению изобретателей, останется невредимой при любой аварии.

Тем не менее, авторы проекта пока не рискуют предложить свой концепт-кар для густонаселенной Европы или Америки. Ничего не сказано ими и о том, смогут ли террористы использовать автомобиль в качестве передвижной бомбы.

В заявлении для прессы лишь указано, что если «торий позитивно покажет себя в качестве источника энергии», первые атомные автомобили имеет смысл использовать в Австралии и Индии. Ведь на территории этих стран расположено около 30 % мировых залежей тория.


Схема распределения тепла в атомном автомобиле.

ПРЕМИИ
Ловушки для фотонов и ионов

Нобелевская премия по физике за 2012 год присуждена французу Сержу Арошу и американцу Дэвиду Уайнлэнду «за новаторские экспериментальные методы, позволяющие измерять и контролировать отдельные квантовые частицы». Нобелевские лауреаты открыли новую эру в экспериментах по квантовой механике, показав, как можно измерять состояния отдельных частиц, не разрушая их, сообщается в пресс-релизе.


Серж Арош (вверху) и Дэвид Уайнленд – лауреаты Нобелевской премии по физике.

Дело в том, что законы классической физики, управляющие поведением макрообъектов, в мире атомов и субатомных частиц не действуют.

Здесь вступают в силу совершенно иные правила квантовой механики, противоречащие нашей привычной логике. Взять хотя бы принцип суперпозиции, согласно которому квантовые частицы с некоторой вероятностью могут одновременно находиться в двух взаимоисключающих состояниях.

Насколько все это странно с обыденной точки зрения, можно судить хотя бы на таком примере. Представьте себе ящик, в котором сидит кот. С нашей привычной точки зрения животное может находиться лишь в одном из двух взаимоисключающих состояниях: кот либо жив, либо мертв. Узнать это точно можно, открыв ящик.

А вот применительно к квантовой физике кот Шредингера, названный так по имени австрийского физика Эрвина Шредингера, придумавшего этот мысленный эксперимент, может быть с некоторой долей вероятности одновременно и жив и мертв, согласно принципу суперпозиции.

Говоря иначе, те врачи из сказки о приключениях Буратино, одни из которых говорили, что пациент скорее жив, чем мертв, и их оппоненты, утверждавшие обратное, выносили суждения, получается, как раз на основе законов квантовой механики…

Однако вернемся к нобелевским лауреатам. Одному из них – Сержу Арошу – надо было узнать, в каком именно состоянии находится фотон, посланный в некую ловушку.

Обычно фотоны используются лишь как одноразовые «посыльные» – они вылетают из источника, летят к фотодетектору и там поглощаются. Жизнь такого фотона быстротечна, его нельзя долго удерживать и изучать.

Однако Серж Арош выяснил, что удержать фотон в некоем объеме все же возможно, заставив его метаться между двумя вогнутыми зеркалами сверхвысокого качества (вогнутость зеркал не позволяет фотону уйти в сторону).


Схема ловушки с захваченными в нее ионами. Справа – зеркало для медного микроволнового резонатора со сверхпроводящим ниобиевым покрытием, обладающим рекордно высокой добротностью.

Правда, слово «метаться» не совсем точно отражает ситуацию. Когда длина световой волны сравнима с расстоянием между зеркалами, фотон уже не перемещается между зеркалами, а, как бы дрожа, замирает между ними – получается стоячая световая волна, опирающаяся на зеркала. Такая система зеркал называется резонатором.

Качество удержания фотона характеризуется добротностью резонатора Q. Это число показывает, попросту говоря, сколько раз (фотон отразится от зеркал, прежде чем каким-то образом исчезнет. Еще лет 30–40 тому назад в распоряжении физиков были резонаторы с добротностью в миллионы, а сейчас она уже достигает десятков миллиардов. В таком резонаторе микроволновой фотон будет «жить» десятые доли секунды – огромный промежуток времени для современной экспериментальной физики. За это время можно и породить фотон, и воздействовать на него, и «просканировать» его состояние.


Схема того, как возбужденный атом излучает фотон. Стандартное изображение вылетающего фотона как объекта, локализованного на атомном масштабе (вверху), дает неправильное представление о «начальных» размерах фотона. Гораздо более предпочтительней картинка, на которой фотон изображен в виде облака с размерами намного больше атомных (внизу).

В парижской лаборатории Ароша фотоны «запускали» в небольшую камеру объемом три кубических сантиметра с зеркальными стенками. Один-единственный фотон, оказавшийся в камере, мог просуществовать в ней, отражаясь от зеркал и не рискуя быть поглощенным, столько времени, что успевал пробежать в среднем 40 000 км – то есть совершить как бы кругосветное путешествие.

Столь долгое время жизни фотона позволило осуществлять с ним квантовые манипуляции, выявить его наличие в камере в те или иные моменты времени, посчитать, сколько фотонов побывало в ловушке за определенный временной промежуток.

А возможность точного подсчета квантов света открывает принципиальную возможность для создания квантовых компьютеров, которые, по идее, на десятки порядков будут превосходить лучшие нынешние вычислительные комплексы. Они за считаные мгновения смогут решать задачи, на которые современная вычислительная техника тратит недели, а то и месяцы рабочего времени.


Принципиальная схема квантового компьютера, работающего на цепочке холодных ионов, плененных в ловушке. Световые импульсы управляют логическими операциями между ионами, а чувствительная фотокамера детектирует свечение отдельных ионов и тем самым считывает результат операций.

Если Серж Арош научился манипулировать квантами света – фотонами, то не менее трудная с технической точки зрения задача управляться и с отдельными ионами – атомами, лишенными одного или нескольких электронов.

Здесь тоже используют ловушки, только уже не фотонные, а ионные. В них заряженные частицы удерживает переменное электромагнитное поле определенной формы. Такая технология была разработана полвека назад и принесла своим создателям, Вольфгангу Паулю и Хансу Демельту, Нобелевскую премию по физике за 1989 год.

При этом было замечено, что пленение и квантовый контроль отдельных ионов может иметь и далеко идущие практические применения. Например, их колебания позволяют создать сверхстабильный стандарт частоты, построить сверхточные атомные часы.

А такие часы, в свою очередь, позволили проверить экспериментально некоторые выводы теории относительности. Так, скажем, согласно теории, время течет по-разному в гравитационном поле разной напряженности. При удалении от поверхности Земли гравитационное поле начинает ослабевать, поэтому скорость хода часов, расположенных на разной высоте, будет отличаться. Так вот исследователям удалось заметить это расхождение при разнице высот меньше метра!

Дэвид Уайнленд пошел еще дальше. В его лаборатории проводились эксперименты по захвату ионов в «ловушку» из электрических полей. Чтобы полностью изолировать пойманные частицы от внешних влияний, эксперименты проводились в вакууме и при экстремально низкой температуре.

В итоге получился еще один эталон частоты, который опять-таки использован для создания сверхточных часов.

В отличие от цезиевых атомных часов (их погрешность 1 секунда в 300 лет), которые используют СВЧ-диапазон электромагнитных волн, часы Уайнленда работают в диапазоне видимого света. И точность их такова, что если бы с их помощью можно было начать отсчет времени в момент возникновения Вселенной, то сегодня они бы отстали или ушли вперед всего лишь на несколько секунд.

Дэвид Уайнленд является сотрудником американского Национального института стандартов и технологий, а также членом Американских физического и оптического обществ. Работы ученого открыли дорогу исследованиям Уильяма Филлипса, Стивена Чу, Клода Коэна-Таннуджи, а также Эрика Корнелла, Вольфганга Кеттерле и Карла Вимана – эти физики также стали нобелевскими лауреатами в 1997 и 2001 годах соответственно. Работы их непосредственно связаны с созданием атомных часов и прочих процессов, связанных с точным определением периодов времени.

А поскольку работы самого Уайнленда заложили основы технологии создания часов, роль «маятника» в которых играют атомы и ионы, то Нобелевский комитет, похоже, ныне решил восполнить упущенное, дав премию и самому отцу-основателю.

Тем более что оптические часы, к созданию которых он тоже имеет отношение, позволили создать микрочипы, способные обеспечить устойчивость армейского и навигационного оборудования к отключению системы навигации GPS.

До сих пор громоздкие атомные часы можно было установить лишь на крупных платформах – кораблях, самолетах. Однако для снаряжения пехотинца этот вариант не подходит. Поэтому и были созданы миниатюрные атомные часы объемом примерно 15 кубических сантиметров. Их уже можно интегрировать в носимое оружие, мобильный компьютер или управляемый боеприпас.

Теперь если даже спутниковая система GPS будет выведена из строя, оптические атомные часы смогут обеспечить синхронизацию времени в боевой тактической сети, позволят выявить ошибочную информацию, не сбиться с боевого курса.

* * *

…Тесная связь между разными разделами физики и их неожиданный выход на практические приложения – характерная черта современной науки. Разработанные лауреатами лабораторные методы позволяют измерять и целенаправленно изменять квантовые состояния частиц, что является первым шагом на пути к созданию сверхбыстрого компьютера нового типа на основе квантовой физики, отмечается в пресс-релизе Нобелевского комитета. Эти же методы открывают перспективу использования на практике компактных сверхточных часов, на два порядка превосходящих по точности цезиевые часы, дают возможность заложить основу нового стандарта измерения времени.

Публикацию по материалам Нобелевского комитета

подготовил С. НИКОЛАЕВ

ПО СЛЕДАМ СЕНСАЦИЙ
Шекспира записали на ДНК

Мы уже рассказывали о необычных способах сохранения информации с помощью микроорганизмов и даже в коде ДНК. Еще один шаг в этом направлении сделала группа ученых из Великобритании, Германии и США.


Подобно средневековым алхимикам

Вообще-то исследователи давно присматриваются к ДНК как к носителю информации. Вдумайтесь только: в ядре каждой клетки организма есть крошечный фрагмент, который содержит информацию не только обо всем организме, но и хранит память поколений и даже программу развития организма. И это при том, что диаметр ядра клетки, где находится ДНК, составляет всего 6 тысячных миллиметра.

Теоретически грамм ДНК мог бы хранить 455 эксабайт информации. Один эксабайт, напомним, это 1018 байт. То есть на один грамм ДНК можно записать содержимое всех библиотек мира. При этом, как предполагают ученые, в отличие от цифровых магнитных и оптических носителей, информация, записанная в ДНК посредством химических связей, может храниться десятки тысяч лет, не требуя энергии. Нужно только научиться записывать в ДНК нужную нам информацию.

Как же тут действовать?


Фотография здания EBI, записанная и считанная с помощью ДНК.

В общем-то молекулярных биологов и нетрудно принять за химиков, поскольку они манипулируют с некими растворами в пробирках и колбочках.

Для начала специалисты научились расплетать туго скрученные спирали ДНК, чтобы изучить их строение.

Поскольку с двухметровой нитью ДНК работать невозможно, ее стали резать на фрагменты, затем научились менять состав и порядок расположения белков, которые, собственно, и несут информацию.


Доктор Ник Голдман держит в руках крошечную ампулу со всеми сонетами Шекспира, классической научной статьей, звуковым файлом и фотографией своего института, записанными на ДНК. Получается, что в аптечном пузырьке можно теперь разместить целую библиотеку.


От «обрыва цепи» до лазания по «нанопещерам»

Как уже сказано, все операции с ДНК проводят с помощью химических реакций. Для того чтобы разделить ДНК на фрагменты, например, используют метод «обрыва цепи», разработанный британским биохимиком Фредериком Сенгером в 1977 году, единственным в своем роде ученым, которому Нобелевская премия по химии доставалась дважды – в 1958 и в 1980 годах.

По методике Сенгера цепь ДНК химически делится на участки по 17–20 звеньев. При этом каждый кусочек снабжается специальным «замком-липучкой», позволяющим ему при необходимости снова прилипать к общей цепи. Причем не где попало, а там, где надо экспериментаторам.

Такой участок представляет собой как бы слово, состоящее из отдельных «букв»-нуклеотидов. Сами участки по желанию ученых могут быть «рассыпаны» на отдельные «буквы», а затем собраны в новое слово с добавлением новых букв. Скажем, было слово «молоко», а получилось «локомотив» – буквы почти все те же, а слово совершенно иное.

Причем если, например, в русском алфавите свыше трех десятков букв, то биохимики ухитряются записывать свои послания всего четырьмя «буквами» – азотистыми основаниями или нуклеотидами, в число которых входят аденин, гуанин, тимин и цитозин – сокращенно А, Г, Т, Ц.

Как это может быть? Вспомним хотя бы азбуку Морзе – в ней для кодирования любой буквы обходятся лишь двумя знаками – точкой и тире. «Азбука жизни», конечно, сложнее «морзянки». Но мы с вами не можем слишком глубоко вдаваться в подробности, поскольку для их описания не хватит годовой подписки журнала. Скажем лишь, что для того, чтобы знать, где в растворе какое «слово», кусочки ДНК поначалу помечали радиоактивными метками. А собирали вновь с помощью так называемого праймера – своего рода затравки, к которой прилипают последующие фрагменты.

В более современном варианте нуклеотиды-буквы помечают не радиацией, как раньше, а четырьмя разными флуоресцентными красителями. В случае же недостатка какой-либо из букв проводят ее размножение при помощи полимеразной цепной реакции (ПЦР). А воздействуя на отдельные нуклеотиды электрическим полем, их распределяют в нужном экспериментаторам порядке…

В общем, как видите, премудростей в этом деле предостаточно, не случайно многие участники исследований были награждены всевозможными престижными премиями. Скажем, американец Кэрри Муллис, сумевший изобрести в 1983 году реакцию ПЦР, через 8 лет получил за нее высочайшую награду в мире науки, носящую имя Нобеля.


Схема конвертации данных (сонета Шекспира) в ДНК-массив: а – двоичный код; b – троичный код; с – ДНК-код; d – дублированные фрагменты ДНК с шаговым смещением 25 бит (желтым отмечены участки ДНК с адресными метками).

Исследователи подвигались шаг за шагом. Например, в 1986 году «механизм» полимеразной цепной реакции был существенно улучшен, поскольку удалось использовать ДНК-полимеразы из бактерий, не боящихся высоких температур, при которых идут некоторые реакции.

Правда, при этом выяснилось, что одна из первых термостабильных ДНК-полимераз, которая была выделена из бактерий Thermus aquaticus, оказалась склонна к ошибкам в правописании ДНК-слов. Так что пришлось еще придумывать, как обнаруживать и исправлять ошибки…

За прошедшие десятилетия биохимики немало потрудились, совершенствуя методики и аппаратуру для работы с ДНК-молекулами. Сегодня они уже умеют считывать последовательности белков без специальных реагентов. Для этого цепочку ДНК затягивают с помощью электрического поля в нанопору – «пещеру» с лазом около 1 нм в диаметре. И пока фрагмент ДНК пробирается через пещеру, чувствительный вольтметр фиксирует изменение напряжения, а по «электрическому портрету» ученые способны описать молекулярную структуру цепи.


Чтобы исключить ошибки

Итак, сотрудники Европейского института биоинформатики, о которых сказано в начале статьи, научились синтезировать «слова-фрагменты» ДНК и практически безошибочно эти слова прочитывать. Они синтезировали пять файлов, содержащих полное собрание сонетов Шекспира в формате ASCII, статью первооткрывателей структуры ДНК Джеймса Уотсона и Френсиса Крика «Молекулярная структура нуклеиновых кислот» в формате PDF, цветное фото здания их лаборатории, 26-секундный МРЗ-файл с фрагментом речи Мартина Лютера Кинга «У меня есть мечта», а также файл с так называемым алгоритмом Хаффмана, который использовался для конвертации бинарных файлов в вид, удобный для представления данных через последовательность азотистых оснований ДНК. При этом общий объем полезных данных, записанных и считанных с ДНК, составил 5,2 мегабита.

Исходную информацию переслали коллегам в США.

Американские биотехнологи, использовав приложенную инструкцию, синтезировали несколько сотен тысяч нужных фрагментов ДНК, высушили их в вакууме и выслали получившуюся щепотку пыли в запаянной ампуле обратно в Англию. Там «запись» воспроизвели и убедились, что она читается почти со стопроцентной точностью.


Подробности для любознательных

Всего для записи информации было использовано 153 335 синтезированных коротких цепочек ДНК по 117 нуклеотидов (117 битов) каждая. Данные кодировались в четырех блоках по 25 нуклеотидов. В оставшихся 17 нуклеотидах (17 бит) были записаны адресные метки, необходимые для сборки данных в файловый массив.

Кодирование происходило в три этапа. Двоичный код, в котором были представлены данные, сначала конвертировали на компьютере в троичный. Далее 8-битные блоки данных представлялись в виде последовательности из пяти троичных чисел, или тритов (0, 1, 2). После этого триты конвертировались в код из трех нуклеотидов. Троичная кодировка позволяла не только сжать данные, но и уменьшить вероятность ошибок при последующем считывании ДНК и реконструкции двоичного массива.

Как уже сказано, любая ДНК представляет собой полимерную молекулу, в состав которой входят четыре нуклеотида (аденин, гуанин, тимин и цитозин – А, Г, Т, Ц). Для конвертации троичного кода достаточно трех, поэтому в каждом последующем троичном блоке основания можно было комбинировать по-разному, ведь один из четырех нуклеотидов в них мог отсутствовать. Это гарантировало, что при синтезе ДНК два одинаковых нуклеотида не пришлось бы стыковать в одну полимерную цепочку, что снижало вероятность ошибок при последующей реконструкции данных.

Справедливости ради отметим, что команда исследователей, описавшая технологию производства своей ДНК-памяти в журнале Nature, не единственная в своем роде. Группа Джорджа Чёрча из Гарварда сообщила в журнале Science, что ей тоже удалось записать и считать с синтезированного массива коротких одноцепочечных ДНК несколько файлов, притом такого же объема – 5,2 мегабита.

Единственное существенное отличие в технологиях двух групп заключается в схеме кодирования двоичного потока в последовательность нуклеотидов. Так, группа Чёрча использовала простую схема конвертации, приняв пару разных оснований (например, АГ и ТЦ) за условные «ноль» и «единицу», а команда Сенчера использовала более сложный троичный алгоритм.


    Ваша оценка произведения:

Популярные книги за неделю