355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2006 № 09 » Текст книги (страница 2)
Юный техник, 2006 № 09
  • Текст добавлен: 6 октября 2016, 00:01

Текст книги "Юный техник, 2006 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

СЕНСАЦИИ НАШИХ ДНЕЙ
Еще одна планета?

За Плутоном, который в школьных учебниках значится последней планетой Солнечной системы, найдено еще одно крупное небесное тело, получившее обозначение UB313, сообщает журнал Nature.


За честь считаться первооткрывателем нового астрономического объекта борются сразу две группы ученых: испанцы из Андалусского института астрофизики и американцы из обсерватории  Gemini. Они обнаружили небесное тело практически одновременно, и теперь Международный союз астрономов должен решить, кому будет принадлежать приоритет.

Новое небесное тело находится в 14,5 млрд. км от Солнца – в 97 раз дальше, чем Земля, и втрое дальше, чем Плутон. Период его обращения вокруг Солнца составляет 560 земных лет. Точные размеры объекта пока не установлены, но, судя по яркости отражаемого им света, он может быть примерно в полтора раза больше Плутона, имеющего диаметр около 3000 км.

Таким образом, это крупнейшее небесное тело, обнаруженное во внешней Солнечной системе (то есть за орбитой Нептуна) за последние 75 лет. Оно почти наверняка состоит изо льда и камня, поскольку новый объект никогда не бывает ближе к Солнцу, чем Нептун, а большая часть его орбиты лежит намного дальше Плутона.

Профессор Калифорнийского технологического института в городе Пасадена Майкл Браун и его коллеги астрономы, как они утверждают, впервые сфотографировали планету еще в 2003 году с помощью телескопа обсерватории «Паломар», но молчали до поры до времени, надеясь получить еще снимки, подтверждающие их открытие.

В опубликованной статье представлены данные об исходящих от этого объекта радиоволнах. Исследование радиоизлучения «десятой планеты» дает представление не только о ее размерах, но и о том, что она собой представляет. Альбедо (то есть отражающая способность) новой планеты оказалось примерно таким же, как и у Плутона; следовательно, два небесных тела близки по составу поверхности. «Такая отражательная способность может быть только у очень обледенелых миров», – считает профессор Майк Браун.

Интересно, что сообщить об открытии Брауна и его коллег на экстренно собранной пресс-конференции вынудили не только испанские коллеги, но и… хакеры. Ранее им удалось проникнуть в закрытый веб-сайт астрономов, где имеется описание новой планеты, и они намеревались первыми огласить ставшую им доступной информацию.

Имя для планеты уже придумано и предложено на рассмотрение Международного астрономического союза. Но оно будет держаться в тайне, пока союз не решит, кому принадлежит приоритет в открытии. Тогда победитель и обнародует свой вариант названия.

Пока же ученые продолжают гадать: а что, собственно, открыто? Дело в том, что обнаруженное небесное тело только претендует на то, чтобы называться планетой. Причем не вполне понятно, какой по счету: за Нептуном, в так называемом поясе Койпера, уже открывали объекты, размеры которых помещают их между планетами и астероидами.

Так, в 2002 году был открыт планетоид Квоар, имеющий радиус около 1250 км. Он слишком мал для планеты, но великоват для астероида.

В 2004 году американскими учеными была обнаружена Седна – довольно большое небесное тело, имеющее диаметр около 1700 км. К тому же Седна имеет постоянную орбиту, как и подобает планете, а не «шарахается» туда-сюда под действием гравитационных сил, как это обычно бывает с астероидами. Но стоит ли ее на основании лишь этого заносить в список планет?

По мнению сотрудника Института астрономии РАН, профессора Александра Тутукова, Седна, как и другие тела, найденные в последнее время в поясе Койпера, – это ледяные астероиды и не более того.

Большинство астрономов всего мира также сходятся во мнении, что планетой стоит признавать лишь то небесное тело, которое будет превышать размеры Меркурия (4800 км).

С. НИКОЛАЕВ



Кстати…

НОВЫЕ ОТКРЫТИЯ В РАЙОНЕ УРАНА

Новые небесные тела обнаруживаются не только на самой окраине Солнечной системы. Недавно телескоп «Хаббл» открыл два новых спутника у планеты Уран. «Они обращаются вокруг Урана на орбите, в два раза превышающей радиус основных его колец, на том же расстоянии, что и пылевые кольца», – сообщили Марк Шолтер и Джек Лиссар, первыми обнаружившие новые тела на присланных из космоса снимках.

Таким образом, на сегодняшний день известны уже 27 спутников загадочной планеты. Любопытно, что большинство из них движутся не в плоскости орбиты Урана, а почти перпендикулярно ей. Это уникальный случай в Солнечной системе.

Пять наиболее крупных спутников открыты уже давно. Первые два обнаружил выдающийся астроном Уильям Гершель в 1787 году, спустя шесть лет после открытия самого Урана. Кстати, названия им придумал не сам первооткрыватель, а его сын, который со временем и сам стал одним из виднейших астрономов мира. Причем в нарушение астрономической традиции, требующей брать названия для планет и спутников из мифологических сюжетов разных народов, эти небесные тела получили имена персонажей из произведений английских литераторов.

Многие луны Урана носят имена героев произведений Уильяма Шекспира. Не стали исключением и вновь обнаруженные луны. Первую назвали Мэб по имени королевы из монолога Меркуцио («Ромео и Джульетта»), вторую – Купидон, по имени древнеримского бога любви, который появляется в пьесе Шекспира «Тимон Афинский».

Обнаруженные луны очень небольшие: диаметр самой крупной – чуть больше 25 км. Согласно полученным данным, новые спутники движутся по своим орбитам довольно хаотично и в какой-то момент могут столкнуться. Однако, как полагают астрономы, это может произойти вряд ли раньше, чем через миллион лет.

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Какая формула… у зебры?

Зебры – довольно близкие родственники лошадей и ослов. Но почему же они полосатые? Ученых давно интересовал этот вопрос, пишет немецкий журнал Bild der Wissenschaft. Однако лишь сравнительно недавно они начали понимать, что ответ на него гораздо сложнее, чем им казалось сначала.


Поначалу исследователи полагали, что природа раскрасила зебр в полоску, чтобы защитить их от извечных врагов – львов. Дескать, сплошное мельтешение полосок в глазах мешает хищнику совершить точный бросок. А когда выяснилось, что львы отлавливают зебр примерно так же ловко, как и другую, отнюдь не полосатую, добычу, предположили, что по рисунку на шкуре животные определяют «кто есть кто».

Однако согласитесь, в таком случае всем животным нужно быть полосатыми, пятнистыми или «в елочку». Между тем, среди одноцветных сородичей животные не путают друг друга. Да и мы с вами довольно легко узнаем знакомых даже в новой одежде. Все равно по фигуре, чертам лица, голосу, походке одного человека довольно легко отличить от другого…


Исследователи попробовали зайти в своих изысканиях с другой стороны. Сейчас они хотят понять, какие именно гены отвечают в организме зебры за ее полосатость. Узнав это, можно, воздействовав на тот или иной ген, вывести, например, породу зебр «в яблоках».

Вопросы эти возникли не из праздного любопытства. «Если мы на примере зебры поймем, как природа управляет раскраской шкур животных, то сможем глубже понять механику действия генома, выявим математические и химические формулы, с помощью которых будем целенаправленно формировать те или иные узоры, а также другие свойства образующегося организма», – говорит Джеймс Мюрей, профессор математической биологии университета в Сиэтле, США.

Профессор Мюрей считает себя последователем Алана М. Тьюринга – исследователя, который еще полвека тому назад на математических моделях попытался понять, в чем разница между механизмом и организмом.

Работы Тьюринга в свое время активизировали исследования по созданию так называемого искусственного интеллекта. За прошедшие десятилетия компьютеры обрели возможность разговаривать, играть в шахматы, управлять многими производственными процессами. Дело дошло даже до того, что, общаясь по Интернету с невидимым собеседником, многие затрудняются определить, кто или что находится на том конце линии связи – человек или машина.

И, тем не менее, говорить о том, что компьютеры по своему интеллекту и прочим возможностям сравнялись с человеком, еще рано. Скажем, роботы уступают живым организмам не только в сообразительности, но и в живучести, умению приспосабливаться к меняющимся внешним условиям.


Пятна гепарда, узоры листьев – своеобразный «паспорт» представителей флоры и фауны.


Формула Пуанкаре, связывающая течение времени с пространством, наглядно может быть представлена в форме причудливого «бублика».

Почему так получается? Поразмыслив, исследователи ныне приходят к выводу, что все дело, наверное, в мутациях. Когда природа создает очередной организм, в геноме содержится лишь общий план его развития. Но по мере формирования организма, план этот конкретизируется в зависимости от обстоятельств. В итоге, например, все котята, даже будучи близнецами, отличаются друг от друга как по раскраске, так и по характеру, повадкам.

Механизмы же такого разнообразия не имеют. Их делают по одному стандарту. И нелепо требовать, скажем, от автомобиля индивидуального поведения, приспособления к изменившимся дорожным условиям. Но тогда, быть может, нам по примеру природы тоже стоит отказаться от конструирования и производства машин и перейти к их «выращиванию»?

* * *

Такую идею давно уже разрабатывают фантасты. Скажем, братья Стругацкие еще полвека тому назад описали некое киберяйцо, из которого в случае необходимости можно за несколько часов «вылупить»… вездеход.

Однако годы бегут, мы вошли в новое тысячелетие, а воз, как говорится, и ныне там. Почему?

«Все дело в неправильном научном подходе к решению проблемы, – полагает профессор Мюрей. – Пора менять саму стратегию развития прогресса»…

Но одно дело сказать, и совсем другое – сделать. Эволюционные биологи еще только в самом начале пути по превращению механизмов в организмы. По мнению Мюрея, полосы и пятна на шкуре тех же зебр или тигров, жирафов или леопардов возникают в результате включения соответствующего гена во время эмбрионального развития будущего организма. Ему и его коллегам даже удалось установить, что у животных с мелкими пятнами процесс пигментации включается на 35-й день развития плода, а у животных с крупными пятнами – на 45-й день. «Мелких пятен больше, и их образование, наверное, требует больше времени», – поясняет профессор.

Однако ни он, ни его коллеги пока еще не знают тонкостей этого процесса. Эволюционные биологи только-только начинают понимать, что происходит в утробе матери, как бесформенная поначалу кучка зародышевых клеток постепенно превращается в сложнейший организм.

Тем не менее, исследования идут широким фронтом. Наибольших успехов ученые достигли в экспериментах на мухах-дрозофилах. Экспериментаторы уже не только научились управлять поведением мух, но и умеют выращивать у мух дополнительные глаза и лапки.

Проводятся опыты по искусственному выращиванию отдельных органов и у млекопитающих. Из стволовых клеток пациента у нас, в Институте биологии гена РАН, выращивают для него же участки новой кожи, кровеносные сосуды, ткани печени. На очереди, говорят медики, выращивание новых сердец, легких и других органов.


Уравнение Шредингера, описывающее движение электронов вокруг ядра, оказывается, напоминает картину кубиста.

* * *

Сейчас ученые готовятся сделать следующий шаг. Недавно эволюционный биолог, профессор Кристина Нюллейн-Фаллехард, смогла в деталях прояснить образование тех же цветовых сегментов у личинок насекомых, расшифровала биохимию процесса, который контролируют, как оказалось, многие гены, включающиеся в определенной временной последовательности.

Эти так называемые морфогены собираются в особых сейфах – гемобоксах. Именно их подбор впоследствии определяет вид развивающегося организма. Но как затем из этого набора получается геном – строгая последовательность генов, – ученые пока не знают. Они предполагают лишь, что в любом беспорядке есть некие критерии, приводящие его в определенную структуру.

Именно потому из бесформенного расплава при остывании рождаются кристаллы определенной формы, зародыш превращается в организм, а из толпы образуется общество…

Изучение этих законов только начинается. Однако уже понятно, что со временем количество действительно скачком переходит в новое качество. Во всех случаях сначала как бы накапливается некая масса, которая, превысив определенный предел, вдруг дает качественно новый результат.


Формула закона преломления Смеллиусапревратилась в подобие солнечных бликов на воде.


Все формы живого, в принципе, могут быть описаны математическими формулами.

Такие скачки необходимы, ибо благодаря им возникают новые формы жизни, максимально приспособленные к изменившимся условиям окружающей среды. И все эти изменения действительно могут быть прописаны химическими формулами, которые лежат в основе процессов, происходящих в молекулах, макромолекулах и более крупных конгломератах.

Разобравшись во всех этих тонкостях, со временем исследователи смогут выписать и «формулу зебры» ту самую, которая определяет расположение полос на ее шкуре. Но это, так сказать, частность – некий побочный вывод из всеобщей «формулы жизни».

Публикацию подготовил С. НИКОЛАЕВ

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ
Дрова XXI века

Огнем костра человечество любуется уже около 500 000 лет. И вот теперь, в век угля, нефти и атомной энергии, люди хотят вернуться к сжиганию древесины. Только на ином технологическом уровне.


«Дерево», показывающее возможности использования древесины.


Не только для костра

Дрова в прежние времена использовали не только для бытовых нужд. Они играли важнейшую роль во многих технологических процессах, скажем, в металлургии. Уже в Древнем Египте для повышения температуры в плавильных печах использовали древесный уголь.

Большими мастерами по этой части были и россияне. Например, в XVIII веке Россия вышла на первое место в мире по выплавке чугуна, обогнав лидеров того времени – Англию и Швецию. Тому способствовало не только мастерство наших металлургов, но и качество древесного угля. Ведь для выплавки одного пуда чугуна требовалось сжечь в 3–5 раз большее количество угля.

Крупными потребителями древесины были также и солеварни, гончарные мастерские, кирпичные, стекольные, сахарные и мыловаренные заводы…

И хотя в XVIII веке промышленность начала переходить на каменный уголь, пароходы и паровозы вплоть до начала прошлого столетия работали по старинке – на дровах.

Древесное топливо выручило нашу страну и в Первую мировую войну, и в Великую Отечественную. Когда не хватало бензина, керосина и прочих нефтепродуктов, котельные, паровозные топки и печки в жилых домах опять-таки отапливались в основном дровами. На древесных чурках работали даже автомобили!


Они никогда не кончатся

И все же дрова утратили свое монопольное положение на топливном рынке еще в прошлом столетии. В последние десятилетия преимущество получили не только каменный уголь, но прежде всего нефть и природный газ. По данным эксперта правления Российского лесного научно-технического общества Д. Рохленко, ныне в мировом энергетическом балансе доля дров не превышает 3,5 %, а в России – даже 1 %.

Есть, впрочем, и теперь государства, в которых дрова и сейчас – основной вид топлива.

В странах Африки, например, на дрова идет 88 % всей заготовленной древесины, в Южной Америке – 68 %, а в Индии – свыше 90 %. Но и в промышленно развитых странах интерес к дровам может возрасти.

И тому есть причины. Рано или поздно, как полагают эксперты, дешевая нефть на Земле кончится, как и уголь, а вот древесина будет всегда. Из семечка лет за пятнадцать можно вырастить новое дерево, годное на дрова. И вообще количество древесины на Земле, как это ни удивительно, растет: общий годовой прирост в лесах планеты составляет в среднем 5,5 миллиарда кубометров, то есть примерно в 1,5 раза больше годового объема лесозаготовок. Более того, на топливо вовсе не надо изводить деловую древесину. Сейчас с успехом отрабатывают технологии эффективного использования древесных отходов – стружек, опилок, сучков, коры, даже листьев и хвои.

В Швеции, например, на таком топливе сегодня работает более 200 районных теплоцентралей. А в США количество используемых в энергетике древесных отходов увеличится в ближайшие 30 лет не меньше чем в 2,5 раза.


Внешне пресс питерцев выглядит даже элегантно.


Будущее начинается сегодня

Для удобства употребления таких отходов в ряде стран из них прессуют топливные брикеты. С некоторых пор подобное производство стали налаживать и в России. Брикеты эти удобны по форме, хорошо горят, их плотность гораздо выше, чем у исходной биомассы, да и тепла они выделяют в 1,5 раза больше.

Специалисты петербургской фирмы «Дюкон», например, предлагают потребителям пресс для опилок. После прессования под давлением в 150 атмосфер первоначальная масса уменьшается в объеме в 10 раз. Одновременно резко возрастает теплоотдача такого топлива. Как показали испытания, брикеты из опилок могут даже в 3–4 раза превосходить каменный уголь. И все же основные перспективы применения древесины в качестве топлива связаны не с брикетами и не с дровами, а с переработкой древесной биомассы в жидкое и газообразное топливо.

Так, в городе Пущино Московской области сотрудниками Института биологического приборостроения РАН создана модульно-блочная установка «Лада» по переработке углесодержащего сырья. В основу технологии, как пояснил заместитель директора В.К. Кудряшов, положен термохимический крекинг.

«Помните, еще Менделеев говорил, что топить печь нефтью все равно, что ассигнациями, – сказал он журналистам. – Примерно так же обстоит дело и отходами деревообрабатывающих, сельскохозяйственных и целлюлозных производств. Из них можно получать смолы, спирты, кислоты, сорбенты для сбора разлившейся нефти и еще множество полезных вещей».

Скажем, метанол, который имеет еще одно название – древесный спирт, производят сухой перегонкой древесины с последующей очисткой, а этанол – при помощи гидролиза. Из тонны дерева можно при этом получить до 180 литров спирта и еще ряд ценных продуктов: кормовые дрожжи, фурфурол, жидкую углекислоту, топливный лигнин…


Современный реактор для производства пара и горячей воды (печью его даже язык не поворачивается назвать).

В последние годы этанол широко применяют в Бразилии, где на нем работает уже несколько миллионов автомобилей. Производят его там из отходов сахарного тростника, бамбука, сорных кустарников. В нашей стране тоже разработаны перспективные технологии получения жидкого горючего из древесины. Особенно интересной представляется разработка специалистов НПО «Энергомаш», которая позволяет получать из древесных отходов диметиловый эфир. Теплотворная способность этого топлива на 48 % выше, чем у метанола, и на 15 % выше, чем у этанола, а по экологической безопасности он превосходит все традиционные виды моторного топлива, полностью отвечает всем требованиям европейских стандартов.

Валерий ДУБИНСКИЙ

ВНИМАНИЕ!
Самый первый «ЮТ»



« В.И. Ленинсреди делегатов III съезда комсомола».


«…Коммунистом стать можно лишь тогда, когда обогатишь свою память знанием всех тех богатств, которые выработало человечество».

«…Поколение, которому теперь 15 лет… должно все задачи своего учения ставить так, чтобы каждый день в любой деревне, в любом городе молодежь решало практически ту или иную задачу общего труда, пускай самую маленькую, пускай самую простую».



Дорогие друзья!

Вы уже поняли, наверное, что у вас в руках необычный номер «Юного техника».

Да, ровно 50 лет прошло с тех пор, как ваши дедушки и бабушки открыли самый первый номер журнала с такой же точно обложкой, как та, что вы только что перевернули. Это было время, когда человек еще не поднялся в космос, когда никто в мире ни разу не слышал слово «транзистор», экраны телевизоров были размером с почтовую открытку, а компьютеры занимали многоэтажные здания. Верится с трудом, но это было.

Мы от души благодарим всех, кто поздравил журнал с юбилеем!

Спасибо библиотечным работникам, подлинным хранителям нашей культуры. Благодаря им «ЮТ» попадает многим и многим ребятам, которые станут со временем инженерами и учеными» гордостью России. Ведь не секрет, что, хотя не все наши читатели стали профессорами и академиками, нет, пожалуй, в стране ни одного академика, который не читал бы в свое время «Юный техник».

Спасибо всем авторам писем с добрыми пожеланиями в адрес журнала – и школьникам, современным читателям журнала, и их бабушкам и дедушкам, впервые открывшим в сентябре 1956 года журнал «Юный техник».

А каким он был тогда – смотрите сами. Сегодня мы публикуем часть материалов того, ставшего уже историческим, номера.

Главный редактор Александр Фин

* * *


Перед вами два приятеля: Вася Дотошкин и Петя Верхоглядкин. Их прислал к нам художник Константин Павлович Ротов. В журнал пришел еще кто-то третий (смотри ногу справа), но кто это – мы еще не знаем.


От модели к самолету


Академик А.С.ЯКОВЛЕВ

Меня часто спрашивают, как я стал авиаконструктором. Должен признаться, что, когда я был подростком, мне казалось, что я опоздал родиться, что старшие уже все открыли и переоткрыли и мне негде применить свои способности. Автомобили на улицах уже не собирали толпу зевак. Двигатель внутреннего сгорания был описан во всех учебниках физики. Электричество прочно вошло в быт, радио не вызывало удивления, и самолеты привычно бороздили небо.

Теперь-то я понимаю, как я ошибался: ведь прогресс техники не имеет предела – каждая новая научная и техническая мысль вооружает человека для еще больших открытий.

Я начал с обычной модели. В одной книге, которую я прочел, была описана модель планера, и я решил построить планер.

Больше месяца трудился над моделью. Не все удавалось. Модель получилась довольно большая, дома испытать ее было негде – пришлось притащить в школу. В большом зале в присутствии множества школьников я запустил свой летательный аппарат. Он пролетел метров пятнадцать. Модель летала, плоды моих рук жили!..

После испытания модели «авиационной болезнью» заболели и некоторые мои школьные товарищи. В свободное от занятий время мы собирались вместе и строили одну авиамодель за другой. Некоторые из них немножко летали, другие совсем не летали, но от этого энтузиазм наш не убывал. Наш кружок был первым московским кружком авиамоделистов. Вслед за моделями мы построили настоящий планер и приняли участие в планерных состязаниях в Крыму.

Окончив среднюю школу, я твердо решил стать авиационным инженером. Но изучение авиации мне хотелось начать с азов, и я поступил рабочим в авиационные мастерские. Там сначала был, как говорят в авиации, «на подхвате»: принеси, подержи, стукни. Потом научился столярничать, слесарить.

Проработав в мастерских: два года, я стал авиамотористом. Труд моториста был нелегким. Но это были замечательные годы в моей жизни. Впереди была цель – стать конструктором.

Как видите, в Военно-воздушную академию я пришел не юнцом-школьником, а человеком с жизненным опытом и трудовыми навыками. Попав после академии на завод и в конструкторское бюро, я чувствовал себя инженером в полном смысле этого слова. Я знал не только, как спроектировать деталь самолета, но и как ее сделать на верстаке или на станке, знал, как она будет работать на самолете в воздухе.

От модели к планеру, от планера к самолету вот путь авиаконструктора.

ПОМНИТЕ, ДРУЗЬЯ: БЕСПОЛЕЗНЫХ ЗНАНИЙ НЕТ. ВСЕ, ЧТО ЧЕЛОВЕК ПОЗНАЛ В ПРОШЛОМ, ОБЯЗАТЕЛЬНО ПРИГОДИТСЯ ЕМУ В БУДУЩЕМ.

БЕЛОРУЧКИ НЕ ЛЮБЯТ ТЕХНИКУ, НО И ТЕХНИКА ТЕРПЕТЬ НЕ МОЖЕТ БЕЛОРУЧЕК.

ТОЛЬКО ТОТ, КТО СЕГОДНЯ НЕ БОИТСЯ ИЗМАЗАТЬ РУКИ КЛЕЕМ И ЗАНОЗИТЬ ПАЛЕЦ, ДЛЯ КОГО МОЛОТОК – ПОЧЕТНЫЙ ИНСТРУМЕНТ, А МОЗОЛИ НЕ В ДИКОВИНКУ, СМОЖЕТ ЗАВТРА СТАТЬ НАСТОЯЩИМ ТВОРЦОМ МАШИН.

* * *


– Это нечестно! – подтягивая стропы, закричал Верхоглядкин. – Что же, я не знаю, что на каждом самолете есть радиоприемник?

– Не хитри. На каждом самолете десятки радиоприборов, а не один радиоприемник. Но не будем ссориться. Приземлимся и пойдем дальше.

* * *

Информации. Советская наука и техника

«МЕХАНИЧЕСКИЕ РУКИ»

Можно ли вынуть из коробки спичку и зажечь ее, если коробка находится от вас на расстоянии в несколько метров?

Оказывается, можно. Эту работу легко может выполнить интересный механизм, который обладает способностью точно копировать движения человеческих пальцев.

Для каких же целей создано такое сложное устройство?

«Механические руки» служат для дел, конечно, более важных, чем зажигание спичек. Они применяются там, где ученым приходится иметь дело с радиоактивными веществами, излучение которых опасно.


ЗЕМЛЕСОС «МАЛЮТКА»

Любой пруд необходимо время от времени очищать. Такую работу можно выполнить, применив для этого землесос-«малютку». Его недаром так назвали – ведь агрегат помещается в кузове обычной автомашины.

Небольшой дизель землесоса приводит в действие насос, к которому подсоединена труба. Насос опускают на дно водоема. Ил засасывается вместе с водой и в виде грязевого фонтана выбрасывается прямо на берег. Если пруд большой, то смесь воды с илом подается по трубам. За один час землесос «малютка» выбрасывает на берег до 25 куб. м грунта.



Земля – > Марс


Кандидат технических наук Ю.С. Хлебцевич

В сентябре, когда вы получите этот номер журнала, телескопы обсерваторий всего мира будут направлены на Марс. Он будет особенно ярко сиять в сентябрьском небе, потому что расстояние между Марсом и Землей сократится до минимального: «всего» 57 млн. км будут разделять их. Такое положение Марса, называемое великим противостоянием, наблюдается редко, один раз в пятнадцать-семнадцать лет, и длится недолго. Поэтому астрономы с нетерпением ожидают великих противостояний. Именно в это время можно надеяться найти ответ на бесчисленные загадки таинственной планеты.

Почти сто лет астрономы всех стран стремятся раскрыть тайну сетки из прямых линий на поверхности Марса. Что это, чудовищные трещины в коре планеты или сливающиеся в длинные нити пестрые пятна; протянувшиеся на сотни километров узкие полосы растительности, окаймляющие каналы, построенные разумными существами?

Около Марса кружатся два спутника, один из которых успевает обежать его почти три раза за марсианские сутки. Размеры их очень малы (всего несколько километров в поперечнике), а скорость движения, форма орбит и близость к Марсу вызывают недоумение, так как в Солнечной системе не открыто больше подобных спутников.

Специальными астрономическими исследованиями установлено, что атмосфера Марса, хотя и более разреженная, чем земная, вероятно, содержит в небольших количествах кислород и воду.

На полюсах планеты периодически появляются и исчезают белые «шапки», которые считаются снеговыми. Наличие растительности на Марсе подтверждается многочисленными остроумными исследованиями периодических изменений в окраске некоторых участков поверхности планеты в различные времена марсианского года. Эти исследования были проведены членом-корреспондентом Академии наук СССР Г.А.Тиховым.



Значит, жизнь на Maрce возможна? «Да!» – отвечают специалисты. Но какие формы жизни, кроме растительной, могут существовать на Марсе? Имеется ли на нем животный мир? Может быть, там живут и мыслящие, разумные существа? Это спорные вопросы. Дать правильные ответы на них сейчас невозможно.

Даже попав на искусственный спутник Земли, который в будущем может быть создан, астрономы все-таки не смогут решить эти загадки Марса. Остается, как кажется, единственный выход: послать на Марс экспедицию, которая и займется его исследованием. Просто ли это? Нет, очень сложно. Во-первых, чрезвычайно сложно построить космический корабль, который с большим экипажем смог бы долететь до Марса и вернуться назад, на Землю. Во-вторых, мы не знаем пока, как будут влиять на организм человека ультрафиолетовая и космическая радиация, состояние невесомости, переходы от состояния невесомости к воздействиям ускорения, сколь опасно столкновение с метеоритами и т. д.

В-третьих, сам полет к Марсу, особенно первый, довольно рискован. Межпланетные рейсы напоминают упражнения акробатов, ловко перелетающих под куполом цирка с одной качающейся трапеции на другую. Земля и Марс перемещаются в мировом пространстве со скоростью 29,3 км/с и 24 км/с соответственно, и если будут допущены ошибки во времени вылета, продолжительности полета и моменте «примарсения», межпланетные путешественники не только не попадут на Марс, но и не смогут вернуться обратно на Землю.

Работающий в США немецкий конструктор Вернер фон Браун выступил недавно с проектом посылки на Марс большой экспедиции из 70 человек. Для проведения такой экспедиции необходимо сначала создать грандиозный искусственный спутник Земли на высоте 1730 км. Части для него (весом по 25 т) доставят за 1000 рейсов трехступенчатые ракеты со стартовым весом 6400 т. С этого спутника и начнется, собственно, полет к Марсу 10 больших ракет массой по 3720 т каждая, которые будут собраны уже на спутнике из готовых частей.

Продукты питания, вода, кислород, специальное оборудование, ракетное топливо для возвращения на Землю, которые нужно взять на борт ракет, будут весить много сотен тонн. Расчеты Брауна показывают, что одного ракетного топлива для подобной экспедиции потребуется израсходовать около 6 млн. т.

Для того чтобы представить себе величину этой цифры, вспомните, что, например, годовая добыча нефти в СССР составляет 70,8 млн. т! Вот насколько сложной оказывается экспедиция на Марс.

Мне думается, что проблемы исследования Марса и осуществления полетов туда людей необходимо решать иначе. Нет ничего абсурдного в предположении, что на Марсе есть мыслящие, разумные существа. Возможно даже, что они стоят на очень высокой ступени развития науки и техники. Не исключено, в частности, что спутники Марса являются искусственными спутниками: ведь наши ученые тоже собираются создавать искусственные спутники Земли. Можно предположить, что у марсиан найдется топливо для наших ракет, питание, вода, кислород для астронавтов. Зачем же возить их с собой и чрезмерно усложнять полет на Марс? Но, с другой стороны, как убедиться, что Марс обитаем и что наши предположения правильны?

Я считаю, что для этого прежде всего следует организовать тщательную разведку Марса с Земли, не посылая туда людей. Ее можно осуществить, используя возможности современной техники. Такая разведка будет состоять из трех этапов.

Первым этапом будет полет ракеты, управляемой по радио. Эта ракета, взлетев с Земли по специальной траектории, будет выведена на стационарную орбиту. Двигаясь по этой орбите на высоте 35 810 км, ракета будет совершать полный оборот вокруг Земли за 24 часа, то есть как бы повиснет неподвижно над одной точкой земной поверхности. Здесь ее дозаправят топливом из других радиотелеуправляемых ракет. После этого ракета «возьмет курс» на Марс и пролетит мимо него на расстоянии всего 30 тыс. км. На ракете разместится управляемая с Земли по радио аппаратура, которая будет производить съемку поверхности Марса через телескоп с увеличением в 500 – 1000 раз. Благодаря специальным устройствам, так называемым накопительным электронно-лучевым трубкам, мы получим возможность последовательно принять на Земле изображение тех участков Марса, над которыми пронесется наша ракета.


    Ваша оценка произведения:

Популярные книги за неделю