Текст книги "Циолковский. Его жизнь, изобретения и научные труды"
Автор книги: Яков Перельман
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 5 (всего у книги 6 страниц)
Межпланетные путешествия
Циолковский не только заложил основы ракетной механики не только разработал вопрос о горючем для ракетных аппаратов, но обсуждал и многие стороны самого межпланетного путешествия, т. е. занимался проблемами звездной навигации. Он вычислил скорость, какую должен иметь ракетный корабль для того, чтобы, покинув Землю, сделаться спутником земного шара; для того чтобы достигнуть Луны, той или иной планеты, определил пути следования и т. п. После чтения его работ, убедительно подкрепленных строгими расчетами, у читателя не остается сомнений, что заманчивая мечта о достижении иных миров, о путешествии на Луну, на астероиды, на Марс могут со временем превратиться в реальную действительность.
Высадка на Луну, на малую планету или на один из мелких спутников больших планет, – если только поверхность их в таком состоянии, что делает спуск возможным, – будет лишь вопросом достаточного количества горючих веществ. Надлежаще направленными взрывами можно уменьшить огромную скорость снаряда настолько, чтобы падение его совершилось плавно и безопасно. Но надо иметь еще в запасе достаточно горючего, чтобы вновь покинуть это временное пристанище, преодолеть силу притяжения планетки и пуститься в обратный путь с необходимым запасом для спуска на Землю.
В особых непроницаемых костюмах, вроде водолазных, будущие моряки вселенной, достигнув планеты, смогут рискнуть выйти из небесного корабля. С запасом кислорода в металлическом ранце за плечами будут они бродить по почве неведомого мира, делать научные наблюдения, исследовать его природу, мертвую и – если такая имеется – живую, собирать коллекции… А более далекие экскурсии смогут совершать в наглухо закрытых автомобилях, привезенных с собой. «Стать на почву астероидов, поднять рукой камень с Луны, наблюдать Марс с расстояния нескольких десятков километров, высадиться на его спутник или даже на самую его поверхность, – что, по-видимому, может быть фантастичнее? Однако, только с момента применения ракетных приборов начнется новая великая эра в астрономии: эпоха более пристального изучения неба» (Циолковский).
Как это осуществится
Мысли эти, изложенные Циолковским в его первых трудах по звездоплаванию («Исследование мировых пространств реактивными приборами», научно-фантастический роман «Вне земли» и др.), впоследствии были им уточнены и привели к стройному плану развития заатмосферного летания. Изложим здесь его существенные черты.
Отлет межпланетной ракеты с Земли состоится где-нибудь в высокой горной местности. Должна быть подготовлена прямая ровная дорога для разбега, идущая наклонно вверх под углом 10–20 градусов. Ракета помещается на самодвижущемся экипаже, – например, на автомобиле, мчащемся с наибольшею возможною для него скоростью. Получив таким образом начальный разбег, ракета начинает свой самостоятельный восходящий полет под действием взрывающихся в ней горючих веществ. По мере возрастания скорости, крутизна взлета постепенно уменьшается, путь ракеты становится все более пологим. Вынырнув за атмосферу, аппарат принимает горизонтальное направление и начинает кружиться около земного шара в расстоянии 1–2 тысяч километров от его поверхности, наподобие спутника.
По законам небесной механики, это возможно при секундной скорости 8 километров. Скорость эта достигается постепенно: взрывание регулируют так, чтобы секундное ускорение не слишком превышало привычное нам ускорение земной тяжести (10 метров). Благодаря этим предосторожностям, искусственная тяжесть, возникающая в ракете при взрывании, не представляет опасности для пассажиров.
Так достигается первый и самый трудный этап межпланетного путешествия – превращение ракеты в спутника Земли. Чтобы заставить теперь ракету удалиться от Земли на расстояние Луны или еще далее – в другие зоны нашей солнечной системы, – потребуется лишь, добавочным взрыванием, увеличить в 1½–2 раза скорость той же ракеты.
Мы сказали раньше, что начальный разбег сообщается ракете автомобилем, Но для этой цели пригодны вообще любые транспортные средства: паровоз, пароход, аэроплан, дирижабль. Взамен колесного экипажа, Циолковский предлагает воспользоваться для разбега другой ракетой. Эту вспомогательную ракету он называет «земной», – в отличие от «космической», предназначенной для межпланетного рейса. Ракета космическая должна быть временно помещена внутрь ракеты земной, которая, не отрываясь от почвы, сообщит ей надлежащую скорость и в нужный момент освободит для самостоятельного полета в мировое пространство.
Земная ракета под действием взрывания будет скользить без колес по особым, сильно смазанным рельсам. Потеря энергии на трение (ослабленное смазкой) сильно уменьшается при весьма больших скоростях. Что же касается сопротивления воздуха, то его можно довести до минимальной величины, придав ракете весьма удлиненную, удобообтекаемую воздухом форму. Если бы возможно было построить ракету во сто раз длиннее ее толщины, сопротивление воздуха было бы настолько ничтожно, что им можно было бы и вовсе пренебречь. Длину земной ракеты нельзя, однако, практически делать свыше 100 метров, а так как толщина ее должна быть не меньше нескольких метров, то ракета окажется всего в 20–30 раз длиннее своего поперечника. Впрочем, и при таких условиях общее сопротивление движению земной ракеты будет составлять всего несколько процентов энергии ее движения.
Итак, открытая спереди земная ракета, с вложенной в нее космической, стремительно движется по подготовленной для нее дороге. Наступает момент, когда надо освободить космическую ракету и пустить ее в мировое пространство. Каким образом это сделать? Циолковский указывает весьма простое средство: надо затормозить земную ракету – космическая вырвется тогда из нее по инерции и, при одновременном пуске взрывного механизма, начнет самостоятельно двигаться с возрастающей скоростью. Торможение же земной ракеты достигается просто тем, что конечный участок дороги оставляют несмазанным: увеличенное трение замедлит и, наконец, совсем прекратит движение вспомогательной ракеты без добавочного расхода энергии. Еще лучший способ торможения состоит в том, что из земной ракеты выдвигаются перпендикулярные к ней тормозящие планы: сопротивление им воздуха при большой скорости громадно, и ракета скоро остановится.
В качестве горючего вещества можно будет, по всей вероятности, обойтись бензином или нефтью, как веществами недорогими и дающими газообразные продукты горения, которые вытекают из трубы с довольно значительною скоростью. Конечно, гораздо выгоднее взрывать чистый жидкий водород, но это вещество довольно дорогое. Необходимый для горения и дыхания кислород берется в сжиженном виде. Предпочтение, оказываемое жидкостям перед сильно сжатыми газами, вполне понятно. Сжатые газы необходимо было бы хранить в герметических толстостенных резервуарах, масса которых в несколько раз превышает массу их содержимого; запасать кислород в таком виде – значило бы обременять ракету мертвым грузом. Сжиженный же газ оказывает на стенки сосуда сравнительно ничтожное давление (если хранить его, как обычно и делают, в открытом резервуаре). Низкая температура жидкого кислорода – около минус 180° Ц – может быть использована для непрерывного охлаждения накаленных частей взрывной трубы.
Одна из самых ответственных частей ракеты – взрывная труба.
В космической ракете Циолковского она должна иметь около 10 метров в длину и 8 сантиметров в узкой ее части, вес ее около 30 килограммов. Взрывающиеся жидкости накачиваются в ее узкую часть мотором аэропланного типа, мощностью до 10000 л. с. Температура в начале трубы доходит до 3000° Ц, но постепенно падает, по мере приближения к открытому концу. Наклонная часть трубы, как мы уже говорили, охлаждается жидким кислородом.
Может показаться странным, что космическая ракета, предназначенная для движения в пустоте мирового пространства, будет снабжена рулями: горизонтальным рулем высоты, отвесным рулем направления и рулем боковой устойчивости. Но не следует упускать из виду, во-первых, того, что ракете при пуске на Землю придется планировать в атмосфере без взрывания, подобно аэроплану. Во-вторых, рули понадобятся и вне атмосферы, в пустоте, для управления ракетой; быстрый поток вытекающих из трубы газов, встречая руль, уклоняется в сторону, вызывая тем самым поворот ракеты. Поэтому рули помещаются непосредственно у выходного отверстия взрывной трубы.
Следующий этап межпланетного путешествия, – спуск на планету – представляет гораздо больше затруднений, чем может казаться с первого взгляда. Ракета мчится с огромною, космическою, скоростью: пристать прямо к планете – значит, подвергнуть ракету сокрушительному удару и неизбежной гибели. Как избегнуть удара, как уменьшить скорость настолько, чтобы возможен был безопасный спуск на планету? Не забудем, что то же затруднение возникает и при возвращении на нашу родную планету. Необходимо изыскать средства его преодолеть.
Здесь есть два пути. Первый – тот, к которому прибегает машинист, желающий быстро остановить мчащийся паровоз: он дает «контр-пар», т. е. сообщает машине обратный ход. Ракета тоже может дать «контр-пар», повернувшись отверстием трубы к планете и пустив в действие взрывание. Новая скорость, имеющая направление, обратное существующей, будет отниматься от последней и постепенно сведет ее к нулю (конечно, лишь по отношению к планете). Это приводит, однако, к необходимости затрачивать – а следовательно и брать с собой – огромные количества горючего. Значительно легче посещение крупных планет, так как эти планеты окружены атмосферой, которою можно воспользоваться в качестве своего рода воздушного тормоза. По проекту Циолковского, ракета может описывать постепенно суживающуюся спираль вокруг планеты, прорезывая всякий раз часть ее атмосферы и теряя поэтому с каждым новым оборотом некоторую долю своей скорости. Достаточно уменьшив стремительность движения, ракета совершит планирующий спуск на поверхность планеты, избрав для большей безопасности местом спуска не сушу, а море. Замечательно, что ту же идею об использовании тормозящего действия атмосферы высказал и подробно разработал независимо от Циолковского (хотя и позже его) немецкий исследователь межпланетных полетов инж. Гоманн.
Такова в главнейших своих очертаниях картина завоевания мирового пространства, рисующаяся нашему исследователю вдали будущего. Практика, без сомнения, внесет в нее более или менее значительные перемены. Не следует поэтому придавать абсолютного значения набросанному здесь очерку. Это лишь предварительный, ориентирующий план. «Никогда не претендовал я, – пишет Циолковский, – на полное решение вопроса. Более чем кто-нибудь понимаю я бездну, разделяющую идею от ее осуществления, так как в течение моей жизни я не только мыслил и вычислял, но и исполнял, работая руками».
Первые шаги
Нам остается сказать о том, каково современное состояние проблемы звездоплавания у нас и за рубежом. В течение почти двух десятков лет Циолковский был единственным человеком, который плодотворно разрабатывал вопросы ракетного летания. Затем у него явились единомышленники, независимо от него работающие в том же направлении и пришедшие к одинаковым с ним выводам. Это прежде всего проф. физики Годдард в Америке и проф. Оберт в Германии. Проф. Годдарду удалось даже соорудить и пустить небольшую пробную ракету с жидким горючим (по-видимому, на водороде с кислородом; подробности держатся в секрете), а последователям проф. Оберта – построить небольшую (2 метра длины) ракету на бензине с жидким кислородам. Последняя была пущена уже около ста раз и благополучно спускалась на парашюте.[25]25
Подробности – в моей книге «Межпланетные путешествия» изд. 7-е 1932 г. «Технико-теоретическое издательство».
[Закрыть] Таким образом сооружение ракеты с жидким зарядом, предсказанное Циолковским, уже осуществилось. Будем надеяться, что не долго придется ждать осуществления и других его предвидений в области звездоплавания.
Что касается работ в том же направлении у нас, в СССР, то они ведутся (с 1931 г.) особым отделом Осоавиахима, носящим название «ГИРД» («Группа изучения реактивного движения»). Центр ГИРД – в Москве, отделения – в той же Москве, в Ленинграде, в Тифлисе, Харькове, Архангельске, Новочеркасске, Брянске. В задачу этих групп работников, насчитывающих в совокупности уже до тысячи членов, входит подготовка кадров людей, знакомых с основами ракетного дела, пропаганда идеи ракетного летания, проектирование, сооружение и испытание реактивных аппаратов (Сходное объединение имеется и в Германии: «Verein für Raumschiffahrt»).
На очереди – вопрос об учреждении у нас Государственного института реактивного движения.
Труды Циолковского не пропали даром. Благодаря им мы присутствием теперь при зарождении нового вида транспорта, орудием которого будет ракетный корабль, а полем применения – бескрайный простор вселенной.
Справка
Ракете и звездоплаванию посвящены следующие печатные труды Циолковского:
1903 г. (и 1924 г.)
«Ракета в космическое пространство».
1911–1912 гг.
«Исследование мировых пространств реактивными приборами». (Вторая часть предыдущей работы). В журнале «Вестник воздухоплавания».
1914 г.
Под тем же заглавием дополнение к двум предыдущим работам.
1917 г., 1920 г.
«Вне земли». Научно-фантастическая повесть.
1926 г.
«Исследование мировых пространств реактивными приборами» (переиздание работ 1903 и 1911 гг. с изменениями и дополнениями).
1927 г.
«Космическая ракета. Опытная подготовка».
1928 г.
«Космические реактивные поезда».
1929 г.
«Цели звездоплавания».
1930 г.
«Звездоплавателям».
Содержание большей части перечисленных трудов подробно реферировано в книге проф. Н. А. Рынина, «К. Э. Циолковский» (Ленинград, 1931 г.).,
Аэропланы высот
К перечисленным работам примыкают две брошюры Циолковского:
1930 г. «Реактивный аэроплан».
1932 г. «Стратоплан полуреактивный».
Первая работа, представляющая собою краткое извлечение из обширной рукописи, описывает придуманный Циолковским особый летательный аппарат, переход от самолета к ракете. «Этот аэроплан, – пишет Циолковский, – отличается от обыкновенного тем, что совсем не имеет гребного или воздушного винта. Его действие заменяется отдачей (реакцией) продуктов горения в обыкновенных авиационных моторах. Последние требуют при этом некоторого преобразования и дополнения. Так, они сжигают много горючего, причем дают сравнительно небольшую работу (раз в 10 меньшую, чем следует по количеству топлива). Они делают большое число оборотов; продукты горения направляются через конические трубы назад, в кормовую часть аэроплана. Главная цель двигателя – реактивное действие отброса продуктов горения, пропеллер же устранен. Получается скорость движения, невозможная для самолета с винтовым пропеллером. За эрой аэропланов винтовых должна следовать эра аэропланов реактивных – аэропланов стратосферы».
Что же касается полуреактивного стратоплана, описываемого во второй брошюре, то этот самолет движется и силою воздушного винта, и отдачей продуктов горения; он может летать в самых разреженных слоях воздуха.
Следует отметить еще статью Циолковского в «Искрах науки» 1930 г. «От самолета к звездолету», где дается беглый обзор задач и возможных достижений летания в атмосфере и за ее пределами. В этой статье говорится о стратоплане следующее:
«Попробуем преобразовать обыкновенный аэроплан в стратоплан, т. е. аэроплан больших высот. Винтовой его пропеллер мы должны выбросить, как разрывающийся при большой скорости вращения.
Однако, реактивное действие газов аэроплана далеко не достаточно, чтобы дать ему полет. Расчеты показывают, что отдачу надо увеличить, по крайней мере в 10 раз, чтобы подняться на воздух. Как же это сделать при том же весе мотора?
Для примера допускаем вес стратоплана с полным оборудованием в 100 кг. Обыкновенно потребная сила двигателя будет 100 метр. сил, а вес его около 100 кг.
Чтобы получить достаточную отдачу, надо увеличить сгорание горючего в 10 раз, мощность же мотора может увеличиться, а может остаться и прежней. Конечно, мотор способен работать впустую; число оборотов от этого возрастает, а вместе с тем возрастает и количество сожженного горючего. Но, во-первых, некоторая, хотя бы и малая, работа нам необходима на высотах для сжимания разреженного воздуха, во-вторых, число оборотов и при холостом ходе все же в 10 раз не увеличится. Значит, неизбежно увеличить не только количество горючего, но и работу двигателя (именно с целью больше сжечь горючего).
Если мы употребим при самом начале полета, у уровня океана, сжатый в несколько раз воздух, расширенные клапанные отверстия и такие же проводящие трубы, то может быть нам и удастся увеличить работу мотора в несколько раз, а количество сжигаемого горючего даже в 10 раз. Последнее нам всего важнее. Притом на моторы мы можем ассигновать не 100, а 200–300 кг. Употребление горючего в виде сжиженного водорода, который очень быстро смешивается с воздухом, может также способствовать увеличению числа оборотов мотора, а вместе с тем и количества потребляемого горючего. Задача не так уж трудна, если над ней хорошенько подумать.
При десятикратном ускорении сгорания, выхлопотное действие газов так значительно, что стратоплан сначала катится, а потом подымается на воздух и мчится со скоростью, доходящей до 50–100 метров в секунду.
Но где же космические скорости, где вообще увеличение скорости?
Это увеличение обнаружится в высших слоях атмосферы, по мере разрежения воздуха и особенно в то время, когда ракета преодолеет земное притяжение и будет мчаться в безвоздушном пространстве.
Заметим, что, если количество сжигаемого горючего, благодаря компрессору, на всех высотах постоянно, то и реактивное действие, или тяга, также останется постоянным. Таким образом, работа, используемая аэропланом, будет пропорциональна скорости его поступательного движения, т. е. во сколько раз увеличится работа, во столько же раз возрастет скорость, и наоборот.
Как показывают мои расчеты, при постоянной тяге на высоте, где воздух вчетверо реже (12 км). скорость аэроплана будет вдвое больше; где в 9 раз атмосфера реже, там скорость в 3 раза больше, и т. д.
На высоте, где воздух реже в 100 раз, часовая скорость достигает 3600 км в час (1 км в секунду). Таким образом от наших широт (допустим 45°) до экватора можно будет пролететь в течение 1,4 часа, от полюса к экватору – в 2,8 часа, от полюса к полюсу – в 5,6 часа. Кругом Земли – в 11,1 часа».

V. Другие работы Циолковского
Мы рассмотрели главные научные труды и изобретения Циолковского, – те, которые относятся к воздушному и заатмосферному транспорту. Но деятельность его выходит за сейчас очерченные рамки, он занимался также различными вопросами астрономии, физики, биологии, взял патент на усовершенствованную пишущую машину собственной системы, придумал международный алфавит и др. Рассматривать все это в нашей книжке невозможно. Ограничимся лишь перечнем тех из его научных работ, которые были напечатаны:
По астрономии и физике
1891 г.
«Как предохранить нежные вещи от толчков».*[26]26
Звездочкой обозначены газетные и журнальные статьи.
[Закрыть]
1893 г.
«На луне» (научно-фантастическая повесть). Переиздана в 1927 году.
«Тяготение как источник мировой энергии».
1895 г.
«Грезы о земле и небе и эффекты всемирного тяготения».
1896 г.
«Может ли Земля заявить жителям иных планет о существовании на ней разумных существ».*
1897 г.
«Продолжительность лучеиспускания звезд».
1915 г.
«Образование Земли и солнечной системы».
1919 г.
«Кинетическая теория света».
1920 г.
«Богатства вселенной».
1925 г.
«Причины космоса».
«Образование солнечных систем».
1928 г.
«Прошедшее Земли».
«Будущее Земли и человечества».
1929 г.
«Современное состояние Земли».
По биологии
1911 г.
«Устройство летательного аппарата птиц и насекомых».
1922 г.
«Зарождение жизни на Земле».
1924 г.
«Тяжесть и жизнь»*.
«Биология карликов и великанов».*
1929 г.
«Растения будущего».
Несколько слов вообще о печатных работах Циолковского. Из огромного числа их только три изданы в Москве не за его счет, – а именно:
«На луне». Изд. т-ва И. Д. Сытина. Стр. 48 (Впоследствии, в 1929 г. переиздано в Ленинграде «Молодой гвардией», с предисловием Я. И. Перельмана).
«Грезы о земле и небе». Изд. А. Н. Гончарова, стр. 143. Цена 1 руб.
«История моего дирижабля». Изд. Всероссийской ассоциации натуралистов. Стр. 16.
Остальные работы выпускались Циолковским в Калуге почти все на собственные его средства в виде книг или брошюр разного формата и толщины. Первые свои издания Циолковский пытался продавать (на них обозначена цена: 75 коп., 50 коп., 20 коп., 15 коп., 10 коп.), но позднее он стал распространять свои печатные сочинения бесплатно, посылая их по запросам всех желающих. Он не получал не только авторского гонорара за них, но даже не возмещал своих издательских расходов, произведенных на его скудные средства. Чтобы изыскивать деньги на печатание сочинений, Циолковский до крайности ограничивал свой бюджет.
Ввиду бедности оборудования типографий провинциального города, калужские издания сочинений Циолковского имеют более чем скромную внешность и крайне примитивно оформлены. Хуже всего то, что из-за отсутствия математических символов и знаков в местных типографиях, математические сочинения его очень трудно читать: Циолковскому пришлось придумать особый математический язык из букв русского алфавита взамен общеупотребительных латинских литер[27]27
Например плотность газа обозначается у него «Плг», плотность воздуха «Плв», ускорение земной тяжести «Уз», площади большего и меньшего сечения «Пщб» и «Пщм» и т. п. Вот образчик его формулы:
В общепринятых обозначениях она имела бы такой вид:
[Закрыть].

Заключительными строками нашего очерка жизни и деятельности Циолковского пусть послужит следующее место из его сочинений:
«Основной мотив моей жизни – сделать что-нибудь полезное для людей, не прожить даром жизни, продвинуть человечество хоть немного вперед. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы. Но я надеюсь, что мои работы – может быть, скоро, а может быть, и в отдаленном будущем, – дадут обществу горы хлеба и бездну могущества».









