Текст книги "Биология. Общая биология. Базовый уровень. 10 класс"
Автор книги: Владислав Сивоглазов
Соавторы: Екатерина Захарова,Инна Агафонова
сообщить о нарушении
Текущая страница: 7 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]
11. Клеточное ядро. Хромосомы
Вспомните!
Какие клетки не имеют ядер?
В каких частях и органоидах клетки содержится ДНК?
Каковы функции ДНК?
Обязательным компонентом всех эукариотических клеток является ядро (лат. nucleus, греч. karyon). Клеточное ядро хранит наследственную информацию и управляет процессами внутриклеточного метаболизма, обеспечивая нормальную жизнедеятельность клетки и выполнение ею своих функций. Как правило, ядро имеет сферическую форму, но существуют также веретеновидные, подковообразные, сегментированные ядра. У большинства клеток ядро одно, но, например, у инфузории туфельки два ядра – макронуклеус и микронуклеус, а в поперечно – полосатых мышечных волокнах находятся сотни ядер. Ядро и цитоплазма – это взаимосвязанные компоненты клетки, которые не могут существовать друг без друга. Их постоянное взаимодействие обеспечивает единство клетки и в структурном, и в функциональном смысле. В эукариотических организмах существуют клетки, не имеющие ядер, но срок их жизни недолог.
В процессе созревания теряют ядро эритроциты, которые функционируют не более 120 дней, а затем разрушаются в селезёнке. Безъядерные тромбоциты (кровяные пластинки) циркулируют в крови около 7 дней.
Каждое клеточное ядро окружено ядерной оболочкой, содержит ядерный сок, хроматин и одно или несколько ядрышек.
Ядерная оболочка. Эта оболочка отделяет содержимое ядра от цитоплазмы клетки и состоит из двух мембран, имеющих типичное для всех мембран строение. Наружная мембрана переходит непосредственно в эндоплазматическую сеть, образуя единую мембранную структуру клетки. Поверхность ядра пронизана порами, через которые осуществляется обмен различными материалами между ядром и цитоплазмой. Например, из ядра в цитоплазму выходят РНК и субъединицы рибосом, а в ядро поступают нуклеотиды, необходимые для сборки РНК, ферменты и другие вещества, обеспечивающие деятельность ядерных структур.
Ядерный сок. Раствор белков, нуклеиновых кислот, углеводов, в котором происходят все внутриядерные процессы.
Ядрышко. Место синтеза рибосомальной РНК (рРНК) и сборки отдельных субъединиц рибосом – важнейших органоидов клетки, обеспечивающих биосинтез белка.
Хроматин. В ядре клетки находятся молекулы ДНК, которые содержат информацию о всех признаках организма. ДНК – это двухцепочечная спираль, состоящая из сотен тысяч мономеров – нуклеотидов. Молекулы ДНК огромны, например длина отдельных молекул ДНК, выделенных из клеток человека, достигает нескольких сантиметров, а общая длина ДНК в ядре соматической клетки составляет около 1 м. Ясно, что такие гигантские структуры должны быть как-то упакованы, чтобы не перепутаться в общем ядерном пространстве. Молекулы ДНК в ядрах эукариотических клеток всегда находятся в комплексе со специальными белками – гистонами, образуя так называемый хроматин. Именно гистоны обеспечивают структурированность и упаковку ДНК. В активно функционирующей клетке, в период между клеточными делениями, молекулы ДНК находятся в расплетённом деспирализованном состоянии, и увидеть их в световой микроскоп практически невозможно. В ядре клетки, готовящейся к делению, молекулы ДНК удваиваются, сильно спирализуются, укорачиваются и приобретают компактную форму, что делает их заметными (рис. 36). В таком компактном состоянии комплекс ДНК и белков называют хромосомами, т. е., по сути, в химическом отношении хроматин и хромосомы – это одно и то же. В современной цитологии под хроматином понимают дисперсное (рассеянное) состояние хромосом во время выполнения клеткой своих функций и в период подготовки к митозу.
Рис. 36. Спирализация молекулы ДНК (А) и электронная фотография метафазной хромосомы (Б)
Рис. 37. Строение хромосомы: А – одиночная хромосома; Б – удвоенная хромосома, состоящая из двух сестринских хроматид; В – электронная фотография удвоенной хромосомы
Форма хромосомы зависит от положения так называемой первичной перетяжки, или центромеры, – области, к которой во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча одинаковой или разной длины (рис. 37).
Количество, размеры и форма хромосом уникальны для каждого вида. Совокупность всех признаков хромосомного набора, характерного для того или иного вида, называют кариотипом. На рис. 38 представлен кариотип человека. Нашим генетическим банком данных являются 46 хромосом определённого размера и формы, несущие более 30 тыс. генов. Эти гены определяют строение десятков тысяч типов белков, различных видов РНК и белков-ферментов, образующих жиры, углеводы и другие молекулы. Любые изменения структуры или количества хромосом приводят к изменению или потере части информации и, как следствие, к нарушению нормального функционирования той клетки, в ядре которой они находятся.
Рис. 38. Кариотип человека. Набор хромосом женщины (флуоресцентная окраска)
В соматических клетках (клетках тела) число хромосом обычно в два раза больше, чем в зрелых половых клетках. Это объясняется тем, что при оплодотворении половина хромосом приходит от материнского организма (в яйцеклетке) и половина от отцовского (в сперматозоиде), т. е. в ядре соматической клетки все хромосомы парные. Причём хромосомы каждой пары отличаются от других хромосом. Такие парные, одинаковые по форме и размеру хромосомы, несущие одинаковые гены, называют гомологичными. Одна из гомологичных хромосом является копией материнской хромосомы, а другая – копией отцовской. Хромосомный набор, представленный парными хромосомами, называют двойным или диплоидным и обозначают 2n. Наличие диплоидного хромосомного набора у большинства высших организмов повышает надёжность функционирования генетического аппарата. Каждый ген, определяющий структуру того или иного белка, а в итоге влияющий на формирование того или иного признака, у таких организмов представлен в ядре каждой клетки в виде двух копий – отцовской и материнской.
При образовании половых клеток от каждой пары гомологичных хромосом в яйцеклетку или сперматозоид попадает только одна хромосома, поэтому половые клетки содержат одинарный, или гаплоидный, набор хромосом (1n).
Не существует зависимости между числом хромосом и уровнем организации данного вида: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, у таких далёких видов, как прыткая ящерица и лисица, число хромосом одинаково и равно 38, у человека и ясеня – по 46 хромосом, у курицы 78, а у речного рака более 110!
Постоянство числа и структуры хромосом в клетках является необходимым условием существования вида и отдельного организма. При изучении хромосомных наборов разных особей были обнаружены виды-двойники, которые морфологически абсолютно не отличались друг от друга, но, имея разное число хромосом или отличия в их строении, не скрещивались и развивались независимо. Таковы, например, обитающие на одной территории два вида австралийских кузнечиков Moraba scurra и Moraba viatica, чьи хромосомы отличаются по своей структуре. Виды-двойники известны и в царстве растений. Внешне практически неразличимы кларкия двулопастная и кларкия языковидная из семейства кипрейных, растущие в Калифорнии, однако в кариотипе второго вида на одну пару хромосом больше.
Вопросы для повторения и задания
1. Опишите строение ядра эукариотической клетки.
2. Как вы считаете, может ли клетка существовать без ядра? Ответ обоснуйте.
3. Что такое ядрышко? Каковы его функции?
4. Дайте характеристику хроматина. Если хроматин и хромосомы в химическом отношении представляют собой одно и то же, зачем были введены и используются два разных термина?
5. Как соотносится число хромосом в соматических и половых клетках?
6. Что такое кариотип? Дайте определение.
7. Какие хромосомы называют гомологичными?
8. Какой хромосомный набор называют гаплоидным; диплоидным?
Подумайте! Выполните!
1. Какие особенности строения ядра клетки обеспечивают транспорт веществ из ядра и обратно?
2. Достаточно ли знать число хромосом в соматической клетке, чтобы определить, о каком виде организмов идёт речь?
3. Если вам известно, что в некой клетке в норме находится нечётное число хромосом, сможете ли вы однозначно определить, соматическая эта клетка или половая? А если чётное число хромосом? Докажите свою точку зрения.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
12. Прокариотическая клетка
Вспомните!
В чём заключаются принципиальные отличия в строении прокариотических и эукариотических клеток?
Какова роль бактерий в природе?
Разнообразие прокариот. Царство прокариот в основном представлено бактериями, наиболее древними организмами нашей планеты. Возникнув более 3,5 млрд лет тому назад, прокариоты фактически создали биосферу Земли, сформировав условия для дальнейшей эволюции организмов.
Впервые бактерии увидел под микроскопом и описал в 1683 г. голландский натуралист А. Левенгук. Размеры бактерий колеблются в пределах от 1 до 15 мкм. Отдельную бактериальную клетку можно увидеть только с помощью достаточно сложного микроскопа, поэтому их и называют микроорганизмами.
Бактерии обитают повсюду: в почве, в воде, в воздухе, на поверхности и внутри других организмов, в пищевых продуктах. Некоторые бактерии поселяются в горячих источниках, где температура воды достигает 78 °С и выше. Число бактерий на планете огромно, например в 1 г плодородной почвы содержится около 2,5 млрд бактериальных клеток.
Форма клеток бактерий чрезвычайно разнообразна (рис. 39). Выделяют палочковидные – бациллы, сферические – кокки, спиралевидные – спириллы, имеющие форму запятой – вибрионы.
Бактерии играют огромную роль в существовании современной биосферы. Многие из них вызывают процессы гниения и брожения. Существуют прокариоты, живущие в симбиозе с другими организмами, например клубеньковые бактерии на корнях бобовых растений. К группе бактерий-паразитов относятся микроорганизмы, способные вызывать заболевания растений и животных. Пневмония, ангина, тиф, холера, чума, туберкулёз, сибирская язва и многие другие тяжёлые заболевания человека вызываются патогенными бактериями.
Рис. 39. Некоторые представители современных бактерий: А – стрептококк (в процессе деления); Б – холерный вибрион; В – палочковидная бактерия клостридиум; Г – палочковидная микобактерия, вызывающая туберкулёз
Рис. 40. Образование спор у бактерий
Многие прокариоты способны к спорообразованию (рис. 40). Споры возникают, как правило, в неблагоприятных условиях и представляют собой клетки с резко сниженным уровнем метаболизма. Споры покрыты защитной оболочкой, сохраняют жизнеспособность в течение сотен и даже тысяч лет и выдерживают колебания температуры от −243 до 140 °С. При наступлении благоприятных условий споры «прорастают» и дают начало новой бактериальной клетке.
Таким образом, спорообразование у прокариот является этапом жизненного цикла, обеспечивающим переживание неблагоприятных условий окружающей среды. Кроме этого в состоянии спор микроорганизмы могут легко распространяться при помощи ветра и другими способами.
Споры болезнетворных бактерий, в покоящемся состоянии пролежавшие многие годы в земле, попадая при различных земляных работах в водоёмы, могут служить причиной возникновения вспышек инфекционных заболеваний. Так, например, споры палочки сибирской язвы сохраняют жизнеспособность в течение более 30 лет.
Учёные-микробиологи вырастили колонии микроорганизмов из спор, оказавшихся в образце льда, возраст которого превышал 10 тыс. лет.
Строение прокариотической клетки. Рассмотрим принципиальное строение бактериальной клетки (рис. 41).
Клетка окружена мембраной обычного строения, кнаружи от которой находится клеточная стенка. В центральной части цитоплазмы располагается одна кольцевая молекула ДНК, не отграниченная мембраной от остальной части цитоплазмы. Зона клетки, содержащая генетический материал, носит название нуклеоид (от лат. nucleus – ядро и греч. eidos – вид). Кроме основной кольцевой «хромосомы» бактерии обычно содержат несколько мелких молекул ДНК в форме небольших, свободно расположенных колец, так называемых плазмид, участвующих в обмене генетическим материалом между бактериями.
В бактериальных клетках нет мембранных органоидов, характерных для эукариот (эндоплазматической сети, аппарата Гольджи, митохондрий, пластид, лизосом). Функции этих органоидов выполняют впячивания клеточной мембраны.
Рис. 41. Строение прокариотической клетки
Обязательными органоидами, которые обеспечивают синтез белка в бактериальных клетках, являются рибосомы.
Поверх клеточной стенки многие бактерии выделяют слизь, образуя своеобразную капсулу, дополнительно защищающую бактерию от внешних воздействий.
Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы.
Сравнивая прокариотическую и эукариотическую клетки, можно отметить, что строение двухмембранных органоидов – митохондрий и пластид, имеющих собственную кольцевую ДНК и рибосомы, синтезирующие РНК и белки, – напоминает строение бактериальной клетки. Это сходство послужило основой гипотезы о симбиотическом происхождении эукариот. Несколько миллиардов лет назад древние прокариотические организмы внедрялись друг в друга, в результате чего возникал взаимовыгодный союз (§ 15, учебник 11 класса).
К прокариотическим организмам относят также цианобактерии, часто называемые синезелёными водорослями. Эти древние организмы, возникшие около 3 млрд лет назад, широко распространены по всему миру. Известно около 2 тыс. видов цианобактерий. Большинство из них способны синтезировать все необходимые вещества, используя энергию света.
Таблица 3. Сравнительная характеристика клеток прокариот и эукариот
Вопросы для повторения и задания
1. В чём заключаются значение и экологическая роль прокариот в биоценозах?
2. Каким образом болезнетворные микроорганизмы влияют на состояние макроорганизма (хозяина)?
3. Опишите строение бактериальной клетки. Как вы думаете, почему у бактерий ДНК не образует комплекс с белками?
4. Как размножаются бактерии?
5. В чём сущность процесса спорообразования у бактерий? Сравните споры растений и грибов. В чём их сходство и принципиальные отличия?
Подумайте! Выполните!
1. Предположите, что произойдёт, если исчезнут все бактерии на Земле.
2. Как давно люди используют микроорганизмы?
3. В чём состоит сущность процессов пастеризации и стерилизации как меры борьбы с бактериями?
4. Что такое антибиотики? С какой целью их применяют?
5. Используя знания, полученные при изучении курса «Человек и его здоровье», расскажите об особенностях бактериальных инфекций, путях заражения, мерах профилактики и способах их лечения.
6. Организуйте и проведите исследование микроорганизмов в естественных продуктах (квашеная капуста, кисломолочные продукты, чайный гриб, дрожжевое тесто).
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Узнайте больше
Для доказательства того, что данный микроорганизм вызывает конкретное заболевание, Роберт Кох сформулировал три правила. Эти правила в дальнейшем получили название «триада Коха».
• Микроб должен всегда встречаться при данной болезни, но его не должно быть у здоровых людей и при других болезнях.
• Микроб нужно выделить в «чистую» культуру – посеять на питательную среду так, чтобы в неё не попали микробы другого вида.
• Если взять микробов из чистой культуры и заразить ими лабораторных животных (мышей, кроликов и др.), то они должны заболеть той же самой болезнью.
Если все три правила выполняются, значит, исследуемый микроорганизм действительно является причиной данного заболевания.
Повторите и вспомните!
Человек
Бактериальные болезни человека. Среди бактерий существует много болезнетворных (патогенных) видов, вызывающих заболевания у человека. Впервые доказать болезнетворную роль бактерий удалось немецкому врачу и исследователю Роберту Коху. Он открыл бактерий-возбудителей многих заболеваний. В 1882 г. Кох выделил и описал возбудителя туберкулёза, которого позже стали называть палочкой Коха.
Одним из самых быстротекущих бактериальных заболеваний является чума. От первых признаков болезни до смерти может пройти всего несколько часов. Очень опасны газовая гангрена и столбняк. Их возбудители – бактерии, живущие в почве. Заражение происходит при попадании земли в глубокие раны. Поверхностные раны и ожоги часто инфицируются стафилококками и стрептококками, вызывающими гнойные воспаления.
Через воздух можно заразиться ангиной, коклюшем, дифтерией, туберкулёзом. Другие болезнетворные микробы могут попасть в организм через сырую воду, немытые овощи и фрукты, грязную посуду и руки. Такие заболевания, как холера, брюшной тиф, дизентерия, сопровождаются расстройством работы кишечника, болями в животе, повышением температуры.
Животные
Бактериальные болезни животных. У животных бактерии вызывают такие болезни, как сап, бруцеллёз, сибирская язва и многие другие. Этими болезнями может заразиться и человек, поэтому, например, в районах, где скот болеет бруцеллёзом, нельзя пить сырое молоко. Споры сибирской язвы легко переносят высыхание и холод, поэтому даже спустя 100 лет захоронения животных, погибших от этого заболевания, представляют опасность.
Растения
Бактериальные болезни растений. Около 10–15 % урожая всех культурных растений в настоящее время теряется из-за бактериальных болезней (бактериозов). Существуют бактерии, поражающие многие виды растений. Например, корневой рак развивается у винограда и разных плодовых деревьев, от мокрой гнили страдают капуста, картофель, лук, томаты. Специализированные бактерии поражают растения только одного вида или рода, вызывая такие заболевания, как бактериоз огурцов, пятнистость фасоли, кольцевую гниль и чёрную ножку картофеля и другие.
Для борьбы с бактериозами семена, саженцы, черенки, почву в парниках и теплицах дезинфицируют; растения обрабатывают специальными препаратами или антибиотиками; заболевшие растения уничтожают, а больные побеги обрезают. Для борьбы с бактериозами важное значение имеет выведение сортов, устойчивых к заражению.
13. Реализация наследственной информации в клетке
Вспомните!
Какова структура белков и нуклеиновых кислот?
Какие типы РНК вам известны?
Где образуются субъединицы рибосом?
Какую функцию рибосомы выполняют в клетке?
Обязательным условием существования всех живых организмов является способность синтезировать белковые молекулы. Классическое определение Ф. Энгельса: «Жизнь есть способ существования белковых тел…» не потеряло своего значения в свете современных научных открытий. Белки в организме выполняют тысячи разнообразных функций, делая нас такими, какие мы есть. Мы отличаемся друг от друга ростом и цветом кожи, формой носа и цветом глаз, у каждого из нас свой темперамент и свои привычки; мы все индивидуальны и в то же время очень похожи. Наше сходство и наши различия – это сходство и различия нашего белкового состава. Каждый вид живых организмов обладает своим специфическим набором белков, который и определяет уникальность этого вида. Но при этом белки, выполняющие сходные функции в разных организмах, могут быть очень похожи, а порой практически одинаковы, кому бы они ни принадлежали. Причём меньше всего различий в белках, обеспечивающих жизненно важные физиологические функции.
В митохондриях работает фермент – цитохром С, который играет важнейшую роль в обеспечении клеток энергией. В процессе эволюции появление цитохромов позволило сформировать эффективную систему энергообеспечения клетки и в итоге привело к возникновению эукариотических организмов. Поэтому не случайно строение цитохрома С одинаково во всех эукариотических клетках – у всех животных, растений и грибов.
Итак, все свойства любого организма определяются его белковым составом. Причём структура каждого белка, в свою очередь, определяется последовательностью аминокислотных остатков.
Следовательно, в итоге наследственная информация, которая передаётся из поколения в поколение, должна содержать сведения о первичной структуре белков. Информация о строении всех белков организма заключена в молекулах ДНК и называется генетической информацией.
Генетический код. Каким же образом последовательность мономеров – нуклеотидов в цепи ДНК может определять последовательность аминокислотных остатков в молекуле белка? Четырьмя типами нуклеотидов должны быть закодированы 20 типов аминокислот, из которых состоят все белковые молекулы. Если бы одной аминокислоте соответствовал один нуклеотид, то четыре типа нуклеотидов могли бы определять только четыре типа аминокислот. Это явно не подходит. Если предположить, что каждый тип аминокислот определяется двумя нуклеотидами, то, имея исходно четыре типа оснований, можно закодировать 16 разных аминокислот (4×4). Этого тоже ещё недостаточно. Наконец, если каждой аминокислоте будут соответствовать три стоящие подряд нуклеотида, т. е. триплет, то таких сочетаний может быть 64 (4×4×4), и этого более чем достаточно, чтобы зашифровать 20 типов аминокислот.
Набор сочетаний из трёх нуклеотидов, кодирующих 20 типов аминокислот, входящих в состав белков, называют генетическим кодом (рис. 42). В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определённых свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.
Первое свойство кода – триплетность. Три стоящих подряд нуклеотида – «имя» одной аминокислоты. Один триплет не может кодировать две разные аминокислоты – код однозначен. Но при этом каждая аминокислота может определяться более чем одним триплетом, т. е. генетический код избыточен. Любой нуклеотид может входить в состав только одного триплета, следовательно, код является неперекрывающимся. Некоторые триплеты являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов (УАА, УАГ, УГА – стоп-кодоны, не кодируют аминокислоты, АУГ – старт-кодон, кодирует аминокислоту метионин). У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, т. е. генетический код одинаков для всех живых существ. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете.
Рис. 42. Генетический код
Итак, последовательность триплетов в цепи ДНК определяет последовательность аминокислот в белковой молекуле. Ген – это участок молекулы ДНК, кодирующий первичную структуру одной полипептидной цепи.
Транскрипция (от лат. transcription – переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК.
Представьте себе библиотеку с уникальным фондом, книги из которой на дом не выдают. Для вашей работы и решения некой важной задачи необходимо получить информацию, записанную в какой-то из этих книг. Вы приходите в библиотеку, и для вас делают ксерокопию нужной главы из определённого тома. Не имея возможности забрать книгу, вы получаете копию её фрагмента и, уходя из библиотеки, уносите эту копию с собой, чтобы на основе записанных в ней сведений выполнить необходимую работу: сконструировать прибор, синтезировать какое-либо вещество, испечь пирог или сшить платье, т. е. получить результат.
Такой библиотекой является клеточное ядро, в котором хранятся уникальные тома – молекулы ДНК, ксерокопия – это иРНК, а результат – синтезированная белковая молекула.
Информационная РНК является копией одного гена. Двухцепочечная молекула ДНК раскручивается на определённом участке, водородные связи между нуклеотидами, стоящими друг напротив друга, разрываются, и на одной из цепей ДНК по принципу комплементарности синтезируется иРНК. Напротив тимина молекулы ДНК встаёт аденин молекулы РНК, напротив гуанина – цитозин, цитозина – гуанин, а напротив аденина – урацил (вспомните отличительные особенности строения РНК, § 9). В итоге формируется цепочка РНК, которая является комплементарной копией определённого фрагмента ДНК и содержит информацию о строении определённого белка. Процесс синтеза РНК на ДНК называют транскрипцией (рис. 43).
Трансляция (от лат. translation – передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации – перевод информации с «языка» РНК на «язык» белка. Процесс синтеза белка называют трансляцией (см. рис. 43). Для осуществления этого процесса информации о структуре полипептидной цепи, записанной с помощью генетического кода в молекулах иРНК, явно недостаточно. Мы не получим вещественного результата, имея на руках только «листки ксерокопии». Необходимы аминокислоты, из которых, согласно имеющемуся плану, будут собираться молекулы белка. Нужны структуры, в которых непосредственно будет происходить синтез, – рибосомы. Не обойтись также без ферментов, осуществляющих эту сборку, и молекул АТФ, которые обеспечат этот процесс энергией. Только при выполнении всех этих условий белок будет синтезирован.
Молекула иРНК соединяется с рибосомой тем концом, с которого должен начаться синтез белка. Аминокислоты, необходимые для сборки белка, доставляются к рибосоме специальными транспортными РНК (тРНК). Каждая тРНК может переносить только «свою» аминокислоту, имя которой определяется триплетом нуклеотидов – антикодоном, расположенным в центральной петле молекулы тРНК (рис. 44). Если антикодон какой-либо тРНК окажется комплементарным триплету иРНК, находящемуся в данный момент в контакте с рибосомой, произойдёт узнавание и временное связывание тРНК и иРНК (рис. 45). Одновременно на рибосоме находится две тРНК с соответствующими аминокислотами. Расположенная на рисунке слева аминокислота серин (сер) отделяется от своей тРНК и образует пептидную связь с аминокислотой аспарагин (асп).
Рис. 43. Взаимосвязь между процессами транскрипции и трансляции
Рис. 44. Строение тРНК
Рис. 45. Трансляция
Освобождённая тРНК (АГА) уходит в цитоплазму, а рибосома делает «шаг», сдвигаясь на один триплет по цепи иРНК. К этому новому триплету (ЦГУ) подойдёт другая тРНК и принесёт аминокислоту аргинин (арг), которая присоединится к растущему белку. Так, шаг за шагом, рибосома пройдёт по всей иРНК, обеспечивая считывание закодированной в ней информации. Таким образом, включение аминокислот в растущую белковую цепь происходит строго последовательно в соответствии с последовательностью расположения триплетов в цепи иРНК.
Процессы удвоения ДНК (§ 9), синтеза РНК и белков в неживой природе не встречаются. Они относятся к так называемым реакциям матричного синтеза. Матрицами, т. е. теми молекулами, которые служат основой для получения множества копий, являются ДНК и РНК. Матричный тип реакций лежит в основе способности живых организмов воспроизводить себе подобных.
Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника – подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.
Вопросы для повторения и задания
1. Вспомните полное определение понятия «жизнь».
2. Назовите основные свойства генетического кода и поясните их значение.
3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
4. Где синтезируются все виды рибонуклеиновых кислот?
5. Расскажите, где происходит синтез белка и как он осуществляется.
6. Рассмотрите рис. 40. Определите, в каком направлении – справа налево или слева направо – движется относительно иРНК изображённая на рисунке рибосома. Докажите свою точку зрения.
Подумайте! Выполните!
1. Почему углеводы не могут выполнять функцию хранения информации?
2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?
3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?
4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?
5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.
6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.
7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.