Текст книги "В погоне за красотой"
Автор книги: Вольдемар Смилга
Жанр:
Математика
сообщить о нарушении
Текущая страница: 4 (всего у книги 15 страниц) [доступный отрывок для чтения: 6 страниц]
а) точка А совместится с любой, заранее заданной точкой А′ плоскости;
б) луч АВ совместится с любым, заранее заданным лучом А′В′, исходящим из точки А′;
в) точка С совместится с некоторой точкой С′ в любой, заранее указанной полуплоскости, опирающейся на луч А′В′ (таких полуплоскостей, естественно, две). После этого дальнейшее движение фигуры невозможно.
И наконец, аксиома, показывающая, что зеркальные отражения – частный случай преобразования движения.
8. Существуют движения, переводящие отрезок АВ в ВА, а угол АОВ в угол ВОА.
Эти восемь аксиом определяют все свойства движения, и теперь можно строго ввести понятие равенства, или – учено – конгруентности фигур.
«Фигура S называется равной фигуре S′, если ее можно совместить с фигурой S′ при помощи движения».
Теперь легко можно доказать такие теоремы:
1. Фигура S равна самой себе.
2. Если S равна S′, то и S′ равна S.
3. Если S равна S′, a S′ равна S″, то S равна S″.
Аксиомы планиметрии почти исчерпаны.
Остались:
IV. Аксиома непрерывности (аксиома Дедекинда).
Если все точки прямой разбить на два класса – I и II так, что любая точка класса II лежит правее любой точки класса I, то либо в классе I есть самая правая точка, и тогда в классе II нет самой левой, либо, наоборот, в классе II есть самая левая точка, и тогда в классе I нет самой правой.
Грубо говоря, эта аксиома означает, что в прямой нет разрывов – «пустых мест».
Ее необходимо ввести, чтобы было возможно построить строгую теорию измерения отрезков.
И наконец:
V. Аксиома параллельности.
Ко всякой прямой А через всякую точку, не лежащую на этой прямой, можно провести одну, и только одну, прямую, не пересекающую прямую А.
Забегая вперед, можно сообщить, что аксиоматика геометрии Лобачевского отличается от евклидовой лишь последней аксиомой. Все остальные аксиомы обеих геометрий совпадают.
Глава 4
Эпоха доказательств. Начало
Начнем с краткого списка имен. Проблему параллельных пробовали разрешить Аристотель, Посидоний, Птолемей, Прокл, Симплиций, Аганис – в античном мире; ал-Хазин, ат-Гуси аш-Шанни, ан-Найризи, Омар Хаййам, Ибн ал-Хайсан, Насир эд-Дин – на Востоке.
Клавий, Валлис, Лейбниц, Декарт, Плейфер, Лагранж, Саккери, Лежандр, Ламберт, Бертран, Фурье, Ампер, Даламбер, Швейкарт, Тауринус, Якоби – в Европе.
И еще несколько десятков известных и несколько тысяч безвестных математиков.
За счет проблемы пятого постулата можно было бы заполнить солидную психиатрическую клинику.
Это отнюдь не преувеличение. Многие люди тщетно тратили на попытки доказательства всю свою жизнь, приходя к мистическому ужасу либо к психическому заболеванию.
Одно из самых неожиданных свидетельств исключительной популярности этой проблемы – некое замечание Фомы Аквинского.
Фома был одним из крупнейших теологов христианского мира. В одном своем исследовании ему понадобилось почему-то решить сложнейшую проблему: «Что недоступно богу?»
Он указывает ряд вещей этого класса.
Бог не может, по Фоме Аквинскому, грубо нарушать основные законы природы. Пример: он не может превратить человека в осла. (Надо заметить, что многие каждодневно и самостоятельно решают эту проблему без помощи божественного промысла.)
Далее: бог не может уставать, гневаться, печалиться, лишить человека души и тому подобное.
В этом списке есть и такой пункт. Бог не может сделать сумму углов треугольника меньше двух прямых.
Я почти убежден, что пример этот не случаен. Фома Аквинский мог выбрать любую другую и значительно более очевидную теорему. Очень вероятно, что именно эту он взял потому, что были ему известны и тщетные попытки доказать пятый постулат и то, что утверждение: сумма углов треугольника равна двум прямым – эквивалентно пятому постулату.
Обычно полагают, что эта теорема стала известна в Европе в XVIII столетии. Фома Аквинский жил в XIII.
Но надо сказать, что арабские математики основательно исследовали задачу о параллельных и, в частности, получили и этот результат.
В раннем средневековье могли быть известны многие работы, бесследно затерянные позже.
В наше время трудно понять, сколь безнадежно запутанной представлялась вся теория параллельных до Лобачевского.
Сейчас любой хороший студент-математик максимум за две-три недели спокойной, нормальной работы докажет теорему: если сумма углов треугольника равна π, то справедлив пятый постулат.
Докажет, даже если практически совершенно незнаком с неевклидовой геометрией и, следовательно, формально находится в том же положении, что геометры прошлого.
Еще в XVIII веке эта теорема считалась, и действительно была, крупнейшим достижением науки. Я вовсе не хочу защищать бесспорно приятный тезис: «Люди стали умней, талантливей». Дело не в этом. Просто в научной работе уверенность в конечном результате, твердое знание, что ты на правильном пути, оказывается фактором почти решающим.
Кто-то из американских физиков в свое время заметил, что как только была взорвана атомная бомба, секрет ее производства перестал быть секретом. И если это замечание, возможно, несколько преувеличено, в принципе оно справедливо.
Впрочем, полагаю, любой читатель не раз замечал, насколько проще решать задачу либо доказывать теорему, если ее ответ известен заранее.
А во всей проблеме параллельных нужна лишь одна руководящая идея: «Пятый постулат Евклида независим от остальных». Стоит знать, что это так, и любой математик наших дней легко повторит большинство результатов Лобачевского за сравнительно небольшой срок. Но останется рядовым математиком. Просто он знает: «копать надо здесь». И это решает почти все.
В подтверждение я приведу один пример, убедительный, вероятно, для любого умеющего играть в шахматы. В журналах очень часто печатают позиции из партий гроссмейстеров с предложением найти за белых выигрывающий ход. Обычно в такой позиции надо найти красивую комбинацию. Любой перворазрядник, напряженно продумав полчаса-час, решит не менее девяноста процентов задач этого сорта. Вместе с тем в девяноста случаях из ста он не заметил бы этой комбинации, случись она у него в практической партии.
Этими замечаниями я хотел бы предупредить возможность появления нелепого чувства превосходства перед математиками прошлых эпох. Действительно, подавляющее большинство теорем, связанных с доказательствами пятого постулата, совершенно элементарно по своей логике. Они доступны для учеников 8–9-го классов.
И логические ошибки авторов, полагавших, что они доказали пятый постулат, также часто очень элементарны. Но эта элементарность видна сейчас. Точно так же уже через двадцать лет некоторые из проблем, над которыми бьются ученые в наши дни, покажутся до смешного простыми и наивными. Особенно часто так бывает с физиками.
После изрядной дозы общих рассуждений пора вернуться к пятому постулату.
Я уже не раз говорил (и прошу прощения у читателей – еще не раз буду повторять), что все попытки доказательств стимулировались, по существу, единственной причиной: он не «смотрелся», как говорят художники.
Он возмущал эстетические чувства ученых своей сложностью. И в древней Греции, и в Персии, и в Европе реакция была единодушна.
Поглядите, как прелестно негодует один из величайших математиков арабского мира, Омар Хаййам.
«…Евклид считал, что причиной пересечения прямых является то, что два угла (внутренние односторонние углы. – В. С.) меньше двух прямых.
Считая так, он был прав, но это может быть доказано только при помощи дополнительных рассуждений. (Хаййам думал, что он доказал пятый постулат. – В. С.) …Евклид же принимал эту предпосылку и основывался на ней без доказательства. Клянусь жизнью… здесь необходима помощь разума, и это его (то есть разума, а не Евклида. – В. С.) право…
Как Евклид позволил себе поместить это утверждение во введении (имеется в виду – выбрать как аксиому. – B. C.) в то время, как он доказывал гораздо более простые факты…»
Посмотрим же, как велась борьба с пятым постулатом. Было три канонических пути.
1. Открыто и явно предлагался какой-либо постулат, эквивалентный Евклидову. Эти авторы образуют «скромное», или «пессимистическое» направление.
2. Доказательство от противного (reductio ad absurdum) – один из самых изящных и мощных логических методов решения математических задач. Здесь новых постулатов не вводили.
Формулировалась теорема, противоположная по своему смыслу пятому постулату либо какому-нибудь его эквиваленту, а далее начинали развивать разнообразные следствия в надежде, что рано или поздно придут к какому-нибудь противоречию. Если оно будет получено, то тем самым доказывается, что пятый постулат вытекает из остальных аксиом, – и задача решена.
Это направление «самонадеянное» или «оптимистическое».
3. Наконец, группа «эклектиков».
Они доказывали какую-либо теорему, эквивалентную пятому постулату. Доказывали, используя неявно и незаметно для себя какой-либо другой эквивалент постулата Евклида.
Тяжелее всех было «на направлении № 2» – «оптимистам». Они все дальше и дальше тянули цепочку своих теорем, все больше и больше запутывались в следствиях, так и не находя противоречия.
С сегодняшних наших позиций мы понимаем, что эта группа математиков, по существу, доказывала начальные теоремы неевклидовой геометрии, что они были на наиболее обнадеживающем пути, потому что только так можно было прийти к идее независимости Евклидова постулата от остальных. Но им-то от этого не было легче.
Как правило, в итоге они либо отчаивались, либо перекочевывали в лагерь «эклектиков».
Надо заметить, что многие из доказательств «эклектической группы» великолепны по своему остроумию.
Если чуть огрубить реальную историю, то можно сказать, что в основном пробовали доказывать две главные разновидности пятого постулата:
1. Перпендикуляр и наклонная пересекаются.
2. Сумма углов треугольника равна π.
На этих путях было найдено несколько очень наглядных эквивалентов пятого постулата. Иногда авторы понимали, что нашли эквивалент; иногда они, заблуждаясь, думали, что доказали пятый.
Вот несколько «эрзацев»[2]2
Формулируя эквиваленты пятого постулата, я всегда буду подразумевать, что все происходит в одной плоскости, и не буду это специально оговаривать.
[Закрыть].
1. «Геометрическое место точек, равноудаленных от данной прямой, есть прямая».
2. Расстояние между двумя непересекающимися прямыми остается ограниченным[3]3
Это менее жестокое требование, чем в № 1.
[Закрыть].
3. Существуют подобные фигуры.
4. Если расстояние между двумя прямыми сначала убывает при движении вдоль этих прямых в каком-то направлении, то оно не может начать увеличиваться до тех пор, пока прямые не пересекутся.
И так далее.
Всего насчитывают более 30 формулировок.
Для развлечения читателей я приведу несколько «доказательств» пятого постулата без каких-либо критических комментариев. Читатели могут (при желании, конечно) установить самостоятельно, какой постулат использовал тот или иной автор вместо пятого.
1. Доказательство Прокла. Одно из самых первых, одно из самых простых и самых остроумных.
Прокл берет за основу утверждение Аристотеля: При продолжении двух прямых от точки пересечения расстояние между ними неограниченно возрастает.
Он считает, что это аксиома.
На самом деле это теорема, причем теорема, совершенно независимая от пятого постулата. Так что этой теореме можно полностью доверять. Она принадлежит к «абсолютной геометрии» и, следовательно, как мы понимаем сегодня, справедлива и в геометрии Евклида и в геометрии Лобачевского. А постулат – эквивалент Прокла – другой.
Вот и доказательство. Точнее, его эскиз. (Ни здесь, ни в следующем доказательстве я не буду придерживаться строгой, формальной схемы.)
Проведем две заведомо параллельные прямые. То есть такие, что <A + <C1 = π.
Проведем третью прямую. Как? Видно на чертеже, она показана пунктиром.
Расстояние между пунктирной прямой и верхней (при движении влево) неограниченно возрастает.
Следовательно, оно когда-нибудь превысит расстояние между параллельными.
Ну, а тогда ясно, что пунктирная прямая пересечет нижнюю.
Предлагается сформулировать все вполне строго и указать, какой постулат неявно использовал Прокл.
2. Доказательство Валлиса.
Докажем, что перпендикуляр и наклонная к общей секущей пересекаются.
Опустим из точки В перпендикуляр на секущую. Получим Δ ABC. Возьмем подобный ему треугольник, такой, чтобы его сторона, соответствующая стороне АС, была равна отрезку AD.
Ввиду его значения выделим ему отдельный чертеж. Это Δ A1D1F1.
Наложим теперь этот пунктирный треугольник на наш Δ ABC так, чтобы сторона A1D1 легла на АС.
Тогда сторона A1F1 уляжется на нашу наклонную, а сторона D1F1 на наш перпендикуляр.
По существу, мы уже все доказали; осталось несколько формальностей. Я предоставляю их читателям.
Не будем особенно увлекаться примерами. Интереснее, пожалуй, вот что.
Десятки математиков, люди самых разных культур, люди, разделенные столетиями, часто, совершенно не зная друг о друге, мыслили почти идентично, почти дословно повторяли путь предшественников.
До XVIII столетия, доказывая пятый постулат от противного, не слишком далеко тянули цепь следствий, не слишком углублялись в анализ. В какой-то момент решали: ага, вот оно – противоречие. А на самом деле это противоречие, конечно, оказывалось эквивалентом пятого постулата.
Но поскольку шли не очень далеко, охотников оказывалось больше, чем зайцев. Математиков, работавших над пятым постулатом, было больше, чем различных путей для доказательства. Пятым постулатом занимались почти все виднейшие математики мира. Об одном из них я хочу рассказать особо. Не потому, что его исследования по теории параллельных как-то резко выделяются по своему классу. Нет. Наиболее интересные его результаты относятся к алгебре. В теории параллельных он не ушел существенно дальше других. В этом смысле мы подарим ему неоправданно большое внимание. Более того, мы, по существу, ничего не будем говорить о его доказательстве пятого постулата. Правда, доказательство его весьма остроумно. Правда, в дальнейших работах восточных математиков явно чувствуется его влияние. Наконец, технический прием, использованный им, очень удачен и опережает западных математиков лет на шестьсот. (Об этом чуть-чуть подробней будет сказано дальше.) Но в конце концов сам пятый постулат нас не так уж волнует в этой книге.
Интересен же этот человек тем, что на его примере хорошо видишь, сколь ничтожно малы различия между людьми всех наций и всех веков.
Итак, я хотел бы поговорить о математике, известном у нас под именем поэта Омара Хаййама.
Глава 5
Гийас ад-Дин Абу-л-Фатх Омар ибн Ибрахим ал-Хаййам ан-Найсабури
Гийас ад-Дин Абу-л-Фатх Омар ибн Ибрахим ал-Хаййам ан-Найсабури.
Или – более привычное для слуха европейца – Омар Хаййам.
Восток, как всем известно, есть Восток. В отличие от Запада, который есть Запад.
Восток в сознании многих – это стандартный набор: гаремы, султаны, ислам, шальвары, халифы, кальяны, муэдзины, эмиры, гурии, минареты, шахи, палящее солнце, фонтаны, баядерки, Чингисхан и тень чинар. И лень, безмятежная, сонная лень в этой тени.
Во всяком случае, таков Восток в прошлом. Таким его представляют.
Действительно, все было на Востоке: и султаны, и шахи, и халифы, и эмиры, и прочее. Более того, в значительной части Востока сохранилось и сейчас.
Тем не менее Востока не было никогда.
Было и есть несколько десятков стран и более миллиарда людей. Более миллиарда. И я смею предполагать, что это довольно разные люди.
Можно думать также, что их внутренний мир тот же, что и у «жителей Запада».
Кстати, сам Киплинг – автор знаменитой формулы о Востоке и Западе – думал именно так. Эта мысль и защищается в его знаменитой балладе, из которой обычно (увы, это удел даже блестящих поэтов) помнят лишь первую строку.
Раз уж в этой главе мы непрестанно будем находиться в «атмосфере поэзии», стоит процитировать и Киплинга. Тем более стихи прекрасны.
О, Запад есть Запад, Восток есть Восток, и с мест они не сойдут,
Пока не предстанет Небо с Землей на Страшный господень суд.
Но нет Востока и Запада нет, что – племя, родина, род,
Если сильный с сильным лицом к лицу у края земли встает.
Дальше можно не цитировать, ибо все последующее до обидного плохо. Стихи великолепны по-прежнему, но сам сюжет и его решение пародийно напоминают рядовой голливудский «вестерн».
Редьярд Киплинг ограничился гимном в честь духовного единства воинов. Героев, сильных телом и духом. Воины эти, если судить непредвзято, – некоторый прообраз облагороженных голливудских бандитов. Но если отвлечься от выбора героев, с Киплингом можно согласиться безоговорочно. Гангстеры всего мира довольно легко находят общий язык, ничуть не хуже ученых-гуманистов.
К сожалению, Киплинг воспел первых. И отдал на это весь свой поразительный талант поэта.
Все эти рассуждения, может быть, не совсем излишни, если вспомнить, что сейчас наш герой – Гийас ад-Дин Абу-л-Фатх Омар ибн Ибрахим ал-Хаййам ан-Найсабури.
Гийас ад-Дин означает: «помощь веры», и есть традиционный титул всех ученых, поскольку в те времена иерархическая лестница научных званий была, видимо, разработана слабовато. Абу-л-Фатх – отец Фатха.
Ан-Найсабури – показывает, что Хаййам был родом из Нишапура, одного из главных городов славного Хорасана.
Хаййам – то, что мы приняли за фамилию, – означает «палаточный мастер». Вероятно, отец его либо дед промышляли этим достойным занятием.
Ибн Ибрахим – сын Ибрахима. В русифицированном варианте: Ибрахимович.
Наконец, Омар – имя, данное ему при рождении.
Итак, коротко – Омар Хаййам.
Он завоевал Запад в XIX веке, и завоевал его как поэт.
Впервые он был переведен на английский и переиздан в прошлом веке 25 раз. В Англии и Америке повальное увлечение Хаййамом приняло характер эпидемии, его цитировали, восхваляли и создавали клубы его имени. Волей-неволей нам придется заниматься литературоведением, и поэтому я хотел бы сразу сообщить, что хотя стихи Хаййама прекрасны, но столь исключительная его популярность связана, возможно, с некоторым «удивительным откровением». Оказалось, что тысячу лет назад где-то в Турции, не то в Индии человеку были доступны те же мысли и сомнения, что волнуют людей и в наш просвещенный век (то есть XIX). Мало того, он сформулировал эти сомнения в великолепных стихах, а это было уже совершенно поразительно.
В родных краях, впрочем, как поэта Хаййама почти не знали.
Так возникло два Хаййама.
На Западе – поэт.
На Востоке – математик, астроном, философ. О, Запад есть Запад, и Восток есть Восток.
Позволим себе риторический вопрос и воскликнем в недоумении: кто же он был?
Поскольку автор больше симпатизирует «восточной версии», начнем спокойный и медлительный рассказ, оживляя его по мере скромных наших сил традиционным колоритом о досточтимом мудреце и имаме Гийас ад-Дине Омаре ал-Хаййаме ан-Найсабури, да освятит аллах его драгоценную душу.
«Во имя аллаха милостивого, милосердного. Хвала аллаху, господину миров, и благословение всем его пророкам».
Так, скованный суровой и жестокой традиционной формой, начинает Хаййам свой замечательный труд: «Трактат о доказательствах задач алгебры и алмукабалы» – работу, в которой математика Запада была опережена примерно лет на пятьсот.
Этот труд «величайшего геометра Востока», как писал позднее о нем замечательнейший энциклопедист восточного мира араб Ибн-Халдун, содержит первую систематическую теорию алгебраических уравнений третьей степени. Он был широко известен среди арабских математиков и, несомненно, оказал огромное влияние на развитие математики Востока. А в Европе первое и очень смутное упоминание о нем относится к 1742 году.
Историк, собственно, указывает только: вроде бы по заглавию рукописи, хранящейся в Лейденском музее, можно подозревать, что там есть нечто об уравнениях третьей степени, но… «Весьма жаль, что никто из знающих арабский не имеет вкуса к математике и никто из владеющих математикой не имеет вкуса к арабской литературе».
Когда трактат Хаййама, наконец, прочли, оказалось, что его результаты повторил (и превзошел его во многом) не кто иной, как Декарт. Впрочем, возможно, в еще одном окончательно уже исчезнувшем трактате и сам Хаййам пошел значительно дальше. Кто знает…
Но нам интересен здесь другой трактат Хаййама, а именно: «Комментарии к трудностям во введениях книги Евклида». Это сочинение славнейшего шейха, имама, Доказательства истины, Абу-л-Фатха Омара ибн Ибрахима ал-Хаййама в трех книгах.
Этот трактат начинается также не слишком оригинально: «Во имя аллаха милостивого, милосердного. Хвала аллаху, господину милости и милосердия, мир избранным его рабам и в особенности государю пророков Мухаммеду и всему его чистому роду».
Но непосредственно строчкой дальше сразу и неожиданно прорывается: «Изучение наук и постижение их с помощью истинных доказательств необходимо для того, кто добивается спасения и вечного счастья».
Стоп! Тот, кто должен был понять, понял. Сказано уже слишком много. И дальше плывет распевный душеспасительный речитатив.
«В особенности (ну, конечно, конечно!) это относится к общим понятиям и законам, к которым прибегают для изучения загробной жизни, доказательства существования души и ее вечности, постижения качеств, необходимых для существования всевышнего и его величия (Хаййама просто безумно волнует величие аллаха), ангелов, порядка творения и доказательства пророчеств государя, пророка (то есть Мухаммеда), повелениям и запрещениям которого повинуются все творения (кстати, в свое время в уделе его – Медине – Мухаммед навел-таки весьма жесткий порядок, и лучшие из творений аллаха ходили у него по струнке) в соответствии с соизволением всевышнего аллаха и силой человека».
Придраться невозможно, кажется.
Увы, нет!
Весь этот абзац – ересь, и ересь довольно опасная для правоверных исповедователей ислама.
И пусть этот поклонник Аристотеля прикрывается лицемерно-благочестивыми фразами, его поймут не только единомышленники.
Счастье еще Хаййама, что в среднем ислам более веротерпимая религия, чем христианство. В среднем. На костер, пожалуй, не отправят. Но профессионально точный удар кинжала заработать можно. Очень можно. Даже за не слишком явную ересь. Впрочем, можно и избежать.
Далее идет сам трактат (о нем мы еще вспомним, конечно), ну, а по дороге усердно возносится хвала всевышнему аллаху, его лучшему творению – Мухаммеду, всему чистому роду Мухаммеда, прекрасной помощи аллаха и еще чему-то.
Хвала аллаху!
Сколь легко и весело было жить его творениям. Я разумею – мыслящим творениям. Повторим, однако, что милосердные служители милосердного Христа заведомо оттеснили милосердного аллаха с пьедестала почета, и снова начнем «во имя аллаха милостивого и милосердного».
Биография Омара Хаййама известна нам очень и очень… короче, почти неизвестна. Сведения о нем скудны и отрывочны. Путем довольно сложных «астрономических» выкладок на основе косвенных данных даты его жизни предположительно фиксируются 1048–1131. Либо 1040–1122. Либо 1048–1122.
Родился он в Нишапуре. Город этот тогда входил в Хорасанский эмират, теперь Нишапур на территории Ирана. Стихи Хаййам писал на литературном персидском языке, а работы – по-арабски. Поскольку, как объясняют языковеды, и современный персидский и таджикский развились из средневекового персидского, сейчас можно свободно объявлять Хаййама и персидским и таджикским поэтом.
За несколько лет до рождения Хаййама его район «сонного и спокойного» Востока был ареной ожесточеннейших сражений, и предводители кочевого племени сельджуков (туркмен), разгромив предыдущих султанов, быстро организовали колоссальную империю и свеженькую династию сельджукских султанов.
Далее все развивалось по стандартной схеме. Борьба за престол между претендентами. Борьба султанов с феодалами и отчаянное стремление феодалов поцарствовать хоть в малом краю, но самостоятельно. Лет через сто двадцать империя распалась окончательно, но этот срок, ничтожный для истории, вполне достаточен для жизни одного человека.
Хаййам жил в империи сельджуков и долгое время жил спокойно, ибо у него был покровитель. Сильный покровитель.
Великий визирь Низам ал-Мулк.
Низам ал-Мулк был покорен идеей сильного государства. И он создавал его всячески. Очевидно, он полагал, что культура и науки будут способствовать укреплению империи, и так же, как милые наши Птолемеи, всячески покровительствовал ученым.
Он и сам не чуждался литературы и написал весьма неглупый, основательный и очень интересный для историков труд «Книгу о правлении» – некое настольное руководство для султанов, которых ох как надо было образовывать. К этой популяризаторской работе он привлекал и своих ученых, в частности Хаййама.
Но прежде чем Хаййам попал под крылышко к Низам ал-Мулку, ему пришлось изрядно помыкаться. Когда султаны организуют империю, жителям страны бывает не слишком сладко.
Сведения о годах юности Хаййама совсем уж скудны. Вероятно, он учился в Нишапуре.
Пишут, что «в семнадцать лет он достиг глубоких знаний во всех областях философии».
Пишут, что был он «глубокий знаток языковедения, мусульманского права и истории» и был последователь Авиценны (Абу-Али Ибн-Сина).
Рассказывают, что память его была необыкновенна и однажды он выучил книгу наизусть, прочитав ее семь раз.
Говорят также, что был он «мудрец, сведущий во всех областях философии, особенно в математике».
Короче – все источники (так же как и творчество Хаййама) показывают, что был он энциклопедически образованным человеком исключительного дарования и ясного ума.
Но все это не столько помогало ему поначалу, сколько портило жизнь. Из Хорасана пришлось уехать, и мы встречаем Хаййама в Самарканде.
Естественно, покровитель необходим. Хаййам находит его. Мы не знаем как. Это «славный и несравненный господин судья судей имам господин Абу-Тахир, да продолжит аллах его возвышение и повергнет тех, кто питает против него зависть и вражду».
Попросту говоря, это главный судья Самарканда. Чиновник значительный. Но один аллах ведает, обладал ли он хоть крупицей тех достоинств, которые так старательно и сладкоречиво описывает Хаййам в своем алгебраическом трактате. А чуть раньше, во введении к тому же трактату, Хаййам пишет глухо и горько:
«…Я был лишен возможности систематически заниматься этим делом (алгеброй. – В. С.) и даже не мог сосредоточиться на размышлениях о нем из-за мешавших мне превратностей судьбы.
Мы были свидетелями гибели ученых, от которых осталась малочисленная, но многострадальная кучка людей. Суровости судьбы в эти времена препятствуют им всецело отдаться совершенствованию и углублению своей науки.
Большая часть из тех, кто в наше время имеет вид ученых, одевает истину ложью, не выходя в науке за пределы подделки и притворяясь знающими.
Тот запас знаний, которым они обладают, они используют для низменных плотских целей. И если они встречают человека, отличающегося тем, что он ищет истину и любит правду, старается отвергнуть ложь и лицемерие и отказаться от хвастовства и обмана, они делают его предметом своего презрения и насмешек».
Когда читаешь этот отрывок, как-то пропадает охота рассказывать историю Хаййама в спокойном, чуть ироничном тоне объективного наблюдателя. Тут уже не рассуждения о великом и милосердном аллахе. Здесь жизнь, невеселая и жестокая жизнь, и пишет эти горькие слова совсем еще молодой человек, почти юноша. Ему в это время никак не более двадцати пяти лет. Эта охота пропадает тем более, что через четыре века почти то же самое напишет Галилей, а еще через пять столетий – Эйнштейн.
И не знаю, что хотел сказать сам Хаййам, но следующая фраза: «Аллах помогает нам во всех случаях, он наше прибежище» и потом длинный-предлинный абзац восхвалений почтенного самаркандского судьи воспринимаются как жестокая, злая и тонкая издевка.
Но не будем увлекаться.
Все же Хаййаму повезло. Покровитель отыскался. Причем такой, что «…его присутствие расширило мою грудь, его общество возвысило мою славу, мое дело выросло от его света и моя спина укрепилась от его благодеяний».
Видите, как все благополучно. Но это лишь начало. Аллах не скупится на щедроты.
Далее Хаййам удостоен (слава аллаху!) дружбы самого Бухарского хакана. Что точно значит этот титул, я не очень знаю, да и не старался узнать. Во всяком случае, это был какой-то царек. И историк (современник Хаййама) с понятным оттенком зависти сообщает, что «…хакан Шаме ал-Мулк крайне возвеличивал его и сажал имама Омара на свой трон».
Но поистине благодеяния аллаха неисчерпаемы. И в 1074 году сам Малик-шах (а хакан всего лишь его вассал) зовет Хаййама к своему двору в Исфахань и – радуйтесь же, правоверные! – делает его своим надимом.
Вы хотите узнать, что такое надим?
Это несколько странная должность.
Султану нужны собеседники, наперсники по совместительству, телохранители. Это и есть обязанности надима. Надим участвует в трапезе правителя, беседует с ним, развлекает его. Выдумывает, как бы убить время. И конечно, восхищается. Восхищается повелителем. Его мудростью. Его отвагой. Его красотой. Его поэтическим даром. Его конями. И соколами. И наложницами. Не знаю, правда, показывали ли надимам цветы гарема. И…
Впрочем, к чему дилетантские рассуждения. Дадим слово сиятельному покровителю Хаййама Низам ал-Мулку.
Цитируем «Книгу о правлении» – «Сиасет-Наме».
«От надима несколько польз: одна та, что он бывает близким другом государя, другая та, что, находясь с государем день и ночь, он бывает вместо телохранителя, и в случае необходимости еще та польза – удали ее аллах, – если предстоит какая-нибудь опасность, он жертвует своим телом, заменяет своим телом щит против той опасности, четвертая та, что тысячу родов слов можно сказать с надимом, чем с теми, кто является исполняющими должность амилей и чиновников государя, пятая та, что они сообщают ему о делах царей, как и лазутчики, шестая та, что они ведут всякого рода разговоры без принуждения о добром и плохом, в пьяном и трезвом виде, в чем много полезного и целесообразного».
Как видите, целых шесть различных польз. Но далеко не всякий может быть на этом почетном посту. Безусловно, не всякий.
«Надо, чтобы надим был от природы даровит, добродетелен, пригож, чист верой, хранитель тайн, благонравен, он должен быть рассказчиком, чтецом веселого и серьезного, помнить много преданий, всегда быть добрословом, сообщителем приятных новостей, игроком в нарды и шахматы, если он может играть на каком-либо музыкальном инструменте и владеть оружием, еще лучше. Надим должен быть согласен с государем. На все, что произойдет или скажет государь, он должен отвечать: «Отлично, прекрасно», он не должен поучать государя: «Сделай это, не делай того; почему поступил так?»; он не должен так говорить, а то государю станет тягостно и произойдет отвращение. Надимам приличествует устраивать все, что имеет отношение к вину, развлечениям, зрелищам, дружеским собраниям, охоте, игре в чоуган и тому подобному, так как они для того и нужны».