355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2006 № 10 » Текст книги (страница 4)
Юный техник, 2006 № 10
  • Текст добавлен: 8 октября 2016, 22:03

Текст книги "Юный техник, 2006 № 10"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ШКОЛА «ПБ»
Штампы и компьютер

Огромное количество самых разных деталей в машиностроении получают сегодня прессованием. Процесс этот, кажется, проанализирован до тонкостей, однако и в наши дни находятся люди, которые вносят в эту технологию усовершенствования.

Один из них – 10-классник из лицея № 1 г. Тулы Михаил Хозяшев. Под руководством доктора технических наук, профессора кафедры механики пластического формоизменения ГОУ ВПО «Тульский государственный университет» А.К. Евдокимова, он провел серию исследований, показавших, как наилучшим образом получать цилиндрические детали из алюминиевых сплавов.

Вот что рассказал о сути проведенной работы сам разработчик.


Алюминий красив и легок, обладает хорошими антикоррозийными свойствами и довольно прочен. Так, прочностная эффективность алюминия, то есть отношение предела прочности к плотности металла, у конструкционной стали 10 равна 45,57, у стали 45–73,42, а у алюминиевого сплава Д16 – 161,87.

Однако алюминиевым сплавам свойственны и свои недостатки. Так, подавляющее большинство заготовок и деталей из алюминиевых сплавов получают холодным выдавливанием под прессом при помощи матрицы и пуансона. Но мгновенно прилагать большие усилия, то есть использовать ударную штамповку, к алюминию нельзя материал тут же трескается. А давить медленно – значит, расходовать большое количество энергии и иметь повышенный износ инструмента. Детали получаются дорогими.

Что делать? На этот извечный вопрос Михаил Хозяшев нашел свой вариант ответа. Он предложил способ дифференцированного выдавливания, при котором в начале процесса деформирование идет медленно, предотвращая образование трещин. А затем, в какой-то момент, скорость выдавливания резко возрастает.

Для решения поставленной задачи Михаилу прежде всего пришлось тщательно проработать всю литературу по данной проблеме в поисках наилучших вариантов решения проблемы.

Наиболее перспективным способом решения проблемы Михаилу показалось «компьютерное твердотельное моделирование штамповой оснастки в среде Solid Works 2006. Взяв эту зарубежную методику за основу, Михаил стал приводить ее к российским реалиям. У нас ведь и алюминиевые сплавы не такие, как за рубежом, и оборудование другое.

Впрочем, оказалось, что и наши соотечественники в свое время немало сделали для усовершенствования получения полых изделий из сплошных заготовок выдавливанием.


Осцилограмма изменений параметров обратного выдавливания.


Чертеж штамповой оснастки нового образца.


Так выглядит новый штамп на экране компьютера.

Впервые такой способ был заявлен в СССР С.Ш. Яшаяевым в 1962 году. Суть его, упрощенно говоря, заключается в следующем. Во-первых, как оказалось, для алюминия выгоднее использовать так называемый способ обратного выдавливания. То есть в данном случае должен двигаться не пуансон, как обычно, сверху вниз, а матрица снизу вверх.

Тогда на контактных границах инструмента с той частью заготовки, которая еще не деформировалась, и ее пластической областью особым образом создаются активные силы трения. Благодаря им, удельное усилие выдавливания снижается на 10–15 %. Так возник новый способ выдавливания, в котором активное трение осуществляется подвижным контейнером (способ Ю.П. Можейко и Н.К. Розенталя).

Позже было установлено, что, если контейнер перемещается быстрее выдавленного металла примерно в 1,3 раза, удельное усилие можно снизить на 30 %.

Проанализировал Михаил Хозяшев и другие способы этого класса, привлекая к этому современные методы компьютерного анализа. И выяснил, что, если к одной известной методике прибавить другую, да еще добавить кое-что от себя, можно добиться весьма неплохих результатов.

В чем именно заключается это «кое-что», Михаил в подробностях рассказывать не стал. А пока идет процесс патентования, человек, со школьной скамьи готовящийся шагнуть в среду изобретателей-профессионалов, смог рассказать лишь следующее.

В процессе экспериментов и анализа удалось точно установить, в какие именно моменты давление должно быть снижено до минимума или даже должен быть дан обратный ход, чтобы и качество заготовки не пострадало, и сам процесс стал более экономичным. Создан и экспериментальный штамп, который способен осуществить подобную схему сложных кинематических движений. Теперь все эти тонкости остается занести в память компьютера, отработать процесс до такой степени, чтобы участие человека в нем стало необязательным.

Вот над этим Михаил и думает работать в скором будущем, намереваясь после лицея поступить в Тульский политехнический университет, где ведет научную работу и преподает его наставник.

Публикацию подготовил Н. ВЛАДИМИРСКИЙ

НАШ ДОМ



Первый инструмент в хозяйстве

Рассказав о дюбелях (см. «ЮТ» № 7 за 2006 г.), теперь волей-неволей приходится рассказать и об инструменте, с помощью которого делаются отверстия как для этих самых дюбелей, так и для многих других целей. Итак, сегодня – разговор об инструментах для сверления.


Уже для того, чтобы понадежнее закрепить на древке каменный топор, древние изобретатели додумались просверлить в нем отверстие. Однако это легче сказать, чем сделать: и поныне сверлить камень – не самая простая технологическая задача.

Тем не менее, человечество с ней справилось. С той поры и делает отверстия в самых различных материалах, с самыми разными целями. И придумало для этого немалое количество всевозможных инструментов. Начало с первых буравчиков и дошло до алмазных сверл и лазерной прошивки самых твердых материалов.

Впрочем, лазерный инструмент в быту пока не используется, а потому остановимся на обычных сверлах и приспособлениях для сверления.

Для начала – совет: не экономьте на сверлах. Лучше один раз купить набор качественных (например, немецких или отечественных) сверл разного диаметра для дерева, металла и бетона, чем много раз покупать дешевые.

Не стоит также использовать, скажем, сверло для металла, чтобы проделать дырку в бетоне, и наоборот. Результат опять-таки скорее всего будет плачевный. Разве что иной раз имеет смысл вместо сверла по бетону зажать в патрон дрели специальный пробойник, который позволяет делать дыры в бетонных стенках при помощи обычного молотка.

Все современные электродрели делятся на два класса. К первому классу относятся так называемые шуруповерты. Основной вид их работы сверление, а также закручивание гаек и шурупов, дополнительный – сверление с ударом. Мощность таких дрелей не превышает 500 Вт, частота вращения – от 0 до 2800 об/мин, частота ударов – до 17 тыс. в минуту.

Самое большое отверстие, которое они могут просверлить в бетонной стене, имеет диаметр 13 мм, в древесине – 20 мм, в стальном листе – 10 мм.


А вот дрели-перфораторы, относящиеся ко второму классу, в качестве основного вида работы предполагают именно сверление с ударом. Их мощность может достигать 1 кВт, частота вращения и ударов – 3 тыс. и 30 тыс. соответственно. Режим перфорирования – который, впрочем, можно отключить – позволяет просверлить ту же бетонную стену в 2–3 раза быстрее.

«Дрожание» дрели обеспечивают два контактирующих друг с другом зубчатых храповика. Имейте в виду: при постоянной работе зубья довольно быстро изнашиваются, и тогда храповики приходится менять на новые.


Многие дрели снабжают дополнительными ручками и насадками, повышающими точность и удобство работы.

Впрочем, ресурс дрели зависит еще и от того, какой инструмент вы купили – профессиональный или любительский. Профессиональные дрели, конечно, надежнее, но и стоят, естественно, дороже. Однако стоит ли переплачивать, если вы работаете дрелью раз в год по обещанию?

Кстати, в том случае если механизм не эксплуатировали в течение двух и более лет, следует обновить в нем смазку. Хранить же инструмент лучше в чемодане или специальном футляре при комнатной температуре.

Выбор дрелей сегодня велик. При покупке стоит обращать внимание на фирму-производителя, а также на основные технические характеристики. Современные дрели оснащают двумя типами патронов: традиционным зубчатым, в котором сверло закреплено с помощью специального ключа, и быстрозажимным, где сверло можно зафиксировать незначительным усилием руки. Оба типа патронов – трехкулачковые, поэтому в них без труда удается закрепить насадки-отвертки и т. п.

Далее, обратите внимание на мощность. Как правило, дрели с большей мощностью имеют более широкие возможности (ими, например, можно сверлить отверстия большего диаметра). Впрочем, для работы с мягкими материалами и сверлами небольшого диаметра вполне достаточно дрели мощностью до 500 Вт.

Максимальный диаметр сверления у обычных дрелей указан применительно к дереву и стали, у перфораторов – к бетону и кирпичу. Чтобы дрель не вышла из строя раньше времени, постарайтесь не выходить за рамки этих требований.

Еще одна важная характеристика – скорость вращения. Чем большее количество оборотов дает дрель, тем шире ее возможности. Кроме того, очень неплохо, если инструмент оборудован регулятором скорости вращения. Он очень удобен в тех случаях, когда вы хотите использовать дрель, скажем, для заворачивания шурупов.

Широкие возможности дрели с регулятором позволяют делать отверстия в металле, кирпиче, дереве (причем не только круглые, но фигурные, если вы используете вместо сверла фрезу), заворачивать винты, шурупы, а также использовать дрель в качестве шлифмашинки или болгарки. Со сменными насадками дрель может превратиться даже в миксер для размешивания клея и мастик.

П. СОЛОВЬЕВ

ДРЕЛЬ В ХОЗЯЙСТВЕ ВСЕГДА ПРИГОДИТСЯ

На нашем рынке можно сегодня найти дрели от самых разных производителей: Bosch, Skil, Black&Decker, Sparky, Dauerи др. Чтобы потребителям было удобно узнавать продукцию разных фирм и отличать профессиональный инструмент от любительского, компании окрашивают свою продукцию в определенные цвета (см. таблицу). К сожалению, отечественные производители особым разнообразием не балуют и красят инструмент обычно в серый цвет.



В искусстве горох тоже неплох

Кухня – особое место в квартире. И оформление ей нужно особое. Композиция из настоящих сухих овощей – лущеного гороха, чечевицы, фасоли, стручкового перца, фигурных долек моркови, заключенных в крупные макаронные изделия – ракушки, гнезда, – на стене кухни смотрится гораздо уместнее, чем картина в раме.

Все, что потребуется для работы, это плетенная из камыша или тростника подставка под горячее, фигурные макаронные изделия – спирали, бантики, цветочки, крупные и мелкие ракушки. Для украшения уже готового панно подойдут лапша, мелкая вермишель, съедобный алфавит. Понадобится также тонкая кисточка, клей «Момент» или термофлористический карандаш.

Мелкие детали – фасоль, горох, зерна чечевицы удобнее всего выкладывать пинцетом.

Кисточкой с клеем промажьте внутреннюю поверхность крупной макаронной ракушки и насыпьте туда первый слой (пусть это будет горох или изюм). Дайте заготовке просохнуть и снова намажьте клеем. Насыпайте второй слой. Проделайте такую же операцию с макаронными гнездами. Ну, а дальше, как подскажет фантазия: в макаронные бантики вклейте звездочки разных цветов. Приготовьте еще несколько заготовок.

На большом бумажном блюде или тарелке расположите все заготовки, как вам подскажет фантазия. При этом старайтесь, чтобы они подходили друг к другу по цвету и фактуре. Затем наклейте развернутую бумажную салфетку в середину плетеной подставки под горячее. Поверх салфетки прикрепите клеем бумажное блюдо с уже готовой композицией. Готовое панно можно украсить чесночными гирляндами вперемежку с разноцветными стручками жгучего перца. Неплохо выложить композицию орнаментом из бобов и фасоли. Вместо сушеных помидоров или гогошар можно использовать любые другие овощи – как настоящие, так и искусственные. Чтобы овощная композиция не выгорала на солнце, можно время от времени подкрашивать ее акварелью.

КОЛЛЕКЦИЯ «ЮТ»


Разработка вертолета началась в 1990 г. транснациональным консорциумом Eurocopterсо штаб-квартирой во Франции и Харбинской авиационной производственной корпорацией НАМС. В 1993 г. требования к вертолету были уточнены, он получил обозначение EС120, и было начато производство трех опытных аппаратов, первый из которых совершил испытательный полет в июле 1995 г.

Вертолет производится в гражданском варианте – для пассажирских и санитарных перевозок, для тренировки летчиков и для участия в соревнованиях. А в военном варианте – для наблюдения, разведки и тренировочных полетов. Серийное производство вертолета начато 2 февраля 1998 года. Сейчас цена вертолета составляет около 750 000 евро.


Техническая характеристика:

Диаметр винта… 10,0 м

Длина полная… 11,52 м

Высота… З,4 м

Масса пустого вертолета… 0,875 т

Нормальная взлетная масса… 1,680 т

Мощность двигателя… 504 л.с.

Крейсерская скорость… 228 км/ч

Радиус действия… 740 км

Скороподъемность… 400 м/мин

Вместимость… 1 пилот и 4 пассажира

Максимальный потолок… 6000 м


В 2006 г, на автосалоне в Нью-Йорке Citroёn Uбыл удостоен приза за лучший дизайн, победив такие машины, как BMV 3-й серии и европейский вариант Honda Civik. Хотя, стоит сказать, несмотря на новизну, эта переднеприводная модель к тому времени уже успела завоевать множество поклонников во всем мире. Серийно С4 выпускается с кузовами пятидверный и трехдверный хетчбэк, который французы называют словом «купе». Внешне лупе практически полностью повторяет формы Citroen Sport– прототипа С4. Автомобиль выпускается с двигателями объемом от 1,4 до 2 л.


Техническая характеристика:

Тип кузова… хэтчбек

Количество дверей… 3

Длина… 4,270 м

Ширина… 1,770 м

Высота… 1,460 м

База… 2,610 м

Объем двигателя… 1360 cm 3

Мощность… 90 л.с.

Максимальная скорость… 182 км/ч

Снаряженная масса… 1156 кг

Вместимость топливного бака… 60 л

Разгон до 100 км/ч… 14,2 с

Расход топлива… от 5,2 до 8,7 л/100 км

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Удивительная кривая

Кратчайшее расстояние между двумя точками – это прямая. Не будем с этим спорить. Но…

Возьмем кирпич и от его края до линии, ему параллельной, приставим к нему две линейки, одну прямую, а другую изогнутую по ломаной линии. Пустив по ним одновременно два одинаковых шарика, можно увидеть, что по кривой линейке шарик попадет в нижнюю точку быстрее. Получается, что кратчайшее расстояние и самый быстрый путь – вещи разные.

Объяснить это можно тем, что, скатываясь по более крутому участку линейки, шарик успевает разогнаться быстрее. Тогда напрашивается вывод, что линейку нужно согнуть под прямым углом. Двигаясь, точнее, падая по вертикали, шарик наберет максимальную скорость, быстро преодолеет горизонтальный участок и скорейшим образом достигнет цели.

Но, как это нетрудно проверить на опыте, такой спуск скорейшим не получается. Вообще же такие опыты наводят па мысль, что линией скорейшего спуска должна быть какая-то особая кривая, соединяющая две точки.

Поиск ее формы оказался делом нелегким и даже привел к созданию нового раздела математики – вариационного исчисления. Когда же эту кривую все же нашли, оказалось, что это давно знакомая всем математикам циклоида – линия, которую описывает точка на ободе катящегося колеса (рис. 2).


Возьмите, например, старый лазерный диск и как можно ближе к краю проделайте отверстие, в которое входило бы острие карандаша. Положите на лист бумаги линейку и прокатите по ней без проскальзывания диск; на бумаге получится кривая, довольно близкая к циклоиде (рис. 1).


Если бы удалось построить ледяную или снежную гору в форме циклоиды, получился бы замечательный аттракцион. Любые двое санок, одновременно стартующих с разной высоты, спустятся вниз одновременно. Иными словами, под действием силы тяжести они будут проходить разные пути за одно и то же время.

Пока такой горы нет. Она должна иметь высоту 10–15 м и длину около 40 м; во дворе такую не соорудить. Однако гору в форме циклоиды мог бы построить какой-нибудь Луна-парк. Это привлекло бы немало посетителей.

Как продемонстрировать удивительные свойства циклоиды в классе?

В школах города Глазова с некоторых пор можно увидеть приставку к кодоскопу, при помощи которой все особенности циклоиды можно рассмотреть воочию. Здесь по крохотной циклоиде шарики катятся столь медленно, будто земное ускорение уменьшилось во много раз.

Приставка представляет собой несколько направляющих трафаретов из оргстекла толщиной 2–4 мм, уложенных друг на друга (рис. 3).


Сверху расположены трафареты двух одинаковых циклоид, а под ними прямая или слегка выгнутая линейка, которую можно поворачивать на оси. Если поставить приставку на кодоскоп, то все, что происходит, станет видно на экране всему классу.

Можно поставить шарики на верхнюю точку прямой и циклоиды, после чего одновременно отпустить их без толчка. Будет видно, что шарик, движущийся по циклоиде, уверенно обгоняет шарик, движущийся по прямой.

Можно поставить шарики в разных точках циклоидных направляющих и одновременно отпустить. Будет отчетливо видно, как шарики одновременно проскочат нижнюю точку траектории. Проскочив ее по инерции, каждый из них одновременно достигнет верхней точки своей траектории, а потом двинется обратно. Так шарики будут совершать колебания со строго одинаковыми периодами, но разными амплитудами.

Этот прибор создан замечательными физиками-экспериментаторами Р.В. и В.В. Майерами, к работам которых неоднократно обращался «Юный техник». Подробнее информацию о приборе можно получить в описании патента № 2029990 C1, МКИ GО9B 23/06.

Как удалось авторам замедлить движение шариков?

Удивительно просто: прибор выставляют под углом 5-10° к горизонту, и, как следует из разложения сил на наклонной плоскости, появляется реакция опоры, вектор который направлен вверх.

Возьмите на заметку: этот простой прием за триста лет изучения циклоиды не нашел ни один великий физик!

А. ИЛЬИН

ПОЛИГОН
Бывают разные волчки

Вы прекрасно знаете и сами: пока волчок неподвижен, поставить его на острый конец оси невозможно. Но стоит заставить его вращаться, и он устойчиво стоит на том же самом остром конце оси. Вы можете на него подуть или слегка щелкнуть, но он лишь покачнется. В чем секрет его устойчивости?


Обод волчка находится в движении. Это позволяет сравнивать поведение волчка с поведением любого другого движущегося тела. Если ударить, например, по летящему камню, он довольно резко изменит свою траекторию. Но если такой же удар нанести летящей пуле, то из-за большой скорости форма ее траектории изменится незначительно.

То же самое происходит и при ударе по ободу вращающегося волчка. Небольшая скорость удара складывается с большой скоростью обода и лишь незначительно изменяет ее направление. При этом так же незначительно изменяется и положение оси вращения.

Известно и несколько иное объяснение устойчивости волчка. Допустим, какая-то частица, находящаяся на его ободе слева, получила толчок и «полетела» вниз по инерции. Ось при этом наклонилась влево. В следующее мгновение, благодаря вращению, она окажется справа. Но импульс частицы на ободе по-прежнему направлен вниз, и теперь он наклоняет ось вправо. Таким образом, благодаря вращению, внешний удар, по крайней мере, частично устранил свои последствия.

Эти объяснения не противоречат друг другу. Из них, например, следует один и тот же вывод: при бесконечно большой скорости вращения изменить положение оси вращающегося тела может лишь бесконечно большая сила.

Разумеется, бесконечно быстрое вращение невозможно. Но и при обычных скоростях при попытке изменить направление оси вращения сила сопротивления большого волчка может составлять сотни тонн.

Этим давно уже пользуются, например, для успокоения качки кораблей. На них устанавливают массивные волчки (силовые гироскопы), концы осей которых проходят через мощные подшипники, закрепленные на корпусе корабля (рис. 2).


Так, еще в 1930-е годы такие гироскопы ставили на итальянский пароход-экспресс «Конте ди Савойя». Этот гигантский пароход имел длину 244, ширину 30 м и водоизмещение 48 500 т. Турбины мощностью 120 000 л. с сообщали ему скорость 52 км/ч. На этом экспрессе установили три гироскопа, которые вместе с рамами весили 651 т. Их вращали три электромотора общей мощностью 1500 л.с. Гироскопы, сопротивляясь бортовой качке, создавали усилие в 1620 т. В результате этого даже в сильнейший шторм палуба отклонялась всего лишь на 1,5°, чего пассажиры просто не замечали.

В начале XX века русский изобретатель Шиловский построил одноколейный автомобиль, имевший, как мотоцикл, только два колеса. На нем с удобством располагались четыре человека. Но в отличие от мотоцикла, автомобиль на остановках не падал: устойчивость ему придавал тяжелый гироскоп с вертикальной осью вращения. На этом же принципе Шиловский построил железнодорожный вагон, которому для езды было достаточно лишь одного рельса. В начале 1920-х годов в нашей стране началось даже строительство однорельсовой железной дороги. К сожалению, смерть изобретателя и разруха Гражданской войны помешали работам.

В начале 60-х годов прошлого века американцы вслед за Шиловским построили двухколесный автомобиль. Он развил скорость 200 км/ч, имея двигатель мощностью всего 80 л.с. (Обычной машине для этого нужна мощность под 200 л.с.!) Расход топлива составлял всего 3 л/100 км. Устойчивость создавалась крохотным силовым гироскопом, вращавшимся со скоростью 60 000 об/мин.

Долгое время у нас было принято лишь восхищаться работами Шиловского. Но вот появились сведения о разработке в нашей стране одноколейного варианта автомобиля «Ока». Устойчивость ему будет придавать легкий, но очень быстро вращающийся гироскоп под задним сиденьем. Машина будет двухместной и очень узкой, что позволит ей легко обходить автомобильные пробки. Гироскоп в ней послужит и накопителем энергии двигателя, что будет способствовать значительному снижению расхода топлива.

Однако в наше время способность гироскопа идеально точно сохранять положение чаще всего используется лишь как сигнал в системах управления самолетов, ракет и судов.

Вот схема одного из таких приборов. Вращающийся гироскоп закреплен в поворотной раме, расположенной в корпусе ракеты. Если корпус повернется в горизонтальной плоскости, то положение рамы вместе с гироскопом останется практически неизменным. Это достигается за счет очень низкого трения подшипников, на которых эта рама укреплена. Угол поворота корпуса определяется при помощи электронных датчиков. Полученный сигнал поворачивает рулевые машинки ракеты и тем самым устраняет отклонение ее полета. Долгое время подобные гироскопические автопилоты служили лишь для целей очень серьезных – вождения кораблей, самолетов, ракет. Но недавно гироскопы начали входить и в мир игрушек. Правда, игрушек очень дорогих. Гироскоп для модели самолета, например, стоит столько же, сколько цветной телевизор…

Большой интерес вызывают и просто волчки. Над ними интенсивно работают изобретатели. Как правило, волчок является и наглядным пособием по различным учебным темам.

Вот, например, очень простой волчок, раскрашенный синими и желтыми секторами. Стоит его достаточно быстро раскрутить, как линии сливаются в зеленое поле. Если такой волчок ярко раскрасить всеми цветами радуги, то после запуска он станет белесо-серым. Такой опыт поставил еще Ньютон, доказав тем самым, что белый луч солнца слагается из многих цветных лучей.

Три десятилетия назад в учебную литературу попала странная рекомендация не употреблять понятия «центробежная сила», а при решении задач пользоваться лишь силой центростремительной. Между тем эти две силы всегда существуют одновременно. Это доказывает волчок, показанный на рисунке 1.


Он состоит из бусинок, надетых на обычные булавки. При запуске бусинки под действием центробежной силы сдвигаются к концам булавок, тем самым доказывая ее реальность. Но это скольжение не происходит бесконечно быстро. Этому мешает инерция бусинки, которая здесь является силой центростремительной. Но вот бусинка достигла головки булавки. Теперь она неподвижна относительно самой булавки. Но своей центробежной силой давит на головку булавки, а головка (за счет деформации) создает силу центростремительную, которая и обеспечивает движение бусинки по окружности.

Далее о волчке, описанном в авторском свидетельстве СССР № 1713608. Этот волчок прыгает (рис. 3).


Он имеет куполообразный вращающийся корпус с карманами-воздухозаборниками, как на некоторых самолетах. После запуска в карманы попадает воздух, давление под куполом повышается, и волчок отрывается от пола. Сразу же после этого давление падает, и купол опускается. Далее следует новое накопление воздуха и новый взлет. Корпус такого волчка можно выклеить из бумаги, пропитанной клеем, на форме, вылепленной из пластилина. После высыхания корпус легко снимается с формы. Для повышения прочности и придания нарядного вида его полезно покрасить нитрокраской из баллончика.

А вот «упрямые ослики» (патент РФ № 1680241) изобретателей, постоянных авторов приложения «Левша» В.М.Красноухова и А.Т.Калинина (рис. 4).


На особой подставке стоят два ослика. Если ее закрутить в ту сторону, куда смотрят ослики, то волчок будет вращаться нормально. Но попробуйте ее крутануть в обратную сторону. Игрушка некоторое время повертится, затем на мгновение замрет и… начнет вращаться в ту сторону, куда смотрят ослики.

Явление это связано с тем, что каждый ослик установлен подвижно. Он может вращаться относительно оси, проходящей через его задние ножки. При толчке в обратную сторону ослики резко отклоняются, смещается центр масс игрушки и она начинает вращаться в обратную сторону.

Волчок по патенту РФ Nз 2215567 (авторы Лисицын С.Г. и Опарин С.Я.) состоит из подставки с установленным в ней магнитным кольцом и магнита, расположенного на оси непосредственно под ободом (рис. 5).


Полюса магнитов, как показано на рисунке, всегда направлены навстречу друг другу. Каталось бы, при этом сила отталкивания должна лишь приподнимать волчок. Но происходит нечто удивительное. Уже после запуска волчок вместе с подставкой можно установить на стену и даже поставить на потолок. Он будет неизменно вращаться, упираясь в углубление подставки. Это связано с тем, что поле кругового магнита имеет сложную структуру. Оно может резко менять свое действие на магнит, стоящий на оси, при самых небольших смещениях волчка. Не исключено, что данный эффект сможет найти какое-то техническое применение.

А вообще получается, что волчок игрушка серьезная.

А. ВАРГИН

Рисунки автора


    Ваша оценка произведения:

Популярные книги за неделю