355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ян Шнейберг » История выдающихся открытий и изобретений » Текст книги (страница 4)
История выдающихся открытий и изобретений
  • Текст добавлен: 13 сентября 2016, 19:26

Текст книги "История выдающихся открытий и изобретений"


Автор книги: Ян Шнейберг



сообщить о нарушении

Текущая страница: 4 (всего у книги 8 страниц)

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации

Открытие действия «электрического конфликта» на магнитную стрелку

В июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра профессора Копенгагенского университета Ханса Кристиана Эрстеда с необычным названием: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». Открытие Эрстеда не только обессмертило имя ученого, но явилось эпохальным событием в истории электромагнетизма. Как выразился один из ученых, электромагнетизм привлекал к себе не только железо, но и мысли европейских физиков.

Эрстед сделал свое открытие в декабре 1819 г. во время опытов на студенческой лекции: если расположить магнитную стрелку над проводом или под ним и пропустить электрический ток, то северный полюс стрелки повернется или к западу или к востоку. Эрстед подчеркнул, что речь идет не о притяжении или отталкивании, наблюдавшихся ранее в опытах с электричеством, а о вращении стрелки, вызываемом «вихрем» магнитных сил, возникающем вокруг проводника. В то время еще не было известно понятие «направление» тока и Эрстед считал, что положительное и отрицательное электричество, сталкиваясь в проводнике, образуют «конфликт», вызывающий «вихрь» магнитного поля.

В наши дни любой школьник может воспроизвести опыт Эрстеда и продемонстрировать «вихрь электрического конфликта», насыпав на плотный лист бумаги железные опилки, а сквозь центр листа, пропустив провод с электрическим током. Открытие Эрстеда спустя несколько месяцев привело к изобретению индикатора электрического тока: немецкий физик И. Швейггер (1779-1857) предложил использовать отклонение магнитной стрелки электрическим током, создав новый электроизмерительный прибор – «мультипликатор» (1820), представлявший собой магнитную стрелку, помещенную внутри рамки, состоящей из нескольких витков проволоки (рис. 5.1).

Рис. 5.1. Мультипликатор Швейггера

Необычайно «урожайным» в истории электромагнетизма был 1820 г. Выдающиеся открытия следовали одно за другим. В сентябре 1820 г. французский физик, позднее академик, Д.Ф. Араго (1786-1853) обнаруживает намагничивание проводника протекающим по нему током: если медная проволока, соединенная с полюсами вольтова столба, погружалась в железные опилки, то последние равномерно к ней «прилипали», а при выключении тока опилки «отставали». При замене медной проволоки железной она намагничивалась, а кусочек стали при таком намагничивании становился постоянным магнитом. По совету Ампера Араго заменил прямолинейную проволоку спиралью, при этом намагничивание иголки, помещенной внутри спирали, заметно усилилось. Так был создан «соленоид». Опыты Араго наглядно доказали электрическую природу магнетизма и возможность намагничивания стали электрическим током.


«Ньютон электричества»

Наиболее выдающийся вклад в начальное исследование явлений электромагнетизма внес один из крупнейших французских ученых Андре Мари Ампер (1775-1836), заложивший основы электродинамики. Ампер от природы был необыкновенно одаренным человеком. В истории науки не известен случай, чтобы 13-летний мальчик представил в Лионскую академию наук литературы и искусства свою первую математическую работу, в которой высказал серьезные замечания по поводу одного из трудов всемирно известного математика Л. Эйлера. С помощью отца – одного из образованнейших людей своего времени, сотрудников Лионского лицея и главным образом путем неустанного самообразования, к 18 годам познания Ампера в области математики, физики, механики вполне соответствовали курсу университетского образования. В то время как его сверстники еще не перестали играть в детские игры, он все глубже познавал естественные науки.

Но его творческая жизнь была нарушена страшной трагедией: в 1793 г. во время Великой французской революции был казнен его отец. После этого Ампер долго болел, но постепенно заставляя себя продолжать заниматься науками, начал давать частные уроки по физике, математике, химии, которые принесли ему не только денежные средства, но и известность способного педагога. И в 1802 г. он с успехом прошел собеседование и был зачислен на должность профессора в Центральной школе г. Бурга (недалеко от Лиона), а с 1809 г. – Ампер уже профессор математического анализа Политехнической школы в Париже – самой популярной среди технических школ Франции.

Ампера уже много лет интересовали электрические явления, но совмещать исследования этих явлений с математическими работами ему не удавалось.

Но когда Ампер в сентябре 1820 г. увидел на заседании Французской академии наук повторение Араго опытов Эрстеда, он, обладавший необыкновенным чувством научного предвидения, немедленно забросил все дела и с головой погрузился в изучение нового явления. И уже 18 сентября 1820 г. он докладывает в Академии наук о своих первых открытиях в области электромагнетизма. Ампер впервые убедительно показал, что железная проволока, согнутая в кольцо, аналогична «тонкому листку» постоянного магнита – и кольцо и «листок» – оба имеют одноименные полюса – никому до него это – как говорят – не пришло в голову. И еще очень важное наблюдение. (Заметим, что Ампер с поразительной последовательностью выступал еженедельно с сентября по декабрь перед академиками, излагая свои новые открытия, которые позднее были обобщены в его знаменитом труде по электродинамике.) Если «круговой» ток аналогичен магниту, то и взаимодействие кольцевых проводников с током должно быть аналогичным взаимодействию магнитов. Ампер вводит в науку термин «электрический ток» и понятие о направлении электрического тока. Он предложил считать за направление тока направление положительного электричества – «от плюса к минусу». Он также сформулировал важное правило о направлении отклонения магнитной стрелки, зависящего от направления тока в проводнике – «правило пловца».

На основании многочисленных экспериментов Ампер установил закон взаимодействия линейных токов: два параллельных и одинаково направленных тока взаимно притягиваются. Тогда как два противоположно направленных тока взаимно отталкиваются. Для исследования токов он создал так называемый «станок Ампера» (рис. 5.2).

Обнаруженные явления Ампер предложил называть электродинамическими в отличие от известных ранее электростатических. Позднее электродинамика стала одним из важнейших разделов физики и электротехники.

Рис. 5.2. «Станок» Ампера:

1 – подвижная рамка; 2 – неподвижный проводник

Ампер не только дал глубокий анализ наблюдавшихся явлений, но сумел теоретически обобщить их, выведя формулу, позволяющую определить силу взаимодействия токов, а также создал приборы для определения этой силы. В Германском музее шедевров науки и техники хранятся оригиналы этих приборов, как «драгоценнейшие документы музея». Как писал один из биографов, это был «немеркнущий вклад, оставшийся на все времена в сокровищнице науки».

Ампер, несмотря на серьезную сердечную болезнь, неустанно трудился, надеясь претворить в жизнь свои идеи. Одной из наиболее революционных была его идея о молекулярных токах, утверждавшая, что «все магнитные явления… сводятся к чисто электрическим действиям». Теория о круговых молекулярных токах, отвергала наличие «особых» электрических и магнитных жидкостей. Его фундаментальный труд «Теория электрических явлений, выведенная исключительно из опыта», получил высочайшую оценку великого Максвелла, назвавшего Ампера «Ньютоном электричества».

Имя ученого известного всему миру было увековечено в 1893 г. на Международном конгрессе электриков в Чикаго, давшем единице силы тока название «ампер». Он был членом академий все крупнейших стран Европы, в 1830 г. Ампер был избран почетным иностранным членом Петербургской академии наук.

Рис. 5.3. Схема «электромагнитных вращений» (по рисунку Фарадея):

7, 2 – чаши с ртутью; 3 – подвижный магнит; 4 – неподвижный магнит; 5 – неподвижный проводник; 6 – подвижный проводник


Создание прообразов электродвигателя

Первым, кто, проявив незаурядные способности экспериментатора, претворил в жизнь идеи Ампера, был великий английский физик Майкл Фарадей (1791-1867), тогда еще никому неизвестный своими исследованиями. В 1821 г. Фарадей создает оригинальный прибор, демонстрирующий вращение проводника вокруг магнита и магнита вокруг проводника (рис. 5.3). При подключении к источнику тока в левом сосуде со ртутью подвижный магнит 3 вращается вокруг неподвижного провода 5, а в правом – подвижный проводник 6 вращается вокруг неподвижного магнита 4. По признанию Фарадея, думая о своем приборе, «он долго ломал себе голову… даже ночами просыпался и думал». Прибор Фарадея наглядно иллюстрировал возможность создания электродвигателя. По утверждению одного из ученых «…одно лишь открытие Фарадеем «электрического вращения» оставило бы ему мировую известность».

Анализ истории развития электрических машин показывает, что первым практическим устройством был электродвигатель. Это объясняется тем, что в связи с развитием промышленности все более возрастала потребность в компактном и экономичном электродвигателе, вместо широко распространенной паровой машины. Что же касается электрогенератора, то в течение первой трети XIX в было создано много разновидностей электрохимических батарей, которые получили широчайшее практическое применение.

Первый практически пригодный электродвигатель был создан петербургским профессором Борисом Семеновичем Якоби (1801-1874) в 1834 г. Б.С. Якоби принадлежал к числу тех иностранных ученых, которые по приглашению приехали в Россию и связали с ней свою творческую жизнь. Мориц Герман Якоби принял русское имя и прожил в России 39 лет до конца своих дней. Сначала он работал в Дерпте (ныне Тарту), а потом в Петербурге, с 1839 г. «состоял в Петербургской академии наук», а с 1865 г. был избран академиком по физике.

Еще накануне приезда в Россию Якоби в 1834 г. послал в Парижскую академию наук сообщение об изобретенной им «магнитной машине». Первый электродвигатель Якоби работал по принципу притяжения и отталкивания двух комплектов электромагнитов, один из них располагался на неподвижной деревянной раме, другой – на подвижной (рис. 5.4). Источником питания служила батарея гальванических элементов.

Направление тока, а следовательно, полярность неподвижных электромагнитов не изменялась, а для изменения полярности подвижных электромагнитов Якоби создал оригинальный коммутатор.

С помощью коммутатора полярность подвижных электромагнитов изменялась 8 раз за один оборот вала, и они поочередно притягивались и отталкивались неподвижными электромагнитами. Мощность электродвигателя составляла примерно 15 Вт, и Якоби, конечно, понимал, что нужно найти пути для увеличения мощности, чтобы – как он писал в записке президенту Академии наук и министру просвещения – «…Нева раньше Темзы или Тибра покрылась судами с магнитными двигателями».

Рис. 5.4. Внешний вид двигателя Якоби

Сначала он пошел по пути увеличения числа электромагнитов, но это только делало машину более громоздкой. Непрерывно работая над совершенствованием двигателя, Якоби узнал, что в 1837 г. американский техник Т. Девенпорт также построил электродвигатель, в котором взаимодействовали подвижные электромагниты с неподвижными постоянными магнитами. Двигатель Девенпорта был более компактным благодаря расположению подвижных и неподвижных частей в одной горизонтальной плоскости.

Талант инженера и ученого помог Якоби найти наиболее рациональную конструкцию двигателя, чтобы при увеличении его мощности размеры машины возрастали в вертикальном направлении. Якоби отказался от неподвижных постоянных магнитов – громоздких и ненадежных.

Модель нового элементарного электродвигателя (рис. 5.5, а) представляла собой два неподвижных электромагнита, расположенных на деревянном кольце, и четырех крестообразных электромагнитов (роторов), которые могли вращаться внутри неподвижных полукруглых электромагнитов (статоров).

В 1838 г. на Ижорском заводе был изготовлен новый электродвигатель совершенно оригинальной конструкции: на двух вертикальных осях укреплялись 40 (по 20 на каждой из них) крестообразных подвижных электромагнитов, а неподвижные полукруглые укреплялись на деревянной станине с помощью скоб из немагнитного материала. Общая высота двигателя составляла 1,2 м, а основание 0,7x0,77 м, т.е. двигатель занимал на судне – восьмивесельном катере – сравнительно небольшую площадь (рис. 5.5, б). Электрический ток для двигателя обеспечивали 320 (!) гальванических батарей. Мощность электродвигателя составляла около 1/4 лошадиной силы.

а)

б)

Рис. 5.5. Модель одного элемента двигателя Якоби (а), чертеж электрического двигателя Якоби (1838 г.) (б):

1, 2 – зажимы обмоток двух неподвижных электромагнитов; 3 – зажим коммутирующего устройства; 4 – вращающаяся часть двигателя

Во время первых испытаний катер двигался по Неве со скоростью 2 км/ч на расстояние 7 км по течению и против течения. Это был первый в мире опыт практического применения электродвигателя для движения судна. Комиссия, учрежденная для испытания «электрического бота» Якоби, признала успех сенсационным и рекомендовала «увеличить мощность» гальванических батарей.

Публичные испытания «электрического бота» состоялись в августе 1839 г. и вызвали восторженные отклики зрителей и статьи в двух номерах петербургской газеты «Северная пчела» (сентябрь 1839 г.). В статье с весьма оптимистическим заголовком «Новые успехи на поприще электромагнетических опытов и радостные надежды в будущем» газета писала: «Человек до. шестидесяти ученых, литераторов и любителей наук (в том числе несколько высших сановников) собрались на Петровском Острове, чтобы быть свидетелями новых опытов над применением электромагнетической силы к судоходству. Катер с 12 человеками, движимый электромагнетической силой (в 3/4 силы лошади), ходил несколько часов против течения при сильном противном ветре. Этот опыт в области науки то же, что открытие письмен. Нет еще эпопеи, но мысль уже выражена. Что бы ни было впоследствии, но важный шаг уже сделан, и России принадлежит слава применения теории к практике». Новый более мощный двигатель быстрее вращал гребные колеса, и скорость движения катера увеличилась до 4 км/ч.

Испытания двигателя показали, что он превосходит все другие зарубежные двигатели. Результаты испытаний давали надежду на реальную возможность использования двигателя в судоходстве. Особые надежды возлагали представители Военно-морского ведомства, видевшие его неоспоримые преимущества перед паровым двигателем, особенно на военных кораблях – ведь достаточно было одного вражеского ядра, чтобы парализовать движение корабля. Вместо огромного груза угля и паровой установки можно было увеличить число артиллерийских орудий, а штат команды сократить. А электрический ток от батарей можно использовать для освещения.

Успехи испытаний широко освещались в мировой печати. Великий Фарадей прислал Якоби восторженное письмо, надеясь на использование электродвигателя на крупных морских кораблях: «Какое это было бы славное дело», – воскликнул ученый.

Рис. 5.6. Электродвигатель Пачинотти

Британская ассоциация содействию науки, где в 1840 г. выступал с докладом Якоби, избрала его своим почетным членом.

Но попытки Якоби увеличить мощность электродвигателя и последующие испытания показали, что экономическая эффективность нового электродвигателя была явно недостаточна: одна лошадиная сила обходилась в 12 раз дороже, чем в случае применения паровой машины. И в 1842 г. Якоби в докладе Академии наук, подведя итоги четырехлетней работы над «попыткой применения электромагнетизма в качестве движущей силы признал питание электродвигателя от гальванических батарей нерентабельным».

Необходимо было создать легкий экономичный генератор электрической энергии нового типа для практического использования электродвигателя на корабле. Как удивился бы Якоби, если бы узнал, что более чем 160 лет после его экспериментов, несмотря на фантастические успехи электромеханики, океанские просторы будут бороздить не корабли-электроходы, а турбоэлектроходы, дизельэлектроходы, атомоходы. И можно только надеяться, что в будущем будут реализованы мечты нашего выдающегося ученого.

Но работы Якоби над созданием электродвигателя сыграли огромную прогрессивную роль в развитии электротехники и стимулировали изобретение электромашинных генераторов электрической энергии, получивших широчайшее практическое применение.

В течение трех десятилетий до изобретения самовозбужда– ющегося промышленного генератора постоянного тока Грамма, а также и электродвигателей (на основе принципа обратимости электрических машин) в разных странах были созданы несколько типов двигателей постоянного тока, не получивших широкого практического применения.

Среди них следует отметить оригинальный электродвигатель 19-летнего итальянского студента (впоследствии профессора) Пизанского университета Антонио Пачинотти (1860). Этот электродвигатель (рис. 5.6) состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов. В нижней части вала укреплялся коллектор, к пластинам которого подводились концы обмотки якоря. Пачинотти был сделан важнейший шаг на пути создания современной машины постоянного тока: неявнополюсный якорь, удобная схема возбуждения и коллектор, приближавшийся к современному.


Открытие явления электромагнитной индукции и создание первого электромашинного генератора

Как уже отмечалось, практическое применение электродвигателей оказалось невозможным из-за неэкономичности источников электрического тока – гальванических батарей. Поэтому во многих развитых странах начинаются интенсивные исследования с целью решения этой актуальной проблемы.

Первый электромашинный генератор, знаменитый «диск Фарадея», был создан в 1831 г. выдающимся ученым Майклом Фарадеем – сыном бедного лондонского кузнеца, не имевшим возможности даже окончить начальную школу. Но благодаря природному таланту, огромной тяге к знаниям и гигантской работоспособности он стал всемирно известным ученым, членом 68 академий и научных обществ, в том числе и почетным членом Петербургской академии наук. Нелегкий жизненный путь Фарадея, много лет работавшего в качестве лаборанта и лакея известного ученого X. Дэви, достойный пример для подражания миллионам молодых людей, стремящихся к овладению знаниям.

После создания им уже описанного ранее прибора «электромагнитного вращения» Фарадей (1821), убежденный во взаимосвязи и взаимопревращениях различных «сил природы», записал в своем дневнике: «Превратить магнетизм в электричество!» Потребовалось десять (!) лет упорнейшего труда, чтобы практически решить поставленную задачу. В течение этого времени Фарадей продолжал работать над своим самообразованием, изучая труды знаменитых физиков и химиков, стремясь познать секреты электромагнитных явлений.

В 1827 г. Фарадей был уже профессором и читал лекции в Королевском институте, которые вызывали всеобщий интерес. Но чем бы он ни занимался, все его мысли были о «превращении магнетизма в электричество». Современники вспоминают, что будто бы он носил в кармане небольшую спираль из медной проволоки и тонкий постоянный магнит и нередко устанавливал их в разные положения. Многие друзья и коллеги считали его чудаком.

В течение 10 лет день за днем Фарадей ставил опыт за опытом, тщательно записывая результаты в журнал. Опытов были тысячи, но «возбуждения электричества посредством магнетизма» достичь не удавалось.

Первый удачный опыт произошел 29 августа 1831 г.; он по праву вошел в историю науки. На деревянный или картонный цилиндр (рис. 5.7, а) наматывалась медная проволока 1, а между ее витками была намотана вторая проволока, изолированная хлопчатобумажной нитью 2. Первая спираль соединялась с сильной батареей из 100 пар пластин, вторая – с гальванометром. При замыкании и размыкании первичной цепи стрелка гальванометра отклонялась, т.е. во вторичной цепи возникал ток. Но если ток непрерывно протекал по первичной спирали – гальванометр оставался неподвижным. Почему? Такого явления ранее никто из физиков не наблюдал. Великий экспериментатор долго оставался наедине со своими сомнениями. Когда внутрь спирали, включенной во вторичную цепь, Фарадей поместил стальную иглу (рис. 5.7, б), она при возникновении индуктированного тока так же намагничивалась, как и от тока гальванической батареи. Следовательно, индуктированный ток не отличается от обычного тока.

Рис. 5.7. Схемы опытов Фарадея (по рисункам Фарадея)

Было очевидно, что действие первой спирали на вторую осуществлялось через окружающую среду. А каково ее влияние? Заменив картонный цилиндр железным кольцом (рис. 5.7, в), Фарадей отметил, что стрелка гальванометра откланялась на больший угол. Значит, среда, окружающая проводник с током, играет активную роль и усиливает явление индукции. Кстати, отметим, что в опыте с железным кольцом можно увидеть прообраз простейшей конструкции трансформатора.

Логика рассуждений подсказывала, что при замыкании и размыкании цепи возникало и исчезало магнитное поле, создаваемое током. Но ведь изменение магнитного поля можно осуществить и без электрического тока, применяя обыкновенные постоянные магниты. Обмотав железный цилиндр медной изолированной проволокой, соединенной с гальванометром (рис. 5.7, г), и поместив цилиндр между концами двух постоянных стержневых магнитов, соприкасавшихся другими разноименными полюсами, Фарадей установил, что при смыкании и размыкании концов магнитов, стрелка гальванометра отклонялась.

Это явление Фарадей назвал «магнитно-электрической индукцией», в отличие от первых наблюдений, названных «вольта-электрической индукцией». Подчеркивая, что принципиальной разницы между этими явлениями нет, он позднее их называл «электромагнитной индукцией».

Через две недели, в октябре 1831 г., Фарадей проводит самый убедительный эксперимент, подтверждающий «превращение магнетизма в электричество». На картонную катушку была намотана спираль из медной проволоки, включенная в цепь с гальванометром (рис. 5.7, д). И когда он «быстрым движением втолкнул магнит внутрь спирали», стрелка гальванометра отклонилась. При быстром «вытаскивании» магнита стрелка отклонилась в обратную сторону. «Значит, – писал Фарадей, – электрическая волна возникает при движении магнита».

А через несколько дней Фарадей наглядно объясняет еще одно «загадочное» явление, открытое в 1824 г. Араго, названное им «магнетизмом вращения». История этого открытия весьма любопытна. Араго поручил парижскому мастеру изготовить для него большой компас и поместить его в футляр – медную коробку (так как медь – «немагнитный» материал). Когда же Араго стал открывать крышку коробки, ему показалось, что стрелка компаса отклонилась. Это было невероятно: наверное, подумал Араго, в медной крышке есть примеси железа, и оно взаимодействует с магнитной стрелкой. Но когда, по настоянию Араго, был сделан анализ металла – примесей железа не оказалось. Повторные опыты подтвердили первые наблюдения. Никто из физиков, даже Ампер, не могли объяснить это явление. Также и Фарадею много лет физическая суть этого явления «не давала покоя».

Сам Араго, пытаясь выяснить причину взаимодействия медной крышки с магнитной стрелкой, решил изготовить «приборчик», в котором, возможно, обнаружится аналогичное явление. Но он предположил, что если вращение медной крышки, вызывает поворот магнитной стрелки, то вращение магнита должно увлечь за собой медный диск (рис. 5.8). Опыт подтвердил догадку ученого: при вращении магнита 1 медный диск 2 начинал вращаться в ту же сторону. Недоумению ученых не было предела: почему взаимодействие магнита и диска возникает только при вращении магнита?

Рис. 5.8. Схема опыта Араго:

1 – магнит; 2 – медный диск

Фарадей, опираясь на открытое им явление электромагнитной индукции, не только объяснил причину вращения диска, но и указал на возможность практического использования опыта Араго. «Получив электричество из магнита, – писал Фарадей, – я полагаю, что опыт г-на Араго может стать новым источником получения электричества, и надеюсь, что… мне удалось сконструировать электрическую машину».

Опыт заключался в следующем. Фарадей принес в лабораторию большой подковообразный электромагнит, хранящийся до сих пор в музее Лондонского королевского общества (рис. 5.9). К полюсам магнита он прикрепил «два стальных бруска» и в промежуток между ними ввел край медного диска. Край диска и его ось были соединены посредством щеток с гальванометром. При вращении диска стрелка гальванометра «показывала наличие в нем электрического тока… до тех пор, пока диск вращался». Это был первый в мире электромагиинный генератор («Диск Фарадея») – с него начинается история электрических машин. Действие генератора Фарадей объяснял так: медный диск можно представить в виде колеса с бесконечным числом спиц – радиальных проводников. При вращении диска эти спицы-проводники пересекают магнитные силовые линии, и в них возникает индуктивный ток.

Рис. 5.9. Большой подковообразный магнит из Лондонского музея (справа схема опыта Фарадея)


Запоздалое открытие Джозефа Генри

В истории науки есть немало примеров, когда выдающиеся открытия и изобретения делались почти одновременно учеными разных стран, ничего не знавшими друг о друге. Но то, что произошло осенью 1831 г. в Лондоне и главном городе штата Нью-Йорк – Олбани, поистине сенсационно.

Как уже отмечалось, электромагнитную индукцию Фарадей открыл 29 августа 1831 г., а в ноябре сообщил об этом Лондонскому королевскому обществу, а его статья с подробным описанием экспериментов была опубликована в 1832 г. в журнале «Philosophical Transactions», а затем в крупнейших физических журналах мира.

Судьбе было угодно, чтобы профессор физики Олбанской академии, впоследствии президент Американской академии наук – Джозеф Генри (1787-1878), ничего не знавший об открытии Фарадея, в ноябре 1831 г. (т.е. почти одновременно с Фарадеем) в письме к своему коллеге писал о своих экспериментах, «…касающихся тождественности электричества и магнетизма», т.е. возможности индуцировать электричество с помощью магнетизма. По неизвестным причинам Генри на девять месяцев прекратил свои опыты и только в июне 1832 г. писал, что «…добился успеха в очень интересном эксперименте по получению электрических искр из магнита», и вскоре, в июле 1832 г., его статья об этом открытии была опубликована. И уже после публикации своей статьи осенью 1832 г. Генри узнал о работах Фарадея, и, как писал один из его биографов, «ничто в жизни Генри не вызывало столь тягостных переживаний, как этот перерыв в его экспериментах». До этого Генри много лет занимался созданием мощных электромагнитов, и свой выдающийся эксперимент производил сразу с электромагнитом и катушкой, подключенной к гальванометру.

Схема опыта Генри для наблюдения электромагнитной индукции (рис. 5.10) удивительно напоминает опыты Фарадея. Генри был достаточно опытным экспериментатором, чтобы не повторить ошибки некоторых физиков: его помощник, будучи в другой комнате, включал и отключал батарею, а Генри наблюдал при этом отключение стрелки гальванометра. Известно, что швейцарский физик Колладон, также изучавший явления электромагнетизма, можно сказать, «стоял у порога» открытия электромагнитной индукции: он включал батарею и спешил в другую комнату, где стоял гальванометр, но к этому времени устанавливался стационарный процесс, и стрелка гальванометра оставалась неподвижной. Всю свою долгую жизнь (Колладон дожил до 96 лет) он упрекал себя за свою досадную ошибку.

После изучения статьи Фарадея Генри подчеркнул, что шел к открытию собственным, отличным от Фарадея путем и даже «краткими намеками указывал, что первооткрывателем был все-таки он». Возможно, если бы Генри не прервал своих опытов, он разделил бы славу открытия наравне с Фарадеем, но его заслуги перед наукой неоспоримы (к сожалению, подлинное признание его заслуг пришло много позже). Справедливости ради нужно отметить, что Генри, в отличие от Фарадея, не имел одной из лучших в Европе научных лабораторий, не мог печататься в ведущих журналах Европы, и его «талант мужал в одиночку», что, конечно, «тормозило его творческие порывы».

Рис. 5.10. Схема опыта Генри

Тем более высокой оценки заслуживают его последующие открытия: в апреле 1832 г. он первым в мире обнаружил явление самоиндукции (Фарадей исследовал это явление спустя два года) и затем взаимной индукции. Д. Генри доказал, что индукция обладает «поразительным свойством»: она «…проявляется через кирпичную стену, разделяющую смежные комнаты» – для того времени это было сенсацией. Нельзя не отметить открытие Генри в 1840-1842 гг. колебательного характера искрового разряда конденсатора – прообраза первого осциллятора, этим он сделал немеркнущий вклад в зарождение электросвязи и радиотехники.

Научные заслуги Генри получили высочайшую оценку: в 1893 г. на Электротехническом конгрессе в Чикаго единица индуктивности была названа «генри». Как писал известный американский писатель М. Уилсон, «…наука воздала ему должное и возвела на самый почетный пьедестал, написав его имя с маленькой буквы. Генри стал генри наряду с ампером, вольтом, фарадой».


Создание промышленного типа самовозбуждающегося генератора постоянного тока

Как уже отмечалось, гальванические элементы оказались весьма неэкономичными источниками тока. Поэтому после создания М. Фарадеем прообраза электромашинного генератора ученые и инженеры в разных странах пытались решить эту проблему – этого требовало бурное развитие производства.

Рис. 5.11. Магнитоэлектрический генератор Якоби

Первые генераторы постоянного тока получили название «магнитоэлектрических», в них возбуждение магнитного поля осуществлялось постоянными магнитами. В течение около 30 лет (1831-1851) было создано несколько таких генераторов.

Первым магнитоэлектрическим генератором, получившим практическое применение, был генератор Б.С. Якоби, созданный им в 1842 г. для воспламенения минных запалов в подводных минах (рис. 5.11). При вращении катушек 2 зубчатой передачей в поле неподвижных постоянных магнитов 1 в них наводилась электродвижущая сила. На валу имелось коммутирующее устройство 3 в виде двух полуцилиндров – простейший двухпластинчатый коллектор. Этот генератор был принят на вооружение в русской армии.

Для повышения мощности генераторов изобретатели пытались увеличить количество постоянных магнитов. Так, например, в машине фирмы «Альянс» (1857) было 40 постоянных подковообразных магнитов, расположенных радиально по отношению к валу, и 64 стержня – явнополюсных якоря. На валу генератора укреплялся коллектор с 16 металлическими пластинами, изолированными друг от друга и от вала. В качестве коллекторных щеток служили специальные ролики (рис. 5.12). Масса шестидисковой машины доходила до 4 т, а для вращения вала использовалась паровая машина мощностью 610 л.с. Машина фирмы «Альянс» использовалась для освещения дуговыми лампами, например на маяках. В течение почти 10 лет (1857-1865) было построено около 100 таких машин.


    Ваша оценка произведения:

Популярные книги за неделю