355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Всеволод Зенкович » Морское дно » Текст книги (страница 3)
Морское дно
  • Текст добавлен: 7 октября 2016, 12:12

Текст книги "Морское дно"


Автор книги: Всеволод Зенкович



сообщить о нарушении

Текущая страница: 3 (всего у книги 3 страниц)

Подводные каньоны

В конце 60-х годов прошлого века русские моряки-гидрографы вели промеры глубин вдоль Кавказского берега Чёрного моря. Здесь требовалось провести телеграфный кабель на глубинах в несколько сот метров, так, чтобы его не могли повредить ни бури, ни течения. Тогда господствовало убеждение, что материковый склон является как бы ровной «осыпью», образованной отложениями. Однако промеры показали резкие скачки глубин. На дне оказались своеобразные долины и гребни, напоминающие рельеф Кавказских гор. Эти наблюдения были опубликованы в «Морском сборнике» (1869 г.), но в своё время не привлекли внимания, так как науки о рельефе морского дна тогда ещё не существовало.

В начале XX века подобная картина была обнаружена в Атлантическом океане, против устья р. Конго, а также на материковых склонах у Британских островов и Северной Америки. Эти открытия также были сделаны при прокладке телеграфных кабелей.

Начиная с 30-х годов нашего столетия, когда широкое применение получил эхолот, стали появляться всё новые и новые сведения об открытии в разных местах земного шара громадных «оврагов», идущих поперёк материкового склона на две и более тысячи метров глубины (рис. 23). Так как эти «овраги» похожи иногда на ущелья суши (рис. 24), которые в Америке называются каньонами, их стали называть «подводными каньонами».


Рис. 23. Пологий подводный каньон, идущий от устья р. Ингур в восточной части Чёрного моря.


Рис. 24. Сравнительные поперечные профили подводного каньона Монтерей у берегов Калифорнии (вверху) и большого каньона реки Колорадо (внизу) (вертикальный масштаб на этом рисунке в пять раз больше горизонтального).

Появились различные теории, пытающиеся объяснить это непонятное явление. По мнению одних, подводные каньоны возникают в результате действия так называемых артезианских вод, которые вырываются под напором из трещин морского дна. Эти воды якобы растворяют окружающие породы, образуя на дне «овраги». Другие считали, что каньоны промыты особыми «плотностными» течениями. Известно, что мутная вода немного тяжелее чистой. В устьях рек, впадающих в большие пресные озёра, можно наблюдать, как мутные паводковые воды быстро стекают по склону в глубину. При этом они иногда промывают в иле углубления в виде желобов. Может быть, именно так образуются и подводные каньоны. Третьи считали, что каньоны – это затопленные долины рек.

Какая же из этих теорий правильна? Это можно выяснить только путем детальных исследований. Ясно, однако, что вопрос о происхождении каньонов нельзя решать, основываясь на каком-либо одном факте, как поступали авторы перечисленных выше теорий.

Чтобы узнать, каково строение подводных каньонов, были применены самые различные методы. Во-первых, детальный промер. Эхолот не всегда даёт точную картину рельефа подводных каньонов, так как склоны их бывают очень крутыми, настолько, что отражение не только звуковых, но и ультразвуковых волн сильно искажается. Здесь пришлось вернуться к проволочному лоту.

Многие каньоны действительно напоминают долины горных рек. Крутизна склонов каньонов нередко достигает 20–30 градусов (рис. 25). Есть и ещё более крутые участки вплоть до отвесных. Никакие рыхлые отложения на этих склонах не держатся. Поэтому они сложены коренными породами.


Рис. 25. Крутосклонный подводный каньон Кап-Бретон в Бискайском заливе (Франция).

Чтобы получить образцы этих пород, были сконструированы особые приспособления, которые буквально отдирали от скал непрочно держащиеся куски. Выяснилось, что в некоторых каньонах стены сложены кристаллическими породами, такими, как базальты или граниты.

Но какая же река сможет за короткий период «пропилить» столь глубокую долину в таких прочных породах? Ясно, что каньоны – это вовсе не русла затопленных рек, как считали некоторые. Попытались изучить состав отложений дна каньонов, но в них под поверхностными илами залегает мощная толща отложений, которую пробить пока не удалось.

Наконец, был спущен в каньон и водолаз с фотоаппаратом. Он проник до глубины почти в 100 метров и заснял отвесные стены и россыпи камней.

Удалось установить, что в каньонах часто происходят оползни. Илы и пески довольно быстро скапливаются в верхней части каньона, а затем под влиянием сильного шторма или землетрясения вся эта масса оползает вниз по крутому дну. Поэтому глубина вершины каньона время от времени резко изменяется. Такие явления были известны ещё в конце прошлого века у нас на Чёрном море.

Каньоны существуют вдоль берегов самого различного строения; часто они являются продолжением речных устьев. Характерно также, что они встречаются обычно группами (рис. 26). Известны только отдельные случаи единичных подводных каньонов. В этом отношении они напоминают фиорды – глубокие ущелья в береговой зоне, которые образуют узкие и длинные бухты Норвегии, Чили, Новой Зеландии, Чукотки и многих других мест.


Рис. 26. Группа подводных каньонов у берегов Калифорнии. В центре – каньон Монтерей, профиль которого изображён на рис. 24.

Наиболее замечателен твёрдо установленный факт геологической молодости каньонов. Интересно сходство многих каньонов с горными долинами – и по очертаниям, и по профилю, и по продольным уклонам. Не все каньоны связаны с долинами суши. Есть каньоны, которые своими вершинами упираются в берег, имеющий характер высокого нерасчленённого плато, или в горные цепи, идущие параллельно берегу.

Надо внимательно разобраться во всех этих фактах.

Есть ещё одна теория происхождения каньонов. Сторонники её считают, что каньоны представляют собой глубокие разрывы земной коры на материковом склоне, образовавшиеся при неравномерных вертикальных движениях. Такие тектонические разрывы известны во многих местах на суше, но характер их несколько иной, чем у подводных каньонов.

Великий русский учёный М. В. Ломоносов ещё в середине XVIII века, не зная о существовании подводных каньонов, писал о возможном образовании тектонических разрывов на морском дне:

«Когда в твёрдую материю наподобие доски плоскую, каковы суть зеркальные и оконничные стёкла, лёд, каменные плиты и другие сим подобные, удар воспоследует, то но большей части бывает, что щели от места ударённого, как от центра лучи в стороны проскакивают, хотя не совсем равно и прямо, но разными фигурами и нагибами, что с механическими правилами согласно. Подобным образом, когда ровная поверхность дна морского подымалась, тогда от центра действующей силы и от подымавшейся выше всех земной части прошли великие щели… Не инако рассуждать должно и о впадинах, кои… во вкпючённые моря и озёра превратились…».

На суше большинство углублений, образовавшихся в местах тектонических разрывов, заполняется продуктами сноса с окрестных возвышенных мест. Часто эти разрывы становятся долинами рек, иногда в них образуются озёрные впадины. Подобное происхождение имеют такие озёра, как Байкал и целый ряд глубоких озёр вытянутой формы в Африке.

Выветривание склонов всегда уменьшает их крутизну и сглаживает острые, выступающие части. Совсем иные условия господствуют на дне моря. Там нет ни рек, ни ледников, а разрушение коренных пород протекает крайне медленно. Впадины заполняются илом, частицы которого равномерным «дождём» падают на всю поверхность морского дна, но при этом отложение их происходит совершенно различно в зависимости от того, как расположены трещины. Если трещины идут вдоль склона или лежат на ровной поверхности материковой платформы, то ил и песок заполняют их доверху и совершенно сглаживают. Если же зияющая трещина разрыва идёт поперёк склона (то есть вниз по склону) и, следовательно, дно её имеет значительный уклон, то ил не может в ней задерживаться. Мы уже говорили о том, что уклон в два градуса достаточен для оползания «жирных» илов Чёрного моря. А в большинстве каньонов продольные уклоны ложа составляют четыре – восемь градусов. Значит, сколько ни попадает туда ила, он будет постепенно сползать вниз, а каньон так и останется зияющей трещиной. На суше этого не происходит, потому что продукты выветривания пород накапливаются здесь на уклонах в десять и даже больше градусов.

Из геологической практики известно, что трещины разрыва никогда не идут в одном направлении. Они располагаются веерами или перекрещиваются в самых различных направлениях. Если такая решётка образуется на морском дне, то все трещины, кроме тех, которые идут вниз по склону, будут быстро заровнены, а трещины, идущие вниз, сохранятся. Не таково ли и происхождение подводных каньонов? Пока мы ещё не можем ответить на такой вопрос. Но недалёк день, когда наука даст исчерпывающее объяснение тому, как образуются подводные каньоны.

Из каких горных пород состоит ложе океана

Как устроено дно вдали от материков? Может быть, эта труднодоступная область интересна только океанографам? Нет, и здесь решаются важнейшие задачи геологии, имеющие отношение к строению и развитию земной коры. В тысячах километров от суши особенно интересно получить пробу ила, измерить величину силы тяжести, исследовать рельеф дна.

Интерес к изучению дна открытого океана повысился особенно после того, как было установлено, что скорость распространения упругих волн землетрясений различна под материками и под океанами. Скажем, произошло землетрясение на Памире. От места его возникновения во все стороны в земной коре побежали упругие волны, подобные тем, которые появляются в воде, если в неё бросить камень. Во Владивостоке особые чувствительные приборы через несколько минут запишут на ленте лёгкое дрожание. Но вот произошло землетрясение на Гавайских островах. Расстояние от Владивостока до Гавайских островов – примерно то же самое, что и до Памира, а волны пробегают его значительно скорее. В чём здесь дело?

Известно, что скорость распространения упругих волн тем больше, чем плотнее и тяжелее среда, в которой они распространяются. Значит, дно океана сложено иными породами, чем материк? Но этот вывод нужно ещё проверить.

В земной коре встречаются два основных типа кристаллических пород. Один из них – относительно лёгкие породы со средним удельным весом 2,7, примером которых служат граниты. Другой – более тяжёлые породы, богатые окислами железа и магния (удельный вес – около 3,1); к ним относятся базальт, габбро и др.

На всём громадном пространстве центральной и восточной частей Тихого океана ни на островах, ни на дне не было обнаружено лёгких пород. Может быть, там их вообще нет? Нужно было найти способ, дающий исчерпывающий ответ на этот вопрос. Таким способом оказалось определение силы тяжести.

Знаете ли вы, что килограммовая гиря не везде весит килограмм? Точные пружинные весы покажут различие (правда, выражается оно в миллиграммах) в её весе на экваторе и у полюсов, на равнине и в горах. Дело в том, что тела притягиваются к центру Земли тем сильнее, чем они к нему ближе. А ведь земной шар несколько сплюснут. Поэтому полюсы на 20 километров ближе к центру Земли, чем экватор, и сила тяжести там больше. Если же подняться с гирей на вершину высокой горы, то окажется, что там сила тяжести меньше. Во-первых, мы отдалимся от центра Земли, а во-вторых, горы сложены из более лёгких пород, обладающих сравнительно слабым притяжением.

Как же измерить силу тяжести?

Обычно это делают с помощью маятника. Если толкнуть маятник, то он начнёт качаться. Частота качаний (число колебаний маятника в секунду) не зависит от силы толчка, она определяется только длиной маятника и силой тяжести. Чем длиннее маятник и чем меньше сила тяжести, тем ниже частота колебаний, то есть тем медленнее они происходят.

Но в разных местах сила тяжести будет несколько различна. Поэтому один и тот же маятник на экваторе будет колебаться медленнее, а на полюсах быстрее. Значит, измеряя частоту колебаний маятника, можно судить и об изменениях силы тяжести.

Казалось бы, многокилометровая толща вод океана должна ослаблять силу тяжести на корабле, поскольку удельный вес воды значительно меньше веса пород, образующих земную кору. Но, к удивлению учёных, такое различие уловить не удалось. Сила тяжести в океане оказалась в среднем такой же, как и на материках. А это значит, что под дном океана лежат более тяжёлые породы, чем на поверхности материков. Эти породы усиливают притяжение Земли как раз настолько, насколько оно ослабляется водяной толщей.

Таким образом, стало ясно, что материки представляют собой громадные скопления относительно лёгких пород, которые пластами толщиной в 70–80 километров покоятся на более тяжёлом основании из базальта (рис. 27). А в Тихом океане и восточной части Индийского океана лёгких пород совсем нет, и базальтовое основание покрыто там лишь сравнительно тонким слоем рыхлых илов.


Рис. 27. Схема, показывающая, что толщина слоя лёгких материковых пород под материками и океанами различна.

В Атлантическом океане и западной части Индийского океана лёгкие породы имеются, но их слой значительно тоньше, чем на материках, он составляет всего 10–30 километров.

Теперь возникает новый вопрос. Мы знаем, что отдельные участки материков испытывают вертикальные движения, местами слои пород сминаются в складки, образуются горные хребты. Так ли обстоит дело на дне океанов, где слой лёгких пород тонок или его вовсе нет? Могут ли там совершаться подобные движения, образовываться горы и т. д.?

Другими словами, как связано развитие морского дна с геологической жизнью материков? Были ли океанские впадины всегда на том же месте и такой же формы, как и сейчас, или они могут изменяться? Чтобы разобраться в этом сложном вопросе, нам придётся познакомиться ещё с некоторыми особенностями строения морского дна.

Коралловые острова и плосковершинные банки

Знаменитый русский мореплаватель Ф. Беллинсгаузен во время своего кругосветного плавания в 1819–1821 годах обратил внимание на необычные формы коралловых островов и впервые пытался объяснить их происхождение. Кораллы – это мелкие морские животные, имеющие прочный известковый скелет в виде веточек, сростков, шаров и т. д. Многие поколения кораллов, поселяясь на отмерших скелетах своих предков, с течением времени образуют массивные сооружения из известняка, которые выдерживают удары океанских волн. Кораллы живут только в тёплой чистой воде тропиков на глубинах до 40–50 метров.

Поселяясь вдоль берегов материка или островов, они создают так называемый «окаймляющий риф» – подводную террасу, которая круто обрывается на морское дно. Иногда полоса коралловых рифов уходит далеко в море; это – так называемый «барьерный риф». Он может тянуться на тысячи километров или образовать кольцо вокруг островов открытого океана. Ещё удивительнее так называемые «атоллы». Атолл – это кольцо кораллового рифа, в середине которого нет никакого острова. Дно снаружи атолла резко падает на тысячеметровые глубины. Карта одного из коралловых атоллов схематически изображена на рис. 28.


Рис. 28. Карта одного из атоллов в Тихом океане и окружающих его глубин.

Глубина между барьерным рифом и берегом или внутри кольца атоллов не бывает особенно большой, но всё же превышает ту, на которой могут жить кораллы. Дно в этих лагунах бывает совершенно плоским.

Ф. Беллинсгаузен подметил, что условия питания «коралловых червей» являются наилучшими на внешнем краю рифа, который постоянно омывается свежей водой. Тут они всего быстрее растут. Отсюда он заключил, что на внутренней стороне рифа кораллы могут отмирать, а их постройки должны постепенно разрушаться и растворяться морской водой. Таким образом, окаймляющий риф, достигнув известной ширины, может расти только с внешней стороны, а на внутренней его части образуется лагуна. Таким же образом возникают и атоллы, если кораллы первично поселяются на вершине подводной возвышенности или, как её называют моряки, «банки».

Процессы, описанные Ф. Беллинсгаузеном, действительно происходят в природе. Его выводы были правильны, но ещё недостаточны для того, чтобы объяснить основную причину образования барьерных рифов и атоллов. Её удалось найти великому английскому учёному Ч. Дарвину. Оказывается, этой причиной служат процессы опускания земной коры.

На рис. 29 изображён в разрезе остров, вдоль которого поселились кораллы и образовали окаймляющий риф. Но потом остров начал опускаться. Тем временем риф нарастал кверху, быстрее всего на своей внешней стороне. Между ним и берегом образовывалась кольцевая лагуна. Постепенно весь остров исчез под водами океана, а коралловые постройки сохранились и образовали атолл.


Рис. 29. Схема образования барьерных рифов и атоллов по Ч. Дарвину. Вверху – вокруг острова образовался окаймляющий риф. В середине – уровень моря поднялся, и между барьерным рифом и островом возникла лагуна. Внизу – при дальнейшем повышении уровня остров погрузился и затонул. Коралловые постройки остались в виде кольца атолла.

Как проверить теорию Дарвина? Самое простое – это установить бурением, какова толщина слоя кораллового известняка у атоллов. Такие бурения производились несколько раз, начиная с конца прошлого столетия. Бурили атолл Фуна-Фути в Тихом океане, Бермудские острова в Атлантике и приобретший мрачную известность атолл Бикини, где испытывались американские атомные бомбы. Во всех случаях результат бурения был одинаков – толщина слоя коралловых масс превышает несколько сотен метров. Если мы вспомним, что глубже 50 метров кораллы не живут, то факт опускания островов и правильность теории Дарвина станут бесспорными.

Впоследствии в Индийском и Тихом океанах были открыты погружённые атоллы, плоское дно которых вместе с самим рифом погружено на много сотен метров.

Наконец, последние десятилетия принесли ещё одно удивительное открытие. Оказалось, что на дне Тихого океана, особенно в области Каролинских островов, весьма широко распространены под водные горы с плоскими, точно срезанными ножом горизонтальными вершинами, лежащими на глубинах иногда более 2 километров (рис. 30).


Рис. 30. Подводные плосковершинные банки в районе Каролинских островов Тихого океана.

Некоторые зарубежные учёные считают, что такое явление – результат морской абразии. Но это не так. Абразия даёт обязательно наклонный срез, а горизонтальными могут быть только вершины коралловых сооружении. Значит, эти горы – результат грандиозных опусканий океанского дна.

Совсем иные находки были сделаны на островах Зондского архипелага – Яве, Тиморе, Флорес и др. Здесь нет барьерных рифов, но коралловые постройки в несколько ярусов поднимаются по склонам гор на высоту до 1500 метров. Так могло получиться только в результате поднятий океанского дна!

Следовательно, дно океана в процессе своего развития может не только опускаться, но и подниматься и в этом отношении ничем не отличается от поверхности материков.

Подводные хребты и пучины

На картах океанского дна среди бескрайных подводных равнин, лежащих на глубинах в 3–5 тысяч метров, невольно бросаются в глаза узкие подводные хребты и глубочайшие желоба. О них стоит поговорить подробнее.

Лучше всего изучен хребет, который проходит посредине Атлантического океана (рис. 31).


Рис. 31. Рельеф дна южной части Атлантического океана.

Сравнивая профили Атлантического хребта и Альп (рис. 32), мы видим, что это действительно грандиозное горное сооружение, состоящее не из одного, а из целого ряда хребтов, разделённых узкими продольными понижениями.


Рис. 32. Поперечный профиль дна южной части Атлантического океана. Справа в том же масштабе изображены Альпийские горы

Углы склонов отдельных гряд Атлантического хребта достигают 6—10 градусов. Такими же были бы и склоны наземных горных цепей, если бы не размывающее действие текучих вод.

В состав хребта несомненно входят сбросовые котловины. В этом отношении характерна небольшая впадина Романш с глубинами более 7 километров.

На хребте происходят вулканические извержения и землетрясения: из вулканических пород сложены острова, увенчивающие хребет (Азорские, Вознесения, Тристан-Де-Кунья и др.), и громадное плато Исландия, которым хребет начинается на севере.

Исследования показали, что Атлантический хребет и окружающие пространства дна состоят из лёгких пород. Этот хребет представляет собой «складку» земной коры. Процесс её образования сопровождался теми же явлениями, какие происходили и на суше, – вулканизмом, сбросами и землетрясениями.

Рельеф и донные покровы хребта имеют большой интерес и для океанологов. Вместе с рядом боковых ответвлений Атлантический хребет создаёт в океане ряд полуизолированных бассейнов. Обмен глубинными водами между ними весьма затруднён. Поэтому в них обитают совершенно различные виды рыб. Поскольку хребет вздымается на пути глубинных течений (преимущественно приливо-отливных), тонкий ил частично смывается с его поверхности и вместо него здесь залегают илистые пески, состоящие преимущественно из скорлупок морских животных. Скорость отложения таких песков очень мала.

Грунтовыми трубками удалось пробить несколько слоев различного состава. Их изучение подтвердило правильность современных взглядов на историю земной коры.

В океане подобных хребтов довольно много. Очень ярко выражены хребты в западной части Индийского океана. Советскими учёными П. Безруковым, Г. Удинцевым и др. недавно открыт и изучен Олюторский хребет в Беринговом море и северное продолжение Гавайского хребта, которое тянется почти до самой Камчатки.

В Северном Ледовитом океане советскими полярниками обнаружен громадный хребет, который тянется через весь полярный бассейн – от Северной Земли до Гренландии. Этому хребту присвоено имя М. В. Ломоносова, положившего много труда на изучение полярных стран.

Не менее интересны и узкие глубоководные (более 6–7 тысяч метров) желоба, которые почти сплошным кольцом окаймляют Тихий океан, а в нескольких местах заходят в Атлантический и Индийский. На рис. 33 вы видите, что этими желобами часто окаймлены архипелаги островов и берега, образованные горными цепями. Материковый или островной склон уходит здесь иногда на глубины почти в одиннадцать километров. Затем следуют плоское «днище» жёлоба всего в несколько километров шириной и новый подъём уже в сторону ровного океанского дна, лежащего обычно на уровне 4–5 километров (рис. 34). На суше нет ничего подобного этим грандиозным углублениям океанского дна.


Рис. 33. Глубоководные желоба на дне Тихого и прилегающих частей Индийского и Атлантического океанов.


Рис. 34. На рисунке показаны в профиле впадина в Охотском море и Курильский глубоководный жёлоб.

В 1953 году советские учёные детально исследовали Курильский подводный жёлоб. Это – третье по глубине место на земном шаре (10 386 метров).

Многое узнали про глубоководные желоба геофизики[15]15
  Геофизика – физика земного шара – наука, изучающая процессы, которые происходят в твёрдой, жидкой и газообразной оболочках Земли.


[Закрыть]
и геологи. Над узкими глубоководными желобами сила тяжести оказалась значительно меньше, чем в других местах земного шара. Это значит, что здесь тяжёлые породы уходят на громадные глубины.

Характерно, далее, что с областями желобов и расположенных поблизости островных или горных цепей связано большинство землетрясений и действующих или недавно потухших вулканов. Каждое землетрясение имеет не только свой эпицентр, то есть точку, где оно сильнее всего выражено на земной поверхности. Учёные могут с большой точностью вычислять и его гипоцентр – то место в глубине земной коры, где собственно и произошли смещение или разрыв пластов земли. Оказалось, что в областях глубоководных желобов происходят совершенно особые, так называемые глубокофокусные землетрясения. Их гипоцентры лежат на глубинах до 700–800 километров.

Таким образом, глубоководные желоба играют важную роль в развитии всей земной коры.

Советский геолог В. Белоусов показал, что глубоководные желоба продолжаются иногда и на суше в виде низин. Вот несколько примеров.

Яванский жёлоб – близ острова Явы в Индийском океане – достигает глубины около 7500 метров. Он тянется затем на северо-запад мимо острова Суматра и полуострова Малакка, но становится всё мельче, пока не исчезает совсем. Но если идти дальше вдоль хребтов Индо-Китая и Гималаев, то как раз на продолжении жёлоба у подножья гор лежит широкая низина, по которой проходит долина крупной реки Ганг (рис. 35). Уже давно известно, что долина Ганга представляет собой область громадных опусканий земной коры, покрытую поздними отложениями толщиной более километра. Следовательно, «жёлоб» в земной коре похоронен здесь под толстым слоем наносов. По этой же причине «исчезает» жёлоб и на морском дне: в то место, где он прерывается, сносятся продукты разрушения материка.


Рис. 35. Яванский глубоководный жёлоб и его продолжение в низине р. Ганг. Пунктирными линиями показаны направления горных хребтов на суше

Подобным же образом в низменности реки Ориноко (Южная Америка) находит своё продолжение жёлоб Порто-Рико – одно из глубочайших мест Атлантического океана. Гватемальский жёлоб в Тихом океане переходит через Калифорнийский залив в целую цепь низменностей между Сиеррой-Невадой и береговыми хребтами. Все эти места легко найти в любом географическом атласе.

Таким образом, исследования глубоководных желобов ещё раз подтвердили, что в строении земной коры под материками и под океанами принципиальных различий не существует. Только одни и те же процессы дают внешне различный результат на материках и на океанском дне.

Области резких опусканий суши из-за наносов превратились в низменные равнины, а на морском дне они так и остались глубочайшими рвами или желобами. Поднятия земной коры на материках под действием воды, ветра и смены температур дают островерхие горные хребты с головокружительными скалами и ущельями. На дне же они образуют пологие валы высотой в несколько километров. Разломы земной коры на материках лишь в редких случаях имеют вид узких озёр или заняты долинами рек; гораздо чаще они заполняются наносами. А на морском дне, особенно в области материкового склона, эти разломы сохраняются в виде подводных каньонов.

Отсюда понятно, что изучение морского дна имеет большое значение для всей науки о Земле.



Содержание

Введение… 3

Чтобы понять строение суши, нужно знать морское дно… 4

Как изучали морское дно… 6

Строение и состав морского дна… 9

Как устроен современный эхолот… 16

Грунтовая трубка… 22

Материковая платформа… 28

Материковый склон… 35

Подводные каньоны… 37

Из каких горных пород состоит ложе океана… 43

Коралловые острова и плосковершинные банки… 46

Подводные хребты и пучины… 49



    Ваша оценка произведения:

Популярные книги за неделю