355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Яков Зельдович » "Возможно ли образование Вселенной «из ничего»?" » Текст книги (страница 1)
"Возможно ли образование Вселенной «из ничего»?"
  • Текст добавлен: 8 октября 2016, 09:27

Текст книги ""Возможно ли образование Вселенной «из ничего»?""


Автор книги: Яков Зельдович


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 1 (всего у книги 2 страниц)

Я.Б. Зельдович

ВОЗМОЖНО ЛИ ОБРАЗОВАНИЕ ВСЕЛЕННОЙ «ИЗ НИЧЕГО»?



8.III 1914 – 2.ХII 1987

ВСЕЛЕННАЯ

Размеры окружающей нас Вселенной и, даже более скромно и более точно, размеры исследованной нами части Вселенной, далеко превышают человеческое воображение.

Древним людям трудно было представить себе, что Земля – это шар. Сегодня, когда самолеты без посадки пролетают многие тысячи километров, в век космических полетов, радио и телевидения (и в век межконтинентальных ракет с ядерным зарядом, к сожалению) Земля представляется маленьким хрупким шариком. Не удивляет нас и расстояние до Солнца – 150 млн км, так называемая астрономическая единица. Однако расстояние от Солнечной системы до центра Галактики (около 10 кпк = 3•1022 см) в два миллиарда раз больше расстояния от Земли до Солнца. В свою очередь, расстояние, на котором еще удается наблюдать яркие галактики, порядка нескольких тысяч мегапарсек – еще почти в миллион раз больше расстояния от Солнца до центра нашей Галактики. Если это наибольшее расстояние уменьшить в 1015 раз, т. е. примерно до 1 а. е., то Солнечная система уменьшится до масштаба пылинки размером меньше миллиметра...

Так же, как и линейный масштаб, т. е. размер Вселенной, невообразимо велико и количество вещества, с которым мы имеем дело. Масса Земли около 6•1027 г. Масса Солнца около 2•1033 г, т. е. в 300 тыс. раз больше. Галактика имеет массу порядка  2•1011 масс Солнца. В наблюдаемой нами области Вселенной суммарная масса очень грубо, по порядку величины, оценивается как 1055 г, т. е. порядка 1022 масс Солнца.

Человек, живо и наглядно ощущающий всю огромность пространства и массы, открывающихся современным телескопам, не может остаться равнодушным. Соответствующие величины потрясают воображение настолько, что ощущаешь головокружение. Первым, естественным следствием этого потрясения является отвращение к теории расширяющейся Вселенной. Неужели все великолепие и громадность Вселенной когда-то умещалось в шаре размером в несколько сантиметров? И еще более диким кажется вопрос: неужели все сущее, все наблюдаемое могло образоваться буквально "из ничего"?

В предлагаемой статье я сознательно ограничусь узкой постановкой вопроса. Обсудим только, не противоречит ли это предположение – образование Вселенной "из ничего"– каким-либо твердо установленным общим законам природы. Иногда ведь самый общий "закон сохранения" так и формулируют: «из ничего не может получиться ничего». Такую формулировку я с порога отвергаю – она наивна и ненаучна. Есть закон сохранения энергии. Есть, например, еще закон сохранения электрического заряда. Мы проверим выполнение этих четко физически сформулированных законов, а также обсудим существование и выполнение других подобных, более или менее твердо установленных физических законов.

Чтобы не превращать эту статью в полный курс космологии, мы не будем исследовать подробно строение Вселенной, закон ее расширения и полный сценарий ее эволюции.

Можно привести такую житейскую аналогию: представьте себе, что к Вам пришел изобретатель с каким-то чудесным двигателем или генератором электрического тока. Разумный шаг эксперта состоит в том, что выясняется вопрос, не принесли ли Вам проект "вечного двигателя" (реrpetuum mobile). Давно уже действует обычай с порога отвергать без детального рассмотрения такие проекты. "Perpetuum mobile" нарушает закон сохранения энергии, значит, где-то в проекте содержится ошибка. Выяснение конкретной ошибки уже не интересно никому, кроме самого изобретателя.

Подойдем с такой же меркой к вопросу о возникновении Вселенной "из ничего". Противоречит ли это предположение законам физики? Возможно ли это, можно ли будет (если не сейчас, то в будущем) создать непротиворечивую, правильную теорию этого, поистине самого грандиозного явления?


СОХРАНЕНИЕ ЗАРЯДОВ

Начнем с закона сохранения электрического заряда. Ответ лежит на поверхности, он очевиден: нет никакого запрета на рождение электронейтральной Вселенной, т. е. Вселенной, содержащей равное число положительных и отрицательных зарядов. Есть все основания думать, что именно такова наша Вселенная. В противном случае возникли бы сильные электрические поля, которые нарушили бы ее (Вселенной) однородность и изотропию. Итак, Вселенная, скорее всего, строго нейтральна, а значит, вполне могла родиться «из ничего» (без противоречия закону сохранения электрического заряда).

Обратимся к закону сохранения барионного заряда. Напомним, что во всех известных процессах, происходящих в лаборатории, суммарное число протонов и нейтронов не меняется. В частности, радиоактивность ядер проявляется либо как перегруппировка протонов и нейтронов, либо как превращение протонов в нейтроны и обратно.

Так, при испускании g-лучей (т. е. фотонов) перегруппировка происходит при переходе данного ядра из энергетически возбужденного состояния в основное или в состояние с меньшей энергией возбуждения. При a-распаде ядра часть протонов и нейтронов материнского ядра остаются в дочернем ядре, а другие вылетают в виде ядра гелия (два протона и два нейтрона). В b-распаде быстрый электрон (b-частица) и нейтрино рождаются при превращении нейтрона в протон. Есть и обратный процесс испускания позитрона (p = N+e+ + ne) при превращении протона в нейтрон, но такой процесс идет лишь в том случае, если протон находится в ядре и после превращения нейтрон занимает более низкое энергетическое состояние.

Свободный протон легче свободного нейтрона, поэтому свободный нейтрон b-радиоактивен; свободный протон стабилен, нестабильным он бывает только внутри некоторых ядер.

Итак, к концу 40-х годов закон сохранения барионов формулировался просто: сумма числа протонов и нейтронов не меняется. Затем последовало открытие так называемых странных частиц. Сперва они были открыты в космических лучах, а позже очень подробно исследованы в лаборатории на ускорителях. Они нестабильны, образуются из протонов или нейтронов и при распаде снова дают протоны или нейтроны.

Так, например: p + N = D + K+ + N  (D – странный гиперон, К – странный мезон). Странными эти частицы были названы потому, что при сравнительно большой вероятности образования за очень короткое время столкновения они имеют довольно большое время жизни, 10-8-10-10 с.

В начале 50-х годов были открыты так называемые барионные резонансы. Рассеяние л-мезонов на протонах и нейтронах зависит от энергии в соответствии с тем, что эти две частицы сперва сливаются в одну, которая потом снова распадается. Так, например:

 

После этих открытий закон сохранения барионов усложнился: сохраняется сумма

B = p + N + D + S + ... + D++ + D+ + D0 + D–  + ...  = const

или, иными словами, сохраняется общее количество барионов (Здесь D, S, ... – странные барионы; многоточие заменяет перечисление всех странных барионов – от D++  до D-, самых легких барионных резонансов, а повторное многоточие заменяет перечисление всех резонансов.).

В 1955 г. были, наконец, экспериментально открыты антипротоны. Теоретически существование античастиц – антибарионов – было предсказано вскоре после предсказания и обнаружения антиэлектронов, т. е. позитронов. Однако энергия, нужная для рождения пары протон-антипротон в 2000 раз больше, чем для пары электрон-позитрон, поэтому между двумя открытиями возник интервал в четверть века. В это время у некоторых ученых нервы не выдерживали и высказывались сомнения относительно существования антибарионов; теперь для этих сомнений нет места!

Итак, в окончательной форме закона сохранения барионного заряда:  сохраняется разность числа барионов и антибарионов.

За последние 20 лет показано, что барионы состоят из 3 кварков. Антибарионы состоят из антикварков. Соответственно, барионный заряд и закон его сохранения на языке кварков формулируется так:

3В = Sqi – Sq'k= const,
где Sqi – число кварков i-ro сорта; Sq'k – число антикварков k-ro сорта; сумма берется по всем сортам.

Закон сохранения барионного заряда необычайно важен как для Вселенной в целом, так и для непосредственно окружающего нас современного мира. С учетом этого закона данное количество барионов можно использовать для производства энергии, только переводя их в наинизшее энергетическое состояние, а именно в ядра железа *. Отсюда следует, что энергию можно получить, либо превращая уран в ядра середины таблицы Менделеева, либо превращая водород в железо.

* Имеется в виду, что в ядрах железа энергия связи нуклонов максимальна. (Прим. ред.)

Первый процесс успешно осуществляется на атомных электростанциях. Второй происходит в звездах. В несколько измененной форме (начиная не с начала и не доходя до конца) второй процесс реализуется при слиянии ядер дейтерия и трития с образованием 4Не и нейтрона и в будущем станет источником термоядерной энергии на Земле. Но общим для обоих процессов является использование малой доли – менее 1 % – полного запаса энергии горючего.

Полный запас энергии, следуя закону эквивалентности Эйнштейна Е = Мс2, равен 9•1013 Дж на 1 г вещества.

Отмена закона сохранения барионного заряда означала бы принципиальную возможность прямого распада протона р = е- + энергия или р = е+ + энергия.

Итак, протон – свободный или связанный в ядре – мог бы быть нестабильным и распадаться с выделением огромной энергии, если бы не было закона сохранения барионного заряда. Огромное современное значение этого закона сохранения очевидно.

То же относится и к рождению Вселенной “из ничего”.

Барионный заряд “ничего”, очевидно, равен нулю. Если барионный заряд сохраняется, то вся Вселенная, родившаяся “из ничего”, должна иметь нулевой барионный заряд, т. е. равное количество вещества и антивещества. Так и думали те, кто первыми в начале 60-х годов высказывали идею рождения Вселенной. Они полагали, что рождается Вселенная с равным количеством барионов и антибарионов, т. е. с равным количеством вещества и антивещества. Но если вещество и антивещество в равном количестве равномерно размещены в пространстве (т. е. их плотность одинакова в каждой точке), то при охлаждении они полностью аннигилируют. К тому же нет механизма, который мог бы их разделить; тяготение стягивает вещество и антивещество одинаково.

Рождение Вселенной такой, какой мы ее наблюдаем, возможно лишь в том случае, если закон сохранения барионного заряда может быть нарушен *.  Не повторяя увлекательную, но сложную трактовку вопроса, резюмируем посвященные ему статьи.

* О возможном нарушении этого закона и экспериментальном поиске нарушения подробнее см: Зельдович Я. Б., Долгов А.Д. Вещество и антивещество во Вселенной // Природа. 1982. № 8. С. 33-45; Березинский В. С. Объединенные калибровочные теории и нестабильный протон // Природа. 1984. № 11. С. 24-38.

Электрический заряд обязан сохраняться постольку, поскольку справедливы уравнения Максвелла, не допускающие несохранения этого заряда. Иными словами, связь электрического заряда с электромагнитным полем автоматически приводит к сохранению электрического заряда.

Однако не существует поля, которое играло бы подобную роль в случае барионного заряда. Убежденность в сохранении барионного заряда основывалась только на эксперименте.

Каждый эксперимент по необходимости имеет ограниченную точность. Абсолютизируя результаты опыта, физики до 60-х годов молчаливо предполагали, что в мире элементарных частиц не должно быть слишком больших количественных различий.

Когда нейтрон распадается, превращаясь в протон (b-распад), среднее время распада около 1000 с. Казалось, что природа (с маленькой буквы, т. е. не тот уважаемый журнал, где будет помещена данная статья) должна выбирать между двумя крайностями: либо сравнительно быстрый распад, по аналогии с  (b-распадом нейтрона, либо совсем никакого распада, как в случае абсолютно стабильного электрона. Третий – промежуточный – случай медленного распада до 60-х годов казался неэстетичным и крайне маловероятным.

Вкусы изменились, увеличилась храбрость теоретиков, выступающих в настоящее время под лозунгом: все, что не запрещено, существует, и в частности протон может распадаться.

Однако положение и сейчас остается драматическим: усилиями экспериментаторов нижняя граница времени жизни протона доведена до 1032 лет, но распад все еще не обнаружен. Экспериментальная ситуация подробно описана В. С. Березинским *.

* См. предыдущую сноску.

В его статье не хватает только одного соображения: сегодня убежденность в несохранении барионного заряда основывается в значительной степени на том, что Вселенная содержит вещество и не содержит антивещества. При этом приходится привлекать еще различие свойств частиц и античастиц, а также нарушение термодинамического равновесия, возникающее вследствие расширения Вселенной. (Впервые это отмечено в работе А. Д. Сахарова в 1967 г. *).

* Сахаров А. Д. Нарушение СР-инвариантности, С-асимметрия и барионная асимметрия Вселенной // Письма в ЖЭТФ. 1967. Т. 5. С. 32-35. (Прим. ред.)

Из оценок в таких теориях с несохранением барионного заряда получается, что число протонов и нейтронов в миллиард раз меньше числа фотонов или нейтрино. Главное же состоит в том, что сейчас ясно понято различие между электрическим и барионным зарядами. Кроме того, физическая общественность в целом (или, во всяком случае, физики-теоретики) избавились от страха перед большими числами. Если время жизни протона 1040 лет (что, по-видимому, на очень многие годы останется недоступным для проверки в прямых экспериментах), то понадобится предположение о процессах в горячей Вселенной, идущих при температуре порядка 1017 ГэВ (1030 К), столь же недоступной для ускорителей *. Пока не видно, какие косвенные опыты могли бы дать ответ.

* Время жизни протона tр обратно пропорционально четвертой степени массы тяжелого бозона Мx4 в теории «Великого объединения». Поэтому если при Мx ~ 1015 ГэВ tр ~1031-37 лет, то при Мx ~ 1017 ГэВ tр ~1039-40 лет. (Прим. ред.)

Возникла ситуация, которую высоко ценят астрономы: именно астрономические данные указывают путь физикам, как это было со скоростью света и законом тяготения Ньютона. Существование Вселенной, заполненной веществом, является пока единственным, но очень веским доказательством несохранения барионного заряда!


СОХРАНЕНИЕ ЭНЕРГИИ

Обратимся к закону сохранения энергии для Вселенной как целого. Напомним, что энергия покоящейся частицы эквивалентна ее массе, Е = Мс2. Сохранение энергии покоя – это есть и сохранение массы.

Немного истории: Дж. Дальтон и У. Праут обратили внимание на то, что многие атомные веса выражаются целыми числами. Отсюда, естественно, последовала гипотеза, что все ядра сложены из одинаковых единичных кирпичиков. Однако тот факт, что заряд ядра не пропорционален его весу, привел к выводу, что есть две модификации таких кирпичиков – протоны и нейтроны, отличающиеся зарядом при почти одинаковой массе. Здесь мы несколько отклонились от исторической последовательности, опустив мрачный период, когда ядра строили из протонов и электронов. Грубо говоря, электроны (в силу соотношения неопределенности) не влезают, не помещаются в ядре. Первые правильные идеи о существовании нейтронов высказывались в-виде гипотезы еще в начале 20-х годов, научное доказательство существования нейтронов пришлось на 30-е годы, а в 1945 г. были Хиросима и Нагасаки. В очень кратком изложении мы опустили открытие изотопов и весьма точное определение атомных весов отдельных изотопов.

В итоге, с одной стороны, подтвердилась теория единообразного строения ядер из протонов и нейтронов, с другой стороны, первый аргумент в ее пользу – целые атомные веса изотопов – оказался неточным. Такова диалектика развития науки. Но теперь неточность целых весов изотопов приобрела другой, тоже глубокий смысл.

Из того факта, что вес одного атома гелия на 0,6 % меньше веса четырех атомов водорода, астрономы сделали вывод, что водород превращается в гелий в недрах звезд и при этом 0,6 % массы (0,006•с2 = 5,4•1018 эрг/г) превращается в энергию излучения звезд. Особенно стоит подчеркнуть, что вывод этот был сделан задолго до того, как развитие ядерной физики показало конкретные пути такого превращения'.

Этот экскурс в ядерную физику нужен нам был для того, чтобы сказать, что и энергия тяготения, выделяясь в том или ином виде, также приводит к уменьшению массы целого по сравнению с массой совокупности частей. Масса нейтронной звезды на 10-15 % меньше суммы масс составляющих ее частиц. Именно эта разность масс является источником энергии взрыва сверхновой, который сопровождает образование нейтронной звезды, даже несмотря на то, что очень большую долю этой энергии уносят нейтрино.

Наверное, не случайно В. Гейзенберг – один из крупнейших физиков нашего века – озаглавил свою автобиографию "Часть и Целое" (Der Teil und das Ganze). Появление новых свойств у целого при сложении частей – один из глубочайших вопросов науки,

Есть ли предел у той доли массы, которую тяготение превращает в энергию? Еще в 1962 г. я показал, что такого предела нет. Тело большой массы – больше 2-3 масс Солнца – достигает большой плотности естественно, в ходе эволюции звезды. Тело малой массы может достичь большей плотности, только преодолев чрезвычайно высокий барьер. Реально, железная гиря массой 1 кг устойчива – и все же любопытно, что, затратив предварительно огромную энергию сжатия Е, можно получить при последующем сжатии энергию Е+ +999 г•с2, т. е. превратить 999 г массы в энергию. Масса гири при этом уменьшится до 1 г при невообразимо малом ее размере порядка 10-28 см. С этим замечанием у меня связаны очень грустные воспоминания: эти соображения были последними, которыми я успел поделиться со своим учителем Л. Д. Ландау за несколько дней до постигшей его катастрофы...

Еще раньше в замечательной книге Л. Д. Ландау и Е. М. Лифшица "Теория поля" проводилось точное и строго формальное доказательство того, что масса (а значит, и энергия) замкнутого мира тождественно равна нулю. Предыдущие рассуждения позволяют понять это утверждение наглядно. Отрицательная гравитационная энергия взаимодействия частей точно компенсирует положительную энергию суммы всех частей, всего вещества. Общая теория относительности, связывающая тяготение и геометрию, доказывает, что точная компенсация происходит тогда и именно тогда, когда становится замкнутым пространство, в котором находится вещество.

Итак, общая теория относительности устраняет последнее препятствие на пути рождения Вселенной "из ничего". Энергия "ничего" равна нулю. Но и энергия замкнутой Вселенной равна нулю. Значит, закон сохранения энергии не противоречит образованию "из ничего" замкнутой Вселенной (но именно геометрически замкнутой, а не открытой бесконечной Вселенной).


АСТРОФИЗИЧЕСКИЕ ВЫВОДЫ. НУЖНА ЛИ ПУЛЬСИРУЮЩАЯ ВСЕЛЕННАЯ?

Астрофизические следствия замкнутости Вселенной подробно рассмотрены в моей предыдущей статье в «Природе» *.

* Зельдович Я. Б. Современная космология // Природа. 1983. № 9. С. 11-24. (Прим. ред.)

Первое следствие состоит в том, что общая плотность всех видов материи должна быть достаточно велика; таким образом, появляется дополнительный аргумент в пользу каких-то форм "скрытой массы", поскольку плотность обычных хорошо известных форм массы (протонов, ядер, электронов, фотонов) недостаточна.

Второй вывод заключается в том, что наблюдаемое в настоящее время расширение Вселенной должно в будущем смениться сжатием – рано или поздно, притом, вероятно, скорее очень поздно, даже по сравнению с сегодняшним возрастом Вселенной *.

* Отметим, впрочем, вариант, указанный в моей статье в «Природе» (1984. № 2): возможно, космологическая постоянная не равна нулю и имеет такой знак, что заменяет часть массы. Тогда расширение продолжается неограниченно, мир не «замкнут» по оси времени (есть рождение, нет общего коллапса), несмотря на его пространственную замкнутость.


 
Зависимость радиуса замкнутой Вселенной а от времени] " теории циклической эволюции.
В точке А (радиус минимален) происходит переход от сжатия к расширению,
в точке В (радиус максимален) расширение сменяется сжатием.

Идея замкнутого мира, сперва расширяющегося, а потом сжимающегося, наталкивала многих ученых на гипотезу пульсирующей вечной Вселенной. Дело оставалось за малым – в переносном и буквальном смысле слова: понятно, как происходит остановка и смена расширения сжатием при большом (максимальном) радиусе Вселенной, осталось понять, как происходит переход от сжатия к расширению при малом (минимальном) радиусе. Популярность идеи вечной (в прошлом!) Вселенной возросла, когда было осознано, что при учете поляризации вакуума кривизной пространства (сильным гравитационным полем) или за счет гравитационного поля, источником которого является скалярное поле с неравной нулю массой, действительно  существуют формально правильные строгие решения * типа

 

с минимальным радиусом 1/Н0 порядка 10-28 см. Эти решения формально существуют и в классической теории. Какие аргументы можно выдвинуть против этих решений?

* Решения такого типа называются инфляционными. (Прим. ред.)


 

Зависимость радиуса Вселенной а от времени t в теории циклической эволюции при учете роста энтропии. Современное состояние Вселенной описывается точкой В, t0 – необходимое «начало».

Лично мне наиболее существенным возражением представляется сама возможность рождения Вселенной «из ничего». Идея вечной Вселенной казалась неизбежной (можно было спорить только о способе, в частности классическом или квантовом, перехода от сжатия к расширению), до тех пор пока казалось, что энергия и барионный заряд – вечные, сохраняющиеся и притом не равные нулю величины. От гипноза этих идей мы освободились. Если гипотеза вечной Вселенной не обязательна, то можно обратиться к деталям, касающимся теории циклической эволюции.

Еще в 30-е годы был выдвинут серьезный термодинамический аргумент против вечной циклически повторяющейся Вселенной. В ходе каждого цикла энтропия растет *. Это приводит к тому, что амплитуда каждого следующего цикла больше амплитуды предыдущего. Обращая этот аргумент в прошлое, можно сделать вывод, что конечно общее число циклов, начиная с первого цикла с нулевой энтропией. Но в таком случае цель не достигнута – циклически эволюционирующая Вселенная все равно оказывается существующей конечное время, т. е. нуждается в "начале".

* Существует точка зрения, согласно которой при смене расширения сжатием одновременно рост энтропии сменяется ее уменьшением. При этом еще упоминают мистическое изменение направления «стрелы времени». Влияние общего медленного расширения или сжатия на конкретные процессы, происходящие с частицами или в звездах, представляется совершенно не физическим, никак не обоснованным.

В самое последнее время вместе с В. А. Белинским, Л. П. Грищуком и И. М. Халатниковым мы анализировали расширение и сжатие Вселенной, заполненной массивным когерентным скалярным полем *.

* Белинский В. А., Грищук Л. П., Халатников И. М., Зельдович Я. Б.// ЖЭТФ. 1985. Т. 89. С. 346-355. (Прим. ред.)

Аналогичные расчеты проводились и ранее, но, может быть, с менее четкими выводами. Не вдаваясь в подробности, привожу результаты. В зависимости от того, является ли скалярное поле j почти статичным (mj2>>hj'2) или быстроменяющимся и почти безмассовым (mj2<2), меняется соотношение между давлением и плотностью энергии (здесь h = 10-14 Дж•с – постоянная Планка, штрих – производная j по времени). В первом случае р = -e, имеет место гравитационное отталкивание, во втором случае, когда давление максимально велико, р = +e – гравитационное притяжение.

В принципе, и при сжатии, и при расширении могут иметь место оба случая. Однако при сжатии устойчивым является второй режим, р = +e – давление поля сопротивляется сжатию. В таком случае классическое решение приводит в сингулярность, радиус Вселенной обращается в нуль, кривая сжатия утыкается в ось абсцисс. Решения с плавным переходом от сжатия к расширению оказываются исключительными, маловероятными. Но дело даже не в детальном исследовании кривых. Более важен анализ тех предположений, которые приходится делать в ходе решения задачи.


 
Сингулярное сжатие Вселенной при положительном давлении р = +e.
Закон сжатия одинаков для замкнутого, плоского и открытого мира: a ~ (t0-t)1/3
(следует иметь в виду, что t <= t0).

Мы рассматриваем строго однородное скалярное поле и строго однородную и изотропную Вселенную. Однородность означает одинаковость, эквивалентность всех пространственных точек в один и тот же фиксированный момент времени. Изотропия означает эквивалентность всех пространственных направлений.

В задаче о расширении эти предположения разумны: в ходе расширения быстрее всего расширяется область, в которой скалярное поле максимально. При этом классическое скалярное поле становится практически постоянным, а все другие поля (в частности, нарушающее изотропию электромагнитное поле) быстро убывают.

Не останавливаясь на деталях, автор такого сценария А. Д. Линде считает расширение "естественным" и приводящим к наблюдаемой картине Вселенной *.

* Подробнее об инфляционной стадии и работах А. Д. Линде см., напр.: Новиков И. Д. Как взорвалась Вселенная // Природа, 1988. № 1. С. 82-91. (Прим. ред.)

Однако в ходе сжатия можно ожидать огромной неустойчивости, нарушения однородности и изотропии. Поэтому вариант прохождения Вселенной некоего минимального радиуса становится еще менее вероятным при учете возмущений. По существу аргумент этот близок к соображениям о возрастании энтропии. Итак, если это и не теорема, то все же мы имеем достаточно побудительных причин для размышлений о спонтанном рождении Вселенной, устраняющем идею циклической Вселенной.


    Ваша оценка произведения:

Популярные книги за неделю