355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2007 № 09 » Текст книги (страница 4)
Юный техник, 2007 № 09
  • Текст добавлен: 4 октября 2016, 00:35

Текст книги "Юный техник, 2007 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

НАШ ДОМ
Стекло, но не бьется…



Этот материал известен каждому любителю поделок. Однако не все знают, что представляет собой органическое стекло, какое оно бывает, как его обрабатывать и где лучше всего использовать.

История его ведет свое начало от «прозрачной брони», листы которой использовались для остекления кабин боевых самолетов перед началом и в годы Великой Отечественной войны. Материал этот тогда был весьма дефицитным, а технология его изготовления считались едва ли не государственной тайной. Сегодня техническое оргстекло марок ТОСП и ТОСН, представляющее собой полимер метилметакрилата, – весьма распространенный материал, используемый для самых различных целей.

Выпускается он обычно в виде листов толщиной от 1,0 до 24,0 мм, размерами 1400x1600 мм или 2000x3000 мм.

Наша промышленность выпускает также оргстекло сантехническоенаполненное марки ТОСП-Н, которое представляет собой полимер метилметакрилата с наполнителем – двуокисью титана и применяется для изготовления изделий сантехнического назначения.

Оргстекло светотехническоемарок СБ и СБПТ, толщиной от 3,0 до 6,0 мм, как говорит уже само его название, широко применяется для изготовления рассеивателей для светильников и других изделий светотехнического назначения.


«Стеклянной» можно сделать и лестницу.


Купол из оргстекла.

А самозатухающееорганическое стекло, благодаря пожаробезопасности, используется для остекления фонарей лифтов, вагонов, крыш, куполов и других общедоступных конструкций; оформления интерьеров и покрытия жилых и общественных зданий, рынков, вокзалов, выставочных комплексов, автозаправочных станций.

Чистое, не поцарапанное оргстекло отражает только 8 % падающего света, то есть пропускает его больше, чем традиционное оконное стекло. Кроме того, оно в 5 раз прочнее обычного стекла. А при одинаковой толщине оргстекло весит в 2 раза меньше, не задерживает ультрафиолетовые лучи и не меняет цветовых тонов при использовании в течение многих лет. Кроме того, даже изогнутое стекло не искажает вида окружающей панорамы.

Еще одно достоинство оргстекла – обрабатывать его почти так же просто, как древесину – можно пилить и резать, обрабатывать на токарных сверлильных и фрезерных станках, склеивать и сваривать. Кроме того, оргстекло при нагревании становится пластичным, а потому его можно гнуть и формовать из него детали самой различной формы.

Из него сегодня делают остекление кабин и салонов в авиации, судостроении, на железнодорожном и автотранспорте. Широко применяют в наружной рекламе для оформления баров, кафе, стадионов; для изготовления выставочных стендов, торговых витрин, бассейнов, телефонных будок, моечных станций и соляриев. В быту – для изготовления аквариумов, журнальных столиков, душевых кабин, всевозможных подставок и полок, коробок для рукоделия, емкостей для сыпучих продуктов, макетов, сувениров и многого другого.

Покупая оргстекло, имейте в виду следующее. На российском рынке сегодня можно встретить продукцию практически всех ведущих производителей оргстекла в мире. Они маркируются так: ALTUGLAS ( Atoglas, Франция), BARLO ( Barlo Plastics, Бельгия), PLEXIGLAS ( Rohm, Германия), PERSPEX ( ICI Acrylics, Великобритания), PLAZCRYL ( PlazitИзраиль), AKRYLON (Поважские химические заводы, Словакия).


Обрабатывать оргстекло можно различными способами и инструментами.

Рядом с маркой своей продукции каждый производитель оргстекла указывает метод его изготовления (например, XT– экструзионное, GSили CN– литьевое), степень прозрачности материала, цвет, обработку поверхности (если она присутствует), а также индивидуальное обозначение марки эксклюзивной продукции.

Экструзионное оргстекло – это листы, изготовленные из гранул полимера методом экструзии (продавливания): они отличаются большим постоянством толщины, чем литьевое оргстекло. Зато последнее, произведенное методом полимеризации (литья) непосредственно из мономера, отличается более высокой прочностью, стойкостью к химическому и температурному воздействию. Это наиболее подходящий материал для термоформования изделий различными способами. В случае появления царапин поверхность такого оргстекла легко полируется.

Не меньшим спросом, чем импортное, сегодня пользуется отечественное органическое стекло – например, продукция ОАО «Дзержинское оргстекло» из Нижегородской области. Имея примерно такое же качество, оно стоит дешевле импортного, цена которого колеблется в пределах 11–14 евро за 1 кв. м. При этом матовое стекло на 5 %, а цветное – на 10 % дороже прозрачного.

Режут оргстекло дисковыми и ленточными пилами, лобзиками, а также резаками, которые нетрудно сделать самостоятельно. В последнем случае стекло просто процарапывают по линейке примерно на треть глубины, а затем обламывают по надрезу и зачищают кромки напильником.

Сверлить оргстекло лучше сверлами, угол заточки которых не 120°, как обычно, а 60–90°. При сверлении соблюдайте аккуратность, не нажимайте на дрель слишком сильно, чтобы не расколоть пластину.

При обработке оргстекла на фрезерном станке можно работать при больших скоростях без принудительного охлаждения. При работе на токарном станке используются те же приемы, что при обработке твердой древесины.


Примеры изделий из оргстекла.

Склеивать детали из оргстекла лучше всего двухкомпонентными отверждающими клеями специального назначения (это указывается на их этикетке). Склеиваемые поверхности предварительно зачищают шкуркой, чтобы придать им некоторую шероховатость, клей наносят тонкой пленкой и плотно прижимают детали друг к другу, оставляя их в таком положении до полного застывания клея.

Иногда опытные моделисты прибегают к свариванию или полировке деталей из оргстекла с помощью газовой горелки. Мы бы рекомендовали заниматься этим под руководством взрослых и с соблюдением всех правил пожарной безопасности.

Виктор ЧЕТВЕРГОВ

КОЛЛЕКЦИЯ «ЮТ»


Первый вертолет инженер Фрэнк Робинсон собрал во дворе своего дома 30 лет назад. Сейчас его компания Robinson Helicopterлидирует в США на рынке легких вертолетов. Особенно популярен 4-местный Robinson R-44 Raven– «Ворон». Как и его младший 2-местный собрат R-22, он надежен, экономичен и прост в обслуживании.

Хотя на вертолет по традиции устанавливают бензиновые поршневые двигатели, по своим летным характеристикам он не уступает дорогим вертолетам, оборудованным двигателями газотурбинными.

Вертолеты фирмы Robinson оснащены современной высококачественной авионикой, комфортны, как дорогие автомобили, и даже цвет вертолета, материал и цвет отделки его салона заказчик выбирает сам, словно при покупке «кадиллака».


Техническая характеристика:

Длина вертолета… 11,76 м

Высота… 3,28 м

Диаметр несущего винта… 10,06 м

Диаметр хвостового винта… 1,47 м

Максимальная мощность двигателя… 220 л.с.

Полная взлетная масса… 1089 кг

Крейсерская скорость… 210 км/ч

Максимальная скорость… 240 км/ч

Дальность полета… 650 км

Максимальная высота… 4250 м

Скороподъемность… 5 м/с

Расход бензина… 56 л/ч

Экипаж… 1+3 человека

Салон… велюр, кожа


Американский гонщик Кэрролл Шелби, оставив спорт из-за болезни сердца, решил, что, если ему нельзя садиться за руль, стоит рискнуть попробовать наладить производство спортивных автомобилей для других.

В апреле 1962 года изготовленная в 1 экземпляре Cobraпокорила посетителей автошоу в Нью-Йорке. Производство модели развернули на базе находящейся в кризисе небольшой английской компании Autocar&Accessories, получившей известность благодаря популярному трехколесному пикапу Autocarrier(АС) с одноцилиндровым мотором.

Первые 75 Cobraполучили 4,2-литровый 250-сильный двигатель. А вскоре ему на смену пришел двигатель объемом 289 кубических дюймов, отсюда и название модели – Cobra 289. Машина быстро вошла в число фаворитов клубных гонок, а затем и больших международных чемпионатов. В наши дни многие фирмы в мире выпускают копии Cobra, но «настоящие» автомобили, примерно по 250 штук в год, строит только завод Шелби под Лас-Вегасом.


Техническая характеристика:

Тип кузова… кабриолет

Количество дверей… 2

Длина… 4,200 м

Ширина… 1,746 м

Высота… 1,200 м

База… 2,285 м

Объем двигателя… 4736 см 3

Мощность… 271 л.с.

Максимальная скорость… 220 км/ч

Вместимость топливного бака… 62 л

Разгон до 100 км/ч… 4 с

ПОЛИГОН
Такие разные маятники



В «ЮТ» № 7 за этот год мы упомянули маятник Фуко, с помощью которого ученые доказали, что Земля вращается. Но маятник – странное устройство. Качка корабля и движение звезд, подвеска автомобиля и вращение электронов в каких-то своих основах подчиняются тем же законам, что и его движения. А потому справедливо будет рассказать о маятниках подробнее.


Эксперимент главного казначея

Полную теорию маятника создал сам сэр Исаак Ньютон. А началось все, возможно, с опыта, который он поставил, не веря, что период колебаний маятника не зависит от плотности вещества.

«Я достал два одинаковых деревянных ящика и один из них равномерно наполнил деревянными кубиками, а в другой поместил такого же веса (насколько точно я мог) слиток золота. Поместив их рядом, я наблюдал, как они качались совершенно одинаково и совместно в течение длительного времени». Так И.Ньютон описал свой опыт. Он не пояснил, где взял золото – но если вспомнить, что основным его занятием была работа в качестве директора Монетного двора, – можно догадаться, что найти для эксперимента килограмм-другой золота не составляло для него труда.



Маятник и Луна

Всем известен математический маятник – грузик, качающийся с небольшой амплитудой на длинной нити. Период колебаний такого маятника не зависит от массы и, как видно из формулы, зависит только от ускорения силы тяжести. Но как это проверить – съездить на полюс и на экватор или слетать на Луну?

Эрнст Мах (1838–1916), философ, идеи которого пронизывают всю современную физику, чтобы наглядно доказать это школьникам в земных условиях, создал прибор, в котором маятник качается на жесткой оси, в рамке. А рамке может придавать различный наклон. При этом сила тяжести разлагается на составляющие по правилу параллелограмма. В зависимости от величины наклона меняется движущая маятник доля силы тяжести. Так, если рамку маятника наклонить примерно под углом 10° к горизонту, то он станет качаться с таким же периодом, как и на Луне.



Ходики ногами вверх

Мы привыкли к тому, что масса маятника расположена ниже точки подвеса. Но это не обязательно. Всем приходилось видеть, как жонглер ставит на нос длинный шест и движется с ним по сцене. Но дайте ему карандаш – и он его тут же уронит. Здесь имеет место эффект перевернутого маятника.

Если шест поставлен строго вертикально на нижний конец, то он находится в равновесии. Правда, это равновесие неустойчиво и шест под действием любой случайной микроскопической причины начинает от этого положения отклоняться. Чем он длиннее, тем отклонение происходит медленнее. Скорость этого отклонения такая же, как у «нормального» маятника – того же шеста, подвешенного за верхний конец. Поэтому длинный шест раскачивается на носу жонглера гораздо медленнее, чем короткий карандаш, и удержать его в равновесии достаточно легко.

Понаблюдайте за работой высокого строительного крана. Вы увидите, что башня его медленно раскачивается. Здесь тоже имеет место эффект перевернутого маятника. Этот эффект был использован и в метрономе. И не стоит удивляться, если кто-нибудь создаст часы-ходики, работающие вверх ногами.


Не качаться, а прыгать

Можно ли создать маятник, имеющий при небольших размерах большой период колебаний?

Над этим работали многие ученые и изобретатели. Первым добился успеха Д.К.Максвелл. Его мятник – это диск, опускающийся, вращаясь, на двух разматывающихся нитях. Дойдя до нижней точки, диск по инерции начинает те же нити наматывать и вновь поднимается.

Здесь качание как бы заменено прыжками. Для увеличения периода колебаний маятника Максвелла его диск должен быть предельно легок и в то же время накапливать при вращении как можно больше энергии. Для этого как можно большую часть массы диска необходимо сосредоточить на ободе.



Маленький, но долгий

Чтобы увеличить период колебаний маятника, не меняя его длины, можно уменьшить действие силы тяжести на массу маятника, например, использовав отталкивание одноименных магнитных полюсов. В таком маятнике в качестве груза применяется постоянный магнит, повернутый полюсом вниз, а под ним, на траектории его движения, располагается другой, более длинный, магнит одноименным полюсом вверх. Таким способом во много раз уменьшается вес маятника, и он раскачивается значительно медленнее.



Маятник без нити

Только в конце XX века изобретатели задали себе простой вопрос: зачем маятнику нить? Ответ вызывал удивление. Нить – это всего лишь простейшее приспособление, обеспечивающее движение груза по криволинейной траектории. Если так, то ее может заменить любое устройство, выполняющее ту же задачу. Так, известны компактные механизмы, способные обеспечить движение точки по дуге эллипса или круга. Но они сложны, имеют большие потери на трение.

Известно более простое решение – лоток, изогнутый по дуге большого радиуса, по которому катится шарик. Трение, возникающее при этом, ничтожно мало и составляет всего 0,0001 от его веса. Казалось бы, тут период колебаний шарика должен быть равен периоду маятника с нитью такой же длины, как и радиус кривизны лотка. Но нет. Шарик по лотку не только движется, но еще и катится, а значит, вращается. На это расходуется кинетическая энергия, и период колебаний возрастает. Это не мешает делать на шаровом маятнике очень точные декоративные настольные часы, но для учебных целей он неудобен.


Смоленский учитель Н.И.Горчаков в маятнике с лотком заменил качение шарика скольжением на воздушной смазке. Трение в этом процессе еще меньше, чем при качении шарика, а вращения нет. Период колебаний такого маятника точно совпадает с периодом маятника с нитью, равной по длине радиусу кривизны лотка. Лоток же устроен в стенке узкой коробки из оргстекла длиною один метр. В нем просверлено множество отверстий, через которые вытекает воздух, подаваемый от пылесоса, работающего на пониженном напряжении. В лоток помещается грузик. На воздушной смазке он получает возможность скользить вдоль лотка с периодичностью маятника. Вот как сделать такой маятник.

Заготовьте три полоски оргстекла длиною 1 метр и толщиной 5–6 мм. Одна из них шириной 50 мм, две другие по 70 мм. На узкой линейке насверлите два ряда отверстий диаметром 1,5–2 мм с интервалом 10 мм. После этого можно начинать клеить коробку.

Положите на ровный стол сверло диаметром 6 мм, а сверху при помощи двух грузиков по концам прижмите узкую линейку. Она изогнется по дуге радиусом примерно 20 м. По бокам прижмите к ней две другие широкие линейки и в углах подпустите клей. У вас получилась открытая коробка с вогнутой стенкой. Приклейте к ней еще три кусочка оргстекла, как указано на рисунке, до получения замкнутого объема. В один из этих кусочков в торце коробки заранее вклейте патрубок, чтобы подключить шланг компрессора.

Груз маятника – полоска оргстекла, изогнутая по дуге с тем же радиусом 20 м. Ее вы можете отформовать непосредственно на лотке. Вот как это делается.

Заготовку шириной 48 мм и длиной 70 мм нагрейте в духовке, на ровной поверхности противня, до 110–120 °C. (Только избегайте перегрева и появления в материале пузырьков, они затруднят точную формовку.) После этого наденьте шерстяные перчатки и выньте заготовку (она будет мягкая, как желе). Остается лишь положить ее на лоток, прижать мягкой чистой тряпкой и дать остыть. Все, можно приступать к испытанию маятника. Подключите к лотку воздух и аккуратно без толчков положите на один из его концов ваш грузик. Он очень плавно и медленно, словно во сне, «поплывет» к другому концу лотка, а потом вернется назад.

А.ИЛЬИН

Рисунки автора



Подробности для любознательных

ПО МОРЯМ, ПО ВОЛНАМ

Любые колебания, происходящие под действием силы тяжести, совершаются по тем же законам, что и движение маятника. Так любое плавающее тело – пробка или корабль, не важно, – подвергается вертикальной качке. При этом оно погружается до уровня, при котором сила Архимеда равна его весу. Эта же сила его и выталкивает. Период колебаний описывается формулой, очень похожей на формулу маятника. Так, корабль водоизмещением 10 000 т и площадью сечения на уровне ватерлинии 1000 м 2имеет период вертикальных колебаний всего 6 секунд.

ИГРУШКИ НАШИХ ДЕДУШЕК
Сыграем в мячик пузырями

Казалось бы, что может быть более нежным и хрупким, чем мыльный пузырь? Но знаете ли вы, что наши прадеды мыльными пузырями играли в волейбол!

Книга Тома Тита «Научные забавы: интересные опыты, самоделки и развлечения» впервые была издана в Париже в 1890 году. Позже книгу несколько раз переиздавали в России, а совсем недавно «Научные забавы» выпустил в свет Издательский дом Мещерякова. Книга сразу же стала бестселлером, и потому мы решили, что опыты Тома Тита, хотя и были придуманы давным-давно, интересны и в наши дни. В этом номере мы начинаем публиковать самые занятные из них.

О том, как получить мыло, дающее крепкие большие пузыри, Том Тит рассказал так: «Сделай крепкий мыльный раствор. Воду возьми комнатной температуры, градусов восемнадцать. Процеди раствор через тряпку, чтобы в нем не осталось нерастворившихся кусочков мыла, и добавь к нему очищенного глицерина.

Добавляй 2 ложки глицерина на 3 ложки мыльного раствора. Взболтай хорошенько смесь и отставь ее в сторонку. Пусть она постоит, пока на поверхности не образуется белая пленка. Пленку сними, а готовый раствор сохраняй в плотно закупоренной бутылке».

От себя добавим, что глицерин продается в аптеке, а мыло нужно брать белое, хозяйственное или туалетное. С таким мылом ученые позапрошлого века делали очень забавные опыты: выдували пузыри до полутора метров в диаметре и проверяли их стойкость. Так, один мыльный пузырь, помещенный в сосуд с углекислым газом, просуществовал там более 20 лет. Быть может, он и сейчас где-то существует.

Чтобы выдуть пузырь побольше, скрутите из бумаги конические трубки. Они позволят делать пузыри диаметром 100–150 мм. Если этого покажется мало, возьмите хозяйственную воронку. С нею и с нашим мылом легко получить пузырь впечатляющего размера – 300 мм. Объем его довольно велик – 13 литров. Поэтому выдуть его трудновато.

Другая проблема при выдувании больших мыльных пузырей – это неудобная поза и дрожание рук. Поэтому есть смысл закрепить воронку на школьном лабораторном штативе и дуть через шланг.

Последний мировой рекорд – мыльный пузырь диаметром 4,5 м. Его объем в 10 000 раз превышает объем легких взрослого человека. Так что его наверняка выдували при помощи воздуходувки, например, пылесоса, работающего при пониженном напряжении. Но перейдем от пузырей гигантских к пузырям изящным, точнее, к конструкциям из них.


Вот еще одно из предложений Тома Тита: «Налей немного мыльного раствора в блюдце, посередине которого поставлена пробка. На пробку положи монету, к монете приклей куколку, а к голове куколки приклей копейку. Все должно быть хорошо смочено мыльным раствором».

При помощи бумажной трубки выдуем и посадим большой мыльный пузырь на края блюдца. Соломинку от пакета с соком смочите мылом до половины. Далее проткните соломинкой большой пузырь и внутри его выдуйте пузырь поменьше и посадите его на монету. Точно так же увенчайте пузырем и голову куколки.

Сделать это нелегко: пузыри будут лопаться. Однако попробуйте, не пожалеете.

Следующий опыт, поставленный Томом Титом из соображений чистой красоты, относится к авиации, хотя до полета первого самолета под Парижем оставалось еще шестнадцать лет.

Сначала нужно заготовить два абсолютно круглых кольца из проволоки диаметром 1–2 мм. Для этого возьмите кусок проволоки длиною 1–1,5 м, почистите его наждачной бумагой и пару раз протяните вокруг ножки стола. На проволоке разгладятся все неровности, и сама она будет стремиться свернуться в кольцо. Подыщите круглый предмет диаметром 100–150 мм, наверните на него проволоку и закрутите концы. У вас получится абсолютно круглое кольцо с удобной ручкой. Так же сделайте второе.

Смочите кольца мыльным раствором. Выдуйте между ними мыльный пузырь так, чтобы он коснулся каждого кольца, начинайте кольца раздвигать. (Удобнее опыт вести вдвоем.) Сначала пузырь будет похож на бочку, а затем начнет напоминать песочные часы. В этот момент остановитесь и попросите друга внутри этого пузыря выдуть другой, поменьше.

На первый взгляд покажется, что маленький пузырь прилип к стенкам большого, но это не так.

Чтобы в этом убедиться, проведем опыт немного иначе. Пусть друг постарается кольца держать так, чтобы внешний пузырь занял между ними примерно горизонтальное положение. Введите в него соломинку, выдуйте внутри маленький шар и стряхните его легким движением. Он опустится на пленку цилиндра. Если теперь цилиндр слегка наклонить, то маленький шарик покатится по его стенке. Внимательно рассмотрите этот процесс. Можно заметить, что шарик ни в одной точке не касается цилиндра. Между оболочками пузырей всегда остается прослойка воздуха! Откуда она берется? Почему пузыри не объединяются?


Если бы эта пленка существовала только в момент, когда один катится по другому, объяснить это можно с точки зрения аэродинамики: катящийся пузырь подминает под себя воздух, который при этом не может уйти в стороны.

Причина этого в том, что на поверхностях пузырей образуется так называемый пограничный слой, состоящий из прилипших к ним молекул. Однако Том Тит утверждает, что расстояние порядка 0,1 мм существует и между покоящимися пузырями. Если так, то это проявление сил межмолекулярного взаимодействия, так называемых сил Ван-дер-Ваальса. Но никто еще не наблюдал их действия на таких расстояниях. Проделайте эти опыты Тома Тита и напишите нам. Возможно, из этого получится ваша первая научная публикация!

Еще один опыт Тита, который повторяли многие поколения наших предков. Положите на стол кусок чистого сухого сукна и посадите на него пузырь. Затем потрите щеткой кусок бумаги и поднесите к пузырю. Он вытянется и даже взлетит со стола. Попробуйте объяснить это явление.

Мыльные пузыри можно заставить летать и по-настоящему. Для этого их нужно выдувать при помощи водорода или другого газа легче воздуха. Водород можно получить с помощью школьного аппарата Киппа. Пузыри, наполненные им, быстро поднимаются и исчезают в небе. Высоту, на которую они могли бы подняться, никто не проверял. Но чисто теоретически подсчитать ее не сложно.

При подъеме обычного аэростата водород расширяется и постоянно вытекает через специальное отверстие. В мыльном пузыре отверстия нет, но водород способен легко просачиваться через его стенки. Так что при подъеме пузыря водород начнет уходить через стенки и объем пузыря останется постоянным. Тогда наш «аэростат» сможет подняться на высоту 12–15 км, где плотность атмосферы примерно равна плотности водорода у земли. Правда, это лишь в теории. Примерно на высоте 2–3 км оболочка мыльного пузыря замерзнет, станет хрупкой и будет разорвана давлением водорода…

Не печальтесь, а лучше выдуйте пузырь побольше и поиграйте им в мяч. Для этого наши прадеды надевали пушистые шерстяные перчатки и подбрасывали пузыри тыльной стороной ладони. Веселой игры!


А.ИЛЬИН


    Ваша оценка произведения:

Популярные книги за неделю