Текст книги "Юный техник, 2013 № 04"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
СЛЕДИМ ЗА СОБЫТИЯМИ
Что случилось в Челябинске?
Метеоритный дождь над Уралом, разразившийся в феврале нынешнего года, встревожил население всего земного шара. Неужели нельзя было заранее принять какие-то меры – например, сбить болид на подлете к планете? И вообще, насколько велика вероятность гибели людей от «небесных камней»?
Олег Корженевский, г. Новосибирск
В окрестностях Челябинска
Напомним вкратце: 15 февраля, в 9 часов 20 минут по местному времени, в небе над Челябинском внезапно появился белый шар, очень быстро летевший, снижаясь, в южном направлении. При этом он светился так ярко, что камеры наблюдения засвечивались, в них ничего не было видно.
Если листать научные отчеты, получается, что Землю атаковал сравнительно небольшой (величиной около 17 м) метеорит. При входе в плотные слои атмосферы он начал обгорать и светиться. Обгоревшие слои вещества тут же сдувались, образуя шлейф. Примерно в 10 км от поверхности Земли метеорит достиг так называемой точки задержки – он почти полностью затормозился в плотных слоях атмосферы, и кинетическая энергия его движения перешла в ударную волну, которая и вызвала разрушения. Точнее, произошел взрыв мощностью около 470 килотонн в тротиловом эквиваленте, и болид распался на множество мелких обломков.
Основная часть метеорита упала в озеро Чебаркуль, отчего и сам метеорит предлагают назвать Чебаркульским.
Как предполагают специалисты, астероид мог состоять из снега и льда, в который были вкраплены каменные обломки. Ледяное ядро практически растаяло в полете, иначе бы вся вода озера поднялась в небо.
Падение астероида на Землю.
Пролет метеорита над Челябинском.
Но вернемся к письму Олега Корженевского, которое мы процитировали в начале статьи. Разумеется, не только Олег, но и весь мир задается вопросом: «Можно ли предотвратить атаки метеоритов на Землю?»
Как рассказал заведующий отделом физики звездных систем Института астрономии РАН, доктор физико-математических наук, профессор МГУ О.Ю. Малков, это маловероятно.
Дело в том, что ныне наблюдение за опасными камнями ведется только с помощью наземных телескопов.
И сегодня удается отследить только те из них, которые идут как бы навстречу светилу. Если же они движутся со стороны Солнца, то ученые уже не могут их запеленговать или обнаруживают слишком поздно. Вовремя «засекать» их должны автоматические наблюдатели с орбиты. У нас же пока есть только проект патрульной службы слежения за астероидами.
Да и вообще за всю историю наблюдений известен лишь один небольшой метеорит, который заметили на подлете. Выло это в 2008 году, спустя ровно столетие после падения Тунгусского метеорита. Астрономы рассчитали траекторию болида, через сутки он вошел в небо над Шотландией и выпал в виде метеоритного дождя – большого количества мелких обломков – на территорию Судана.
Правда, положение вскоре может измениться. Канадские исследователи 25 февраля 2013 года запустили первый космический телескоп, специально предназначенный для круглосуточного наблюдения за космическими пришельцами. Он выведен на орбиту высотой около 800 км и с периодичностью в 100 минут будет круглосуточно осматривать окружающее пространство и передавать на Землю оперативную информацию о приближающихся объектах. В первую очередь в сферу его наблюдения попадут примерно 5000 астероидов диаметром более 100 м.
Уникальный прибор, способный отслеживать метеориты всех размеров и даже космический мусор, вскоре будет установлен в Астрономической обсерватории имени Энгельгардта Приволжского федерального университета в г. Казани. Как рассказал директор обсерватории Юрий Нефедьев, комплекс под названием «Мегатортор» состоит из девяти небольших телескопов диаметром по 10 см. Каждый из них осматривает лишь часть небосвода, а все вместе – практически всю видимую часть неба.
На пути к созданию «щита»
Правда, скептики отмечают, что, даже если астероид будет замечен и вычислена траектория его движения, ни одна современная система ПРО не в состоянии атаковать метеорит, поскольку он движется быстрее ракет, со скоростью порядка 50 км/с. Да и вообще стрелять по болидам – затея не только бесполезная, но и вредная.
Даже если ракета попадет в астероид и разрушит его, от падения от шрапнели многочисленных осколков вреда может быть больше, чем от падения цельного астероидного ядра.
Поэтому еще в 1998 году американский исследователь Роберт Гоулд предложил «разработать структуру, требования к системным уровням и основные спецификации для всеохватывающей системы защиты Земли, которая сможет функционировать в течение до 30 лет и защитит планету от объектов диаметром от десятков метров до нескольких километров».
Другими словами, Р. Гоулд предложил следующее.
Как только телескопы астероидного патруля заметят подозрительный небесный объект (а канадский орбитальный телескоп, к слову, уже способен разглядеть небесное тело на расстоянии в 50 млн. км от Земли), с наземного или орбитального космодрома стартует специальный зонд, который попытается изменить орбиту опасного пришельца.
Способов сделать это, в принципе, достаточно много.
Самый простой – отправить навстречу астероиду искусственное облако из множества стальных иголок. Попав со сверхвысокой скоростью в такое облако, как полагает профессор МАИ Юрий Чудецкий, астероид сам разлетится в пыль. Той же цели можно добиться, раскинув на пути его следования особую сеть, подставив надувную подушку или даже просто покрасив астероид в белый цвет с определенной стороны. В последнем случае изменится отражающая способность астероида, и световое давление лучей Солнца заставит его изменить курс.
Ведь для этого нужно не так уж много. Согласно расчетам того же Гоулда, если астероид обнаружат лет за десять до того, как он должен столкнуться с Землей, то достаточно будет изменить его скорость всего на 7 миллиметров в секунду, чтобы мы с ним благополучно разминулись!
Еще одну, пока фантастическую идею, позаимствованную из легендарных «Звездных войн», решили воплотить в жизнь ученые из США. По словам одного из разработчиков, космолога из Калифорнийского университета Филиппа Лубина, в космос выведут платформу с множеством микролазеров, питающихся от солнечных батарей. Совместный световой поток, по расчетам, способен разогреть поверхность небесного камня до температуры 5000 градусов по Цельсию. Часть астероида буквально закипит, и реактивная сила струи пара заставит его изменить траекторию движения…
Подобную идею выдвигает доктор технических наук Виктор Моторин. По его мнению, на благое дело можно использовать гамма-лазер, придуманный во времена «холодной войны», когда военные действия собирались перенести в космос. Источником накачки такого гаммалазера послужит ядерный взрыв, а мощнейший луч на расстоянии до 100 000 км способен испепелить объект диаметром в сотни метров. Такой, например, как астероид Апофис (о нем чуть позже).
«Космический бильярд»
Еще российские ученые предлагают сбивать опасные небесные тела с угрожающей траекторией ударами других астероидов. Как пояснил один из авторов проекта, ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт, исследователи намерены сыграть в своеобразный космический бильярд.
Заметив приближающийся к нам крупный астероид, астрономы тут же подыскивают ему партнера – астероид поменьше. На него высаживают межпланетный зонд. Установленный на зонде двигатель своей реактивной силой заставит астероид приблизиться к земле с таким расчетом, чтобы совершить вокруг нее гравитационный маневр.
При этом возникает эффект своеобразной «пращи», позволяющий получить прирост скорости до 3 км/с при том, что для вывода на траекторию такого маневра нужно добавить астероиду всего 2,5 м/с. Этот астероид-партнер должен будет «подбить» опасный астероид.
Метод хорош тем, что гравитационная «праща» уже опробована при запуске межпланетных зондов к окраинным планетам Солнечной системы. Его-то ученые и предлагают использовать для защиты Земли от удара астероида Апофис (2004 MN4).
Это 325-метровое тело, как известно, было открыто в 2004 году. Первоначально открытие вызвало ажиотаж, поскольку расчеты показали, что существует вероятность в 2,7 % столкновения Апофиса с Землей в 2029 году. Однако уточненные данные позволили исключить эту угрозу.
Тем не менее, после очередного тесного сближения с нашей планетой в 2029 году орбита астероида может измениться. Поэтому ученые пока не могут дать гарантии, что столкновение с Апофисом не состоится позже, в 2036 году. В этом случае произойдет взрыв, эквивалентный нескольким сотням мегатонн тротила, а на месте столкновения останется кратер диаметром несколько километров.
Поэтому в случае возможной опасности наши ученые предлагают сначала запустить на ракете «Союз» радиомаяк, который будет посажен на Апофис – проект такой экспедиции разрабатывают в ИКИ и в НПО имени Лавочкина. Второй аппарат – двигатель для «снаряда» – будет запущен на «Протоне».
Наиболее подходящим для роли «снаряда» ученые считают астероид 2011 UK10. Чтобы «подбить» Апофис в июне 2027 года, ракету с двигателем для него необходимо запустить в декабре 2021 года, а стыковка должна состояться в августе 2022 года. Существует и второй вариант проекта, который рассчитан на столкновение «снаряда» с Апофисом в 2031 году.
Генеральную репетицию для проверки действенности такого метода американские ученые из лаборатории прикладной физики Университета Джонса Гопкинса предлагают провести в ближайшие 10 лет с помощью астероида 65803 Didymos. Как рассказал газете «Вашингтон пост» научный руководитель проекта Энди Ченг, по расчетам ученых, астероид Didymos в 2022 году пролетит мимо Земли на расстоянии 10,5 млн. км. Астероид состоит из двух космических тел – основного и вращающегося вокруг него спутника. Удар предполагается нанести по меньшему по размеру телу диаметром около 150 м. Ну а он, в свою очередь, должен воздействовать на большее космическое тело.
Космический аппарат к астероиду планируется запустить в 2021 году. Стоимость проекта оценивается в 350 млн. долларов. При этом газета отмечает, что новая волна интереса к разработке системы защиты Земли от ударов астероидов вызвана недавним падением метеорита в районе Челябинска.
Все это, впрочем, дело будущего. Ну, а если на Землю уже в ближайшее время обрушится другой астероид, которого сегодня никто не ждет.
Согласно теории вероятности
Нужно сказать, что пронесшийся в небе над Челябинском метеорит многих заставил вспомнить статистику.
А она такова.
Довольно крупные небесные тела – размером порядка до 100 м – могут прилетать каждый год. А вот вероятность их взрыва над населенным пунктом невелика – ведь города и села занимают лишь одну тысячную долю поверхности Земли…
Еще более крупные «небесные камни», такие, как астероид 2012 DA 14, спустя сутки пролетевший мимо нас, – падают на Землю в среднем один раз в 250 лет.
Падение километрового метеорита вообще происходит не чаще одного раза за миллион лет, но даже в этом случае наша цивилизация уцелеет. Погубить человечество способно космическое тело размером более 10 км. К счастью, такие события, согласно статистике, происходят не чаще, чем с промежутком в 100 млн. лет.
Ну а какова вероятность погибнуть от падения метеорита кого-то из нас? Пока в истории человечества не зарегистрировано ни одного такого случая! В 1999 году американские ученые подсчитали: вероятность гибели человека от падения астероида равняется 1:20 000. Директор Института астрономии РАН Борис Шустов на пресс-конференции сказал, что такая вероятность намного меньше, чем шанс погибнуть в авиакатастрофе и сравнима разве что с вероятностью падения на голову кирпича с крыши.
Риск же попасть в авиакатастрофу в 65 раз меньше, чем стать жертвой дорожно-транспортного происшествия и на два порядка меньше возможности пострадать от падения сосульки с крыши.
Кстати, хотя в Челябинске за медицинской помощью обратились около 1500 человек, лишь одна женщина была госпитализирована с серьезными травмами. Да и то потому, что, испугавшись, она упала с лестницы…
Остальные пострадали в основном от… любопытства – бросились к окнам, чтобы посмотреть, что происходит на улице, и получили порезы осколками разлетевшихся стекол.
Г. МАЛЬЦЕВ
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Лучи притяжения
То, что свет оказывает давление на предметы, вы знаете, наверное, из курса физики. Но, как утверждают уфологи, существуют еще и «притягивающие лучи», с помощью которых «летающие тарелки» втягивают внутрь различные предметы, животных и людей. Существуют ли НЛО и пришельцы на самом деле или все это досужие вымыслы, до конца не ясно. Зато вот притяжение света уж точно не является фантастикой.
Исследования китайцев
Сотруднику Фуданского университета (Шанхай) Юн Чену и его коллегам из Гонконга удалось привести доказательства, что лазерный луч и в самом деле способен притягивать предметы.
В данном случае наблюдается эффект, действие которого противоположно хорошо изученному явлению – давлению света. Экспериментально наличие светового давления было доказано нашим соотечественником П.Н. Лебедевым еще в начале XX века. А вот условия для создания эффекта втягивания появились сравнительно недавно. Тут нужен особый лазер, создающий так называемые пучки Бесселя. Пучки эти обладают особой структурой. В сечении такой лазерный луч как бы состоит из концентрических окружностей.
По мнению китайских ученых, пучок Бесселя следует направить на объект под определенным углом. Тогда образуется сила, которая переместит объект к источнику излучения.
Правда, как признается Юн Чен, привести в движение пока удалось объекты размерами в доли миллиметpa. Однако не исключено, что в будущем таким способом станет возможным перемещение и более крупных, массивных предметов.
Чего хочет НАСА?
Китайцы – не единственные исследователи, работающие в данном направлении. Сразу две группы физиков из США и Дании предложили схожие схемы создания притягивающего луча. Статьи ученых появились в журнале Physical Review Letters.
Объектом изучения опять-таки были лучи Бесселя. Они обладают рядом замечательных свойств, в частности, фотоны в них движутся под углом к направлению распространения самого луча. А так как частицы падают на поверхность тела под углом, то сила отталкивания у такого луча меньше, чем у обычного.
Более того, физики утверждают, что, подбирая свойства объекта и параметры луча, можно добиться того, что объект будет сам отражать больше света в направлении от источника, чем к источнику. Вместе с пониженным давлением в луче Бесселя этого достаточно для того, чтобы объект начал двигаться в направлении источника света.
В будущем, как полагают эксперты НАСА, удаленный захват предметов световыми лучами решит проблему взятия образцов с поверхности или из атмосферы небесных тел. Сегодня приходится разрабатывать сложные механизмы для посадки, взятия проб и последующего взлета, которые удорожают космические программы и увеличивают шансы неудачи экспедиции из-за возможности крушения. Если же удастся использовать притягивающий луч, образцы для анализа можно будет брать, оставаясь на орбите.
Первоначально ученые хотели создать притягивающий луч для сбора космического мусора, однако поняли, что мощности современных устройств для этого недостаточно. Пока они переключились на проект по захвату мельчайших частиц: пыли, отдельных молекул и даже ДНК в живых клетках.
Ныне команда физиков из центра Годдарда прорабатывает три подхода к решению проблемы. Первый заключается в реализации «оптического вихря», или, как они говорят, «оптического пинцета». Он предполагает использование двух встречных пучков волн, формирующих кольцевую структуру. Изменяя интенсивность одной волны, по сути, нагревая воздух с одной стороны от захватываемой частицы, можно заставить ее двигаться.
Этот способ годится для исследований в атмосфере.
Второй метод можно использовать в любой среде, поскольку он основан на электромагнитном взаимодействии. В нем используется «луч-соленоид», и пики интенсивности закручиваются по спирали вокруг оси взаимодействия. Тестирование показало, что так можно захватить и притянуть твердые предметы.
Третий метод пока существует только на бумаге и использует пучки Бесселя, о которых говорилось выше.
Физики намерены исследовать все три варианта «лучей захвата» и предложить НАСА оптимальный.
Два луча лучше, чем один
Наиболее перспективным методом притягивания пучком света многие эксперты все же считают луч Бесселя.
Физики Дэвид Раффнер и Дэвид Гриер из Нью-Йоркского университета (США) попытались разобраться, почему пока он столь маломощен. Выяснилось, что настроить соответствующим образом луч Бесселя весьма сложно. Притягиваемый объект у тех же китайских физиков получился микроскопическим потому, что рассеивание света от Бесселева луча происходило не только по направлению к наблюдателю, но и от него.
Однако сложности такой настройки можно обойти, полагают ученые, если использовать сразу два луча Бесселя – вместе с линзой, слегка изгибающей направления распространения лучей таким образом, чтобы они накладывались друг на друга в районе тела-цели. При этом результирующий импульс направлен к наблюдателю, что теоретически позволяет получить более мощный притягивающий луч.
Диаграмма аксиконической линзы и получаемого луча Бесселя.
Повторное формирования центральной яркой области луча Бесселя за препятствием.
Сечение симметричного луча Бесселя и график зависимости интенсивности от радиуса.
Заметим, что предложенное американцами решение частично совпадает с теоретическими рецептами, сформулированными израильскими физиками. Впрочем, чтобы реализовать притягивающий луч для работы с крупными объектами, пока требуется слишком много энергии. При этом есть опасность, что такая энергия, будучи приложена к крупному телу, скорее всего, испарит его еще до того, как оно будет притянуто достаточно близко к наблюдателю.
У СОРОКИ НА ХВОСТЕ
ТЕЛО НЕ УМЕЕТ ВРАТЬ. «Наши тела, а не лица выдают правду о наших чувствах», – полагает доктор Хиллел Авизер из Еврейского университета в Иерусалиме. При этом он ссылается на такое исследование.
Когда группе испытуемых показали фотопортреты незнакомых людей, то очень немногие смогли выделить среди них тех, кто доволен собой.
Однако они выполнили эту работу гораздо лучше, когда получили фотографии людей в полный рост. Еще точнее получился анализ по видеозаписям.
Автор исследования прокомментировал, что все тело человека может выражать эмоции. При этом каждому уследить за своими жестами труднее, чем за мимикой лица.
СТОУНХЕНДЖ – ЭТО ГАЛЕРЕЯ. К такому выводу пришла группа британских ученых, обнаружив с помощью лазерного сканирования на 5 каменных блоках около 70 резных изображений, сделанных в период раннего бронзового века. Древние гравюры могли быть талисманами, защищавшими местное население от злых духов, непогоды или неурожая, полагают исследователи.
Ученые также отметили, что доисторические каменщики пользовались двумя различными методами обработки каменной поверхности. Изображения, вырезанные на внешнем большом кольце, были сделаны параллельно длине камня. При этом рисунки на трилитах (так называются мегалиты, представляющие собой три больших камня, установленные в виде ворот) внутри этого круга сделаны под прямым углом к длине камня.
«Такие открытия показывают то, как новые технологии могут извлекать ранее неизвестную и очень важную информацию», – отметил глава группы ученых Маркус Аббот, добавив, что Стоунхендж мог играть роль и древнего храма, и художественной галереи одновременно.
ГЕНЕТИКИ-ВЗЛОМЩИКИ
Если «взломать» генетический код пшеницы, или, говоря по-научному, идентифицировать около 96 000 ее генов и проанализировать связи между ними, то появляется возможность обеспечить весь мир огромными запасами продовольствия. Зная строение генов злака, можно колоссально увеличить урожаи пшеницы, добиться, чтобы она лучше справлялась с болезнями, засухами и другими проблемами, которые приводят к большим потерям зерна.
К такому выводу пришел американский профессор Дуглас Келл.
АЛМАЗНАЯ ПЛАНЕТА. Астрономы обнаружили планету, которая вдвое больше Земли и вращается вокруг подобной Солнцу звезды в созвездии Рака столь быстро, что ее год равен всего 18 земным часам.
Планета, названная 55 Cancri е, судя по всему, покрыта графитом и алмазами. Кроме того, 55 Cancri е невероятно горячая – температура на ее поверхности достигает 1648 градусов Цельсия.
Алмазные планеты были известны астрономам и раньше. Однако впервые открыт небесный объект, вращающийся вокруг звезды, подобной Солнцу.