Текст книги "Журнал «Вокруг Света» №04 за 2004 год"
Автор книги: Вокруг Света Журнал
сообщить о нарушении
Текущая страница: 3 (всего у книги 12 страниц)
Так что создание универсальных систем не за горами, и уже в ближайшем будущем появятся комбинированные электронно-вычислительные комплексы, сочетающие в себе достоинства обычных ЭВМ и гибкость нейрокомпьютеров. Эти системы, видя клиента насквозь, будут различать его язык, национальность, возраст, пол, социальный статус, образовательный ценз и многое другое, даже не обращаясь к данным, записанным на индивидуальном идентификационном микрочипе. А вот насколько человеку будет приятно общение со столь проницательным электронным визави, в данном случае будет зависеть не от архитектуры нейросетей искусственного мозга, а от той программы поведения, которую заложат программисты, а также от возможностей ее самообучения в процессе живого общения с подопечным или хозяином.
Сегодня вряд ли кто-нибудь усомнится в том, что нейросети удачно дополняют традиционные программные методы в целом ряде компьютерных приложений. А также позволяют существенно повысить производительность при решении высокоинтеллектуальных задач, по распознаванию, классификации, предсказанию и оптимизации всего и вся.
Слои для интеллекта Современная нейросеть, или нейрокомпьютер, состоит из нескольких слоев элементарных нейронов. Первый слой – это многоканальный вход, поставляющий подлежащую обработке информацию в цифровом или аналоговом виде. Затем следует один (или несколько) скрытых слоев, анализирующих эту информацию. Ее обработка может идти либо строго последовательно (без обратных связей), либо посредством возвращения уже обработанной информации на вход системы. Последний, внешний, слой нейронов формирует выходные данные в удобном для работающего в связке с нейросетью компьютера формате. И обработка информации, и выдача результата могут происходить и в цифровом виде (когда все и вся кодируются последовательностью нулей и единиц), и в аналоговом (когда именно электрическое напряжение является анализируемой величиной).
Зачем нужны нейросети
Автоматизация производства
Оптимизация режимов производственного процесса, комплексная диагностика качества продукции (с помощью ультразвука, оптики, гамма-излучения), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника
Медицина
Обработка изображений, мониторинг состояния пациентов, диагностика, анализ эффективности лечения, очистка показаний приборов от шумов. Вычислительная система, представляющая собой модель биохимических процессов, протекающих в нервных тканях
Экономика и бизнес
Предсказания рынков, банкротств, оценки риска невозврата кредитов и стоимости недвижимости, автоматическое рейтингование, оптимизация товарных и денежных потоков, автоматическое считывание чеков и форм
Безопасность и охранные системы
Идентификация личности, распознавание голосов, лиц в толпе, автомобильных номеров, анализ аэрокосмических снимков, мониторинг информационных потоков, обнаружение подделок
Авиация
Автоматическое пилотирование, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета. Условия, в которых работают авиаприборы, накладывают сильные ограничения на их размер, быстродействие и помехозащищенность
Связь
Сжатие видеоинформации, быстрое кодирование/декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов. Особые требования здесь предъявляются к возможности создания автономных, мобильных решений, допускающих встраивание в переносные видеокамеры, сотовые телефоны и тому подобное
Математическая статистика, логика и вычислительная техника
Вычислительная система, автоматически формирующая описание характеристик случайных процессов, имеющих сложные функции распределения. Нейрокомпьютер, алгоритм работы которого представлен логической сетью элементов частного вида (нейронов) с полным отказом от классических логических операций. Вычислительная система, в которой процессорный элемент однородной структуры упрощен до уровня нейрона, резко усложнены связи между элементами и программирование перенесено на изменение весовых коэффициентов связей между процессорными элементами
Приключения нейросетей
1904– испанский ученый-гистолог Сантьяго Рамон-и-Кахаль доказал, что нервная система состоит из нейронов особых нервных клеток. Спустя два года он и его учитель Камилло Гольджи получили Нобелевскую премию в области физиологии и медицины за изучение нервной системы
1943– выход в свет работы Дж. Мак-Каллока и У. Питтса «Логическое исчисление идей, относящихся к нервной деятельности», в которой были впервые сформулированы основные принципы построения искусственных нейронов и нейронных сетей
1957– В.И. Арнольд и А.Н. Колмогоров решили 13-ю проблему Гильберта, доказав, что любую непрерывную функцию многих переменных можно представить в виде суперпозиции непрерывных функций одной переменной и функции сложения
1959– публикация статьи Дж. Мак-Каллока «О чем глаза лягушки говорят мозгу лягушки», где впервые было введено понятие нейрона-детектора, определенным образом реагирующего на внешние раздражители
1962– нейрофизиолог Ф. Розенблатт создал модель однослойной нейронной сети, названной персептроном, которая была использована для попыток предсказания погоды, анализа электрокардиограмм и распознавания рукописных и печатных текстов и букв
1969– выход критической работы М. Минского, в которой доказывалась невозможность использования однослойных сетей типа персептрона для многих классов задач, из-за чего эта область науки стала непопулярной на долгие годы
1970-е– над исследованием нейросетей продолжали работать очень немногие кибернетики (Т. Кохонен, С. Гроссберг, Дж. Андерсон, Г. Бриндли, Д. Мар, В. Дунин-Барковский, А.Фролов). Прогнозы Минского оказались чрезмерно пессимистичными – многие из неразрешаемых, по его мнению, задач успешно решались многослойными нейросетями
1982– американский биофизик Дж. Хопфилд предложил интересную модель сети, получившей его имя, а позднее были разработаны: сеть встречного потока (Р. Хект-Нейлсен), двунаправленная ассоциативная память (Б. Коскоу)
Середина 1980-х– возникновение настоящего нейросетевого бума по причине возрастающего интереса людей к изучению работы нервной системы и возникновению ряда новых нейромоделей
1986– выход работы Д.Е. Румельхарта, Дж. Е. Хинтона, Р. Дж. Уильямса, в которой был предложен эффективный способ обучения многослойных нейросетей, методом обратного распространения ошибки
1989– анализ варианта 13-й проблемы Гильберта в контексте нейросетевых алгоритмов и доказательство того, что всякую непрерывную функцию нескольких переменных можно с любой точностью приблизить с помощью обычного трехслойного персептрона с достаточным количеством нейронов в скрытом слое
1990-е– развитие новых нейропарадигм несколько замедлилось, зато нейросети и нейрочипы прочно вошли в инженерную практику – нейросетевые методы начали активно использоваться в таких кибернетических направлениях, как «Искусственная жизнь» и «Адаптивное поведение», наряду с традиционным «искусственным интеллектом»
Михаил Алюшин, кандидат технических наук
Постулаты относительного мира

В начале XX века физика пережила две революции – появление теории относительности и рождение квантовой механики, что в совокупности кардинально изменило старые представления и взрастило совершенно новую науку об устройстве мира. Благодаря Эйнштейну, соединившему пространство, время и материю, получилось, что все, что мы видим и воспринимаем в нашем мире, зависит от выбранной нами точки наблюдения и скорости нашего перемещения по отношению к изучаемому объекту.
Две теории – два мира
В 1905 году в немецком журнале «Анналы физики» («Annalen der Physik») появилась самая знаменитая в XX веке научная работа по физике – статья Альберта Эйнштейна «К электродинамике движущихся тел», излагающая основные принципы теории относительности. В современной классификации эта теория получила название «специальной», сокращенно СТО.
Впрочем, устоявшаяся терминология не совсем точно отражает суть вопроса, поскольку в данном случае слово «относительность» означает как раз абсолютность и неизменность скорости света и основных законов природы для наблюдателей в разных системах отсчета. Причем в этой части Эйнштейн вполне солидарен с Галилеем, который утверждал, что никакие физические измерения, к примеру, в трюме парусного корабля не позволят определить, стоит корабль на якоре или равномерно плывет при попутном ветре. Стало быть, нет абсолютного движения тел, есть только относительное – по отношению к другим телам или к некой системе отсчета.
При решении различного рода физических задач ученые достаточно часто переходят из одной системы координат в другую, используя при этом соответствующие правила преобразовании координат. В «старой» физике Ньютона и Галилея время было единым для всех систем отсчета, и при переходе от одной системы к другой преобразовывались только пространственные координаты, новая же физика стала использовать преобразования, «перепутывающие» пространственные координаты и время. Именно из-за того, что основное внимание в СТО уделено анализу одних и тех же экспериментов относительно разных систем отсчета, и возникает понятие относительности. СТО отвергла, казалось бы, естественный взгляд на мир: «пространство – отдельно, время – отдельно». Вместо этого она рассматривает единое четырехмерное пространство-время с особой геометрией Минковского (польский математик, детально исследовавший эту геометрию вскоре после появления СТО). Пространства, как известно, состоят из точек, и в данном случае точка четырехмерного пространства событий – это три обычные пространственные координаты плюс время. Роль привычного для нас евклидова расстояния, которое мы измеряем обычной линейкой, в четырехмерном мире играет так называемый интервал. Мир СТО устроен так, что квадрат интервала между двумя различными событиями бывает не только положительной, но и отрицательной величиной, и даже равной нулю.
Многое из того, что ранее представлялось абсолютным, в СТО начало зависеть от движения наблюдателя – это и пространственные размеры тел, и промежутки времени, и даже понятие одновременности. Приведем простой пример.
Стоящему на платформе наблюдателю мчащийся мимо него поезд кажется короче, чем находящимся внутри пассажирам. Время для пассажиров поезда идет медленнее, чем для наблюдателя. Включенный и в первом, и в последнем вагонах свет пассажиры увидят одновременно, наблюдатель же, стоящий на платформе, решит, что в первом вагоне свет зажегся раньше.
Кроме того, с момента появления СТО скорость света в пустоте стала мировой константой, не зависящей ни от движения источника, ни от перемещения наблюдателя. Эта особенность электромагнитных колебаний – из-за огромной величины скорости света (почти 300 тыс. км/с) – долгое время оставалась для физиков неизвестной. Именно это свойство света постоянство его скорости – стало экспериментальным основанием СТО. Этот факт был хорошо известен ученым еще до создания СТО благодаря наблюдениям за двойными звездами и опытам Майкельсона – Морли.
Астрономы, наблюдая за удаленными двойными звездными системами, не замечали никаких особенностей в видимом движении звезд по сравнению с ближайшими к Земле двойными звездами. И это однозначно указывало, что скорость света не складывается со скоростью звезды и свет летит в безвоздушном пространстве со своей, зависящей лишь от свойств этого пространства скоростью.
Опыты Майкельсона и Морли, направленные на выявление зависимости скорости света от движения наблюдателя, привели к отрицательному результату, продемонстрировав, что скорость распространения света – как вдоль земной орбиты, так и поперек ее – одинакова и не влияет на движение источника и приемника света.
Само по себе постоянство скорости света, казалось бы, не могло сильно повлиять на привычную евклидову картину мира с однозначной интерпретацией всех событий и четкой причинно-следственной связью между ними. Но, по Эйнштейну, получалось так, что скорость света – не просто ни от чего не зависящая мировая константа, это еще и предельная скорость, с которой могут перемещаться любые материальные тела, информационные сигналы и физические поля. Таким образом, на фундаментальном уровне сверхсветовое движение оказалось невозможным, и в связи с этим кардинально менялся и весь окружающий мир.
Несмотря на все странности, СТО на протяжении последнего столетия остается основой для описания огромной массы физических явлений. Без нее невозможно понять ни превращений элементарных частиц, ни ядерных реакций, ни строения небесных тел. Теория получает эффективное подтверждение как на любых масштабах от ядерных до галактических, так и в колоссальном диапазоне скоростей и энергий. При малых же скоростях СТО «переходит» в классическую механику Галилея – Ньютона – со свойственным ей сложением скоростей тел и единым для всех наблюдателей временем и пространством.
Смещение перигелия
В начале ХХ века были известны всего два физических поля – электромагнитное и гравитационное. Появившаяся СТО отлично справилась с описанием поведения электрических зарядов и полей при любых скоростях, чего не получалось в подходе Галилея. Но ньютоновская теория тяготения, служившая практически идеальной основой небесной механики и земной физики, по-прежнему формулировалась в старых понятиях абсолютного пространства и времени и не вписывалась в новые представления.
После создания СТО неоднократно предпринимались попытки описать гравитационное поле в пространстве Минковского, надеясь таким образом включить в рассмотрение СТО быстродвижущиеся тяготеющие объекты, а ньютоновскую теорию гравитации получить в пределе малых скоростей движения.
Великий французский математик Анри Пуанкаре, фактически одновременно с Эйнштейном «открывший» СТО, первым попытался распространить ее и на гравитацию, предположив конечность скорости распространения гравитационного поля. Мысли о том, что гравитация передается со скоростью света, высказывались, конечно, и раньше. Подобные теории, однако, встретились с серьезными трудностями, и одна из них – неспособность объяснить аномальное вековое смещение перигелия орбиты Меркурия, необъяснимое и в теории Ньютона. И пусть величина смещения была едва заметна – 43 угловые секунды в столетие, – но уже тогда она вполне достоверно была получена из астрономических наблюдений.
По законам Кеплера, являющимся следствием закона всемирного тяготения Ньютона, все планеты Солнечной системы движутся по замкнутым эллиптическим орбитам, а у Меркурия этот эллипс со временем немного поворачивается, в итоге он движется по незамкнутой спиралевидной траектории. Кроме того, Меркурий – самое быстрое тело Солнечной системы, и для искомой «гравитации высоких скоростей» объяснение этого эффекта должно было стать первым пробным камнем.
Было еще одно обстоятельство, делавшее попытки описать гравитацию в рамках СТО малопривлекательными. Со времен Галилея было известно, что если исключить сопротивление воздуха, то самые разные тела – кусок дерева, камень, слиток свинца, сосуд с водой и так далее – падают на Землю с совершенно одинаковым ускорением. Подтверждением того является известный школьный опыт, в процессе которого легкое перышко летит на одном уровне со свинцовой дробинкой, если их поместить в длинную трубку с откачанным воздухом. Универсальность ускорения свободного падения для разных тел была подтверждена с высокой точностью в конце XIX века опытом Этвеша, установившего эквивалентность между силой притяжения Земли и инерционным центробежным ускорением, вызванным суточным вращением нашей планеты (ошибка не превышала одной 10-миллионной процента). В уравнениях Ньютона это проявляется как равенство между инертной и гравитационной массами – так называемый «принцип эквивалентности». Сама теория Ньютона объяснить это равенство не способна, не могли это сделать и ее обобщения в рамках СТО.
Инертная масса, фигурирующая во втором законе механики Ньютона («ускорение равно силе, деленной на массу»), и гравитационная, показывающая, как тело реагирует на поле тяготения, – величины, по существу, разной физической природы. Эйнштейну было ясно, что равенство инертной и гравитационной массы не может быть случайным совпадением и должно иметь глубокие причины. Универсальность действия гравитации на тела привела его к идее, ставшей основой ОТО (Общей теории относительности): гравитационное поле есть свойство самого пространства, причем свойство, меняющееся от точки к точке, ведь поле тяготения, вообще говоря, неоднородно. Следовательно, пространство Минковского – плоское, одинаковое во всех точках и во всех направлениях, – не годится, гравитация должна его искажать и искривлять. Так возникает идея кривизны физического пространства-времени.
У всякой фундаментальной идеи, как правило, обнаруживаются предтечи, и главная идея ОТО – не исключение. Еще в 1826 году первооткрыватель неевклидовой геометрии Н.И. Лобачевский говорил об экспериментальном определении геометрии мира. Зависимость кривизны пространства от свойств заполняющей его материи предполагали Б. Риман (1854 год) и В. Клиффорд (1876 год), причем у последнего можно найти и мысль о кривизне, распространяющейся волнами. Идеи, как говорится, витали в воздухе, оставалось их «поймать», отфильтровать и оформить в стройную, логически непротиворечивую теорию.
Плод, что называется, созрел к 1915 году. Общая теория относительности стала еще одним шагом в сторону от простых и наглядных представлений классической физики. В ней четырехмерное пространство-время (часто для краткости говорят просто «пространство») стало искривленным. К тому моменту уже существовал математический аппарат для описания таких пространств – геометрия Римана, она и стала языком новой физической теории. В римановой геометрии, а следовательно, и в ОТО, основная характеристика пространства – это так называемый метрический тензор (метрика), несущий информацию об интервалах между точками-событиями. Метрика записывается как симметричная матрица 4 на 4 и может содержать до 10 различных компонент. Она подчиняется сложным математическим уравнениям. В общем случае это система из десяти нелинейных дифференциальных уравнений в частных производных относительно десяти неизвестных функций четырех пространственно-временных координат. Эта система называется уравнениями Эйнштейна, или Гильберта – Эйнштейна, как иногда говорят, желая подчеркнуть роль великого немецкого математика в создании ОТО. Основной их смысл – связь кривизны пространства с распределением и движением материи («материя говорит пространству, как ему искривляться»). Всякое их решение описывает какую-то мыслимую конфигурацию гравитационного поля. Некоторые решения уравнений Эйнштейна имеют вид колебаний метрики, то есть гравитационных волн, распространяющихся со световой скоростью.
Их источниками во Вселенной должны быть многочисленные нестационарные процессы – движение двойных звезд, взрывы сверхновых, образование черных дыр и так далее. На их регистрацию сейчас направлены активные усилия экспериментаторов. Простой и напрашивающийся образ гравитации как кривизны пространства – тяжелая гиря, продавливающая натянутый батут. Искажения его плоской поверхности отчасти передают суть дела – чем ближе к тяготеющему телу, тем сильнее искривление и круче наклон образующейся от гири «впадины», а мелкие монетки, сползающие к гире, – чем не планеты, «падающие» на Солнце? И еще волны, разбегающиеся от удара по упругой ткани… Аналогия, конечно, довольно грубая, ибо никакой пространственный образ не передаст своеобразие объединенной пространственно-временной геометрии. В чем же такой образ верен, так это в том, что любая гладкая искривленная поверхность на достаточно малых участках почти плоская. Так кривизна земной поверхности совершенно не чувствуется в масштабах городского квартала, но хорошо заметна с палубы корабля в открытом море. Как специальная теория относительности не отменила механику Ньютона (пригодную на малых скоростях), так и ОТО не отменяет СТО, которая справедлива на любом маленьком «клочке» искривленного, но гладкого пространства-времени. Чем меньше размеры «клочка» по сравнению с радиусом кривизны пространства, тем точнее выполняются СТО и ее многочисленные следствия.
Итак, со специальной теорией относительности все более или менее понятно, но куда девалась теория гравитации Ньютона, которая работала совсем неплохо? Естественно, за ней осталось ее законное место: ньютоновские уравнения получаются из уравнений ОТО в пределе малой кривизны (то есть слабых гравитационных полей) и малых относительных скоростей тяготеющих тел. Большинство наблюдаемых явлений попадает как раз в такой вот «слабый» режим малых скоростей и полей. Правда, в ОТО совсем другая интерпретация гравитационных сил: теперь это не силы, а некоторые геометрические характеристики мировых линий, то есть кривых, по которым движутся тела в четырехмерном пространстве-времени. С точки зрения ОТО тело, свободно падающее в поле тяготения, движется вообще без внешних сил, и его мировая линия – геодезическая (или кратчайшая) в кривом четырехмерном мире аналог прямой линии в плоском пространстве.
ОТО охотно приняла экспериментальный вызов и с удивительной точностью объяснила упомянутую выше аномалию в движении Меркурия, бывшую ранее камнем преткновения всех теорий тяготения. Другой эффект ОТО, поддающийся проверке, – действие гравитации на свет, приводящее к искривлению светового луча в поле небесного тела. По расчетам Эйнштейна, проходя рядом с Солнцем, световой луч должен отклониться на угол в 1,75 угловой секунды. Аналогичный эффект можно получить и в ньютоновской теории, представляя свет потоком частиц, летящих со скоростью света, но тогда расчетное отклонение будет вдвое меньше – около 0,87 секунды при пролете у самого края светила.
Полное солнечное затмение 29 мая 1919 года дало ученым возможность измерить этот эффект, фотографируя изображения звезд рядом с закрытым Луной солнечным диском и сличая полученные кадры с обычными ночными снимками того же участка звездного неба. На картинках с затмением звезды оказались чуть-чуть отодвинуты от края диска по сравнению с их ночными положениями. Угол отклонения варьировался, по данным разных наблюдателей, в пределах от 1,61 до 1,98 угловой секунды возле края диска, постепенно уменьшаясь по мере удаления от него, при ошибке в пределах 0,30. Таким образом, небо подтвердило правоту Эйнштейна!
Это стало подлинным триумфом – теория, рожденная на кончике пера, отлично подтверждалась на практике. И до сих пор успешно проходит все экспериментальные тесты.
Синтез физики с геометрией
Впрочем, не будем забегать вперед и вернемся к 1920—1930-м годам – ко времени активного проникновения физики в микромир и формирования языка, адекватного его свойствам – квантовой механики, позднее – квантовой электродинамики и еще шире – квантовой теории поля. Квантовая теория поначалу строилась в рамках старых, ньютоновских понятий абсолютного пространства и абсолютного времени (нерелятивистская квантовая механика) и с немалыми усилиями осваивала мир высоких скоростей и больших энергий, обретая содержание в четырехмерном пространстве-времени Минковского.
Понимание гравитации как кривизны пространства придавало ОТО исключительный характер по сравнению со всей остальной физикой, а это противоречило важному как для философов, так и для физиков ощущению единства материального мира. С другой стороны, в самом теоретическом выстраивании ОТО возникал ряд важных проблем, одна из них известна как проблема энергии. Понятия энергии и других сохраняющихся величин играют весьма существенную роль в построении квантовой теории. В плоском пространстве без затруднений формулируются законы сохранения энергии, импульса, момента импульса – они, как известно, связаны с симметрией пространства относительно временных сдвигов, пространственных трансляций и поворотов. В кривом пространстве подобных симметрий нет, поэтому определить энергию и импульс гравитационного поля в ОТО без противоречий было затруднительно.
По этой и некоторым другим причинам не все физики согласились с ОТО. Попытки построения теории гравитации в неискривленном пространстве Минковского продолжаются и по сей день. В отличие от первых подобных попыток новые авторы научились объяснять эффекты, «сделавшие имя» ОТО: в них гравитация представляется полем с нормальными законами сохранения и с надеждами на квантование наравне с другими физическими полями. Согласно книге «Теория и эксперимент в гравитационной физике» известного американского специалиста в области релятивистской теории гравитации К. Уилла, к 1960 году таких теорий насчитывалось не менее 25. Но ни тогда, ни впоследствии они не вызвали сколько-нибудь заметного интереса, хотя их приверженцы с этим не согласятся. А вот тенденция к «сведению всей физики к геометрии» породила целый ряд новых идей, которые и поныне остаются актуальными в теоретической физике. В этой связи ОТО рассматривалась как основа для обобщения, которое достигалось за счет введения более сложных видов геометрии, чем риманова (Вейль, Эддингтон, Картан), повышения размерности пространства-времени путем введения дополнительных невидимых координат (Калуца, Клейн), расширения требований к симметрии исходной формулировки теории (принцип калибровочной симметрии Вейля). Ставилась амбициозная задача, которая выходила за рамки простого объединения электромагнитного и гравитационного полей – получить из единого поля заодно и характеристики тех немногих элементарных частиц, которые к тому времени были уже известны. Альберт Эйнштейн не только не остался в стороне от этих усилий, но и был явным лидером построения единой теории поля на основе ОТО, оставаясь таковым до конца жизни… Впрочем, описание этих попыток только отдаляет нас от основной темы – гравитации. Приведем слова, сказанные одним из создателей квантовой механики, Вернером Гейзенбергом, в начале 1960-х: «Это великолепная в своей основе попытка... Но в то самое время, когда Эйнштейн занимался единой теорией поля, непрерывно открывались новые элементарные частицы, а с ними – сопоставленные им новые поля. Вследствие этого для проведения эйнштейновской программы еще не существовало твердой эмпирической основы, и попытка Эйнштейна не привела к каким-либо убедительным результатам»… Более того, задача построения единой «теории всего на свете» остается центральной задачей теоретической физики на ближайшее будущее.
Гравитационный прорыв
К концу 1950-х физике были известны уже не два, а четыре фундаментальных взаимодействия – гравитационное, электромагнитное, сильное ядерное (объединяющее протоны и нейтроны в атомные ядра) и слабое ядерное (отвечающее за многие превращения частиц и ядерные реакции, к примеру бета-распад). Причем гравитационное взаимодействие в этом ряду представлялось чем-то малосущественным – применительно к частицам оно было во много раз слабее даже слабого взаимодействия и казалось совершенно неважным в физике микромира. Все новые и новые экспериментальные данные о трех остальных взаимодействиях добывались на ускорителях. Бурно развивалась квантовая теория поля в плоском пространстве-времени на основе СТО, ставя и решая проблемы физики элементарных частиц. На этом фоне занятия гравитацией казались едва ли не чудачеством. Важность ОТО как фундаментальной теории признавалась, но ее экспериментальный базис был невелик: один эффект (в движении Меркурия) – проверка с точностью около 1% и один (отклонение света вблизи Солнца) – с точностью около 30%.
Космологические наблюдения могли свидетельствовать лишь о нетривиальности геометрии Вселенной, но никак не о справедливости тех или иных уравнений гравитации. Американцу Кипу Торну, в то время студенту, а ныне одному из корифеев гравитационной физики, его учителя не советовали заниматься ОТО – теорией, по их мнению, очень слабо связанной с остальной физикой и астрономией. Но он не послушался и стал не только выдающимся специалистом в области гравитационных волн, но и исследователем гипотетических пространственно-временных туннелей.
Ситуация стала меняться только в конце 1950-х – начале 1960-х. Развитие экспериментальной техники позволило запланировать и осуществить ряд новых проверок теории гравитации, а астрономические наблюдения все убедительнее свидетельствовали о реальности источников сильных гравитационных полей в космическом пространстве. Возросло и число альтернативных теорий гравитации. Были предсказаны десятки новых эффектов, сопровождаемые не меньшим числом предложений по их проверке.
На этом фоне еще более поразительным выглядит то обстоятельство, что именно ОТО подтверждается со все возрастающей точностью. Так, один из столпов теории – принцип эквивалентности – сегодня проверен с фантастической точностью (одна 10-миллиардная доля процента).
Впрочем, похоже, что возможности экспериментов на поверхности Земли на этом себя и исчерпали – слишком уж мешают исследованиям многочисленные атмосферные, сейсмические и техногенные шумы. Считается, что существенно повысить точности позволит планируемый спутниковый эксперимент STEP (Satellite Test of the Equivalence Principle). Принцип эквивалентности предсказывается всеми обобщениями ОТО, в которых гравитация отождествляется с кривизной.
Другим, не менее универсальным эффектом, одинаковым для целого класса теорий, представляется так называемое гравитационное красное смещение. Суть его проста и заключается в том, что фотон, удаляясь от тяготеющего центра, теряет энергию и перемещается в более длинноволновую часть спектра – иначе говоря, «краснеет». А приближаясь к тяготеющему центру – «голубеет». Для сравнения: камень, подброшенный вверх, теряет скорость, а падающий вниз – увеличивает ее. В ОТО этот эффект связывается с замедлением хода часов: чем ближе они к источнику гравитационного поля, тем их ход медленнее. Проверен он как для фотонов (опыты 1965 года с резонансным поглощением гамма-фотонов атомными ядрами), так и непосредственно для часов (сдвиги показаний прецизионных атомных часов при полетах на самолетах). В действительности это тот самый эффект, который превращает ОТО из абстрактной теории в реально работающий инструмент. Глобальные спутниковые навигационные системы типа GPS, активно используемые моряками, военными и спасателями, включают в себя сверхточные часы. На точность их хода влияют и скорость спутника (эффект СТО), и гравитационное поле Земли (эффект ОТО), поэтому поправки на все это закладываются в программы обсчета сигналов, и летающие часы периодически «замедляют» с тем, чтобы они шли, как земные. Причем за один оборот спутника вокруг Земли набирается такая разность хода часов, пренебрежение которой ведет к ошибке в 50—100 м при определении координат наземного приемника. Эффект отклонения света (и радиоволн) – также многократно и с большой точностью перепроверенный – стал основой теории гравитационного линзирования – главного метода обнаружения сгустков скрытого вещества во Вселенной. Еще одно подтверждение ОТО – измерение задержки электромагнитного сигнала в поле Солнца (эффект Шапиро). Эта задержка обусловлена не замедлением скорости хода сигналов (скорость света всюду одинакова), а удлинением их пути по сравнению с расчетным для плоского пространства.








