355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Липаев » Очерки истории отечественной программной инженерии в 1940-е – 80-е годы » Текст книги (страница 7)
Очерки истории отечественной программной инженерии в 1940-е – 80-е годы
  • Текст добавлен: 5 октября 2016, 22:41

Текст книги "Очерки истории отечественной программной инженерии в 1940-е – 80-е годы"


Автор книги: Владимир Липаев



сообщить о нарушении

Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 8 страниц]

2.5. История семейства малых универсальных ЭВМ в 1970-е – 80-е годы

Основная задача создания системы малых ЭВМ – обеспечить возможности широкого использования средств вычислительной техники, баз данных и баз знаний в большинстве сфер приложения человеческого труда, не накладывая никаких специальных требований на выбор архитектуры основных схемотехнических компонентов управляющих ЭВМ, какими являются малые и микроЭВМ. Ориентация на конкретные применения достигалась путем использования специализированных периферийных устройств и развитого набора средств программирования. В середине семидесятых годов по единой для стран – членов СЭВ долгосрочной целевой программе была начата разработка ряда моделей управляющих малых ЭВМ массового применения. Было развернуто крупносерийное производство Системы малых и микроЭВМ (СМ ЭВМ). Тысячи таких ЭВМ установлены на предприятиях и в научно-исследовательских организациях; они использовались в автоматизированных комплексах промышленного назначения, в составе сложных экспериментальных установок, в здравоохранении, связи, сфере услуг, на транспорте.

Опыт применения малых и микроЭВМ позволил в полной мере выявить круг задач, которые необходимо решать в процессе внедрения интегрированных систем автоматизированного проектирования и производства. В массовых областях применения вычислительной техники малые и микроЭВМ призваны были сыграть основную роль в информатики и теории управления, а также в методах машинной графики, цифровой обработки сигналов, анализа и синтеза речевых сообщений, построения сетей передачи информации взаимосвязанных объектов управления.

В 1974-м году решением Межправительственной комиссии по сотрудничеству социалистических стран в области вычислительной техники (МПК по ВТ), Институт электронных управляющих машин (ИНЭУМ) [27] был определен головной организацией по Системе малых (СМ) ЭВМ, а Борис Николаевич Наумов – руководителем работ. Важные особенности проекта состояли в широкой номенклатуре конкретных семейств ЭВМ и инструментальных технологических программ, обеспечивавших возможность пользователям формировать наборы средств автоматизации программирования для различных сфер применения. Комплексом научно-исследовательских и опытно-конструкторских работ по СМ ЭВМ занималось более 30 институтов и предприятий СЭВ. Эти средства развивались с середины 70-х годов, а основные достижения и внедрение системы малых ЭВМ относятся к 80-м годам. Эти семейства машин обычно производились большими тиражами (тысячи экземпляров), в каждой из которых комплексы прикладных программ для конкретного применения были среднего размера (десятки тысяч строк) и разрабатывались небольшими коллективами. При разработке СМ ЭВМ было принято несколько общих принципов:

обеспечение преемственности в прикладном программном обеспечении по отношению к ЭВМ и УВК, выпускавшимся в стране ранее, – моделям АСВТ-М: М-400 (СМ3, СМ4, СМ-1300, СМ-1420), М-5000 (СМ-1600), М– 6000/7000 (СМ1, СМ2, СМ-1210);

• построение систем с разделением функций, использующих универсальные и специализированные процессоры СМ ЭВМ;

• развитая номенклатура адаптеров передачи данных для сопряжения СМ ЭВМ с линиями связи в соответствии с международными стандартами;

• наличие средств сопряжения СМ ЭВМ с ЕС ЭВМ в гетерогенных системах;

• построение проблемно-ориентированных комплексов, выпускаемых промышленностью на базе моделей СМ ЭВМ: специфицированные управляющие вычислительные комплексы (УВК), поставляемые заводами по спецификациям заказчиков; измерительно-вычислительные комплексы (ИВК) с аппаратурой САМАС; автоматизированные рабочие места (АРМ) для САПР в машиностроении, радиоэлектронике и строитель ств е.

Гибкость и модульность средств СМ ЭВМ, наличие развитых средств сопряжения с ЭВМ при применении, наличие проблемно-ориентированных системных и прикладных программных средств СМ ЭВМ обеспечили широкое использование ИВК в промышленности и системах автоматизации научных исследований. В состав АРМов входил широкий набор базового программного обеспечения машинной графики. Наибольшее применение нашли АРМы, для радиоэлектроники, машиностроения, строительного проектирования, обработки экономической информации. В составе СМ ЭВМ было создано несколько семейств микро– и мини-ЭВМ, управляющих и вычислительных комплексов на базе этих ЭВМ.

Семейство УВК СМ1, СМ2, СМ-1210 класса 16-разрядных мини-ЭВМ обладало полной программной совместимостью с М-7000 и односторонней совместимостью на уровне перемещаемых программ с М-6000. Программное обеспечение УВК СМ1 и СМ2 было построено по модульному принципу, что позволяло компоновать программные системы в соответствии с требуемыми режимами работы и выполняемыми функциями на заданной конфигурации технических средств. В составе технологического программного обеспечения были предусмотрены:

• многозадачная однопроцессорная ОС, обеспечивавшая приоритетную организацию выполнения задач и защиту памяти;

• многозадачная мультипроцессорная операционная система для УВК СМ2, обеспечивавшая выполнение на двух процессорах двух старших по приоритету задач;

• операционные системы М-6000, адаптированные к однопроцессорным конфигурациям СМ1 и СМ2 с объемом оперативной памяти не более 32 К слов;

• библиотеки подпрограмм;

• проблемно-ориентированный пакет макроопределений, позволяющий проектировщику АСУТП компоновать системы сбора, анализа и обработки технологической информации;

• система подготовки прикладных программ на мнемокодах М-6000 и М-7000, макроязыке СМ1 и СМ2 (уровня макроассемблера), языках Фортран-IV, диалекте Алгол-60 и языке Бейсик.

Разработка этого семейства была выполнена НПО «Импульс» (г. Северодонецк) под руководством В.В. Резанова, В.М. Костелянского. Серийный выпуск освоили Северодонецкий приборостроительный завод и «Орловский завод УВМ им. К.Н. Руднева» На объекты было поставлено около 17 тыс. УВК СМ1, СМ2, СМ-1210, в том числе более 10 тыс. для систем управления процессами. Наиболее широко они использовались в системах энергетического и военного назначения.

Семейство УВК СМ3, СМ4, СМ-1420, СМ-1425 класса 16-разрядных мини-ЭВМ обладало программной совместимостью с М-400 и семейством PDP-11 фирмы Digital Equipment. В состав поставляемого программного обеспечения семейства были включены:

• дисковая и резидентная (в оперативной памяти) операционные системы);

• семейство совместимых мультипрограммных операционных систем реального времени (ОС РВ) с большим числом уровней приоритета для различных конфигураций технических средств (СМ4, СМ-1420, СМ-1425);

• дисковая диалоговая многотерминальная ОС с разделением времени ДИАМС;

• однопользовательская дисковая фоново оперативная базовая операционная система ФОБОС;

• инструментальная мобильная операционная система ИНМОС типа Unix;

• пакеты программ обработки графической информации;

• системы программирования, включающие трансляторы с языков: ассемблер, макроассемблер, Фортран-IV, Бейсик и диалоговый язык ДС СМ;

• проблемно-ориентированные пакеты прикладных программ, в том числе для управления лабораторными экспериментами, использования в медицине для обработки данных экономического характера.

Серийное производство было освоено московским заводом Энергоприбор и Киевским заводом ВУМ [27]. Семейства СМ3, СМ4, СМ-1420, СМ-1425 не были копиями зарубежных прототипов, но обеспечивали программную совместимость с семейством мини-ЭВМ, в то время наиболее распространенным на Западе. При разработке моделей Единой Системы и СМ ЭВМ была поставлена цель в максимальной мере обеспечить их совместимость с ЭВМ, разработанными в других странах. Такая цель была вполне оправданна, поскольку в противном случае отечественная вычислительная техника была бы изолирована от мировых достижений в области компьютерной технологии и, в частности, принципиально не имела бы доступа к накопленному в мире программному продукту.

Семейство 32-разрядных вычислительных комплексов СМ-1700 разрабатывалось под руководством Н.Л. Прохорова, генерального конструктора СМ ЭВМ с 1984 года. Оно обладало программной совместимостью с семейством VAX-11 фирмы Digital Equipment и односторонней совместимостью с 16-разрядными моделями семейства СМ3, СМ4, СМ-1420, СМ-1425. Архитектура СМ-1700 поддерживала организацию виртуальной памяти, реализуемую с помощью контроллера управления памятью.

Семейство УВК СМ-1800 на базе микро-ЭВМ представляло собой 8-разрядные микро-ЭВМ на базе микропроцессора КР580, построенные по магистрально-модульному принципу с системным интерфейсом И41 (Multibus), принятым в качестве стандарта СМ ЭВМ. Модель СМ-1804 представляла собой вариант СМ-1800 в промышленном исполнении для использования на предприятиях с ограниченным доступом обслуживающего персонала [11].

В 1981-е – 90-е годы было выпущено более 11 тыс. УВК СМ-1800, СМ-1803, СМ-1804, а в 1987 – 90-е годы – более 18 тыс. УВК СМ-1810, СМ-1814, СМ-1820. Принципы технологии и стандарты СМ ЭВМ охватывали все аспекты унификации элементов, устройств моделей ЭВМ и комплексов на их основе, а также технологических программных средств.

2.6. История мобильных и бортовых специализированных ЭВМ в 1960-е – 80-е годы

Во многих организациях оборонной промышленности в конце 50-х годов начали разрабатываться многочисленные оригинальные специализированные ЭВМ, в которых отсутствовало копирование зарубежных аналогов. При создании требований к таким объектным ЭВМ военного назначения для эффективного использования их ограниченных вычислительных ресурсов необходим был детальный анализ алгоритмов и программ, подлежащих реализации. Относительно узкая ориентировка каждого типа ЭВМ на совершенно определенные задачи открывала возможность значительной экономии оборудования и улучшения характеристик по памяти и производительности на имеющейся элементной базе низкого качества. С другой стороны, в то время от программистов требовалась максимальная эффективность использования ограниченных доступных ресурсов и знаний тонкостей архитектуры объектных ЭВМ при реализации алгоритмов, что, в частности, определило широкое применение машинно-ориентированных языков программирования – автокодов.

В 1950-е – 60-е годы развитие в стране технологии производства и элементной базы специализированных ЭВМ не поспевало за ростом требований к их ресурсам по памяти и производительности, необходимым для реализации новых расширяющихся задач заказчиков систем в оборонной промышленности. Очень быстро увеличивалась сложность и ответственность задач обработки информации и управления, возлагаемых на ЭВМ, что вызывало рост требований к качеству, надежности функционирования и безопасности применения комплексов программ для военных систем реального времени. Для обеспечения решения этих сложных задач в очень ограниченных вычислительных ресурсах, архитектура и системы команд, специализированных ЭВМ должны были тщательно адаптироваться к характеристикам прикладных задач и сфер применения систем военного назначения [3, 16].

Одновременно и независимо многие подобные проблемы решались на ряде оборонных предприятий при создании мобильных вычислительных средств и комплексов программ для авиационных, морских, космических и других систем военного назначения. Особенности функциональных задач и требований сфер применения, а также жесткие межведомственные барьеры и ограничения по секретности привели к тому, что обмен информацией о методах, свойствах и достижениях при разработках, специализированных ЭВМ и крупных программных продуктов между специалистами разных оборонных отраслей, и предприятий в 60-е годы в стране был резко ограничен. Также почти отсутствовала информация о технических характеристиках и принципиальных особенностях вы числительных машин этого класса и программных средств за рубежом.

Во второй половине 50-х годов в Ленинграде коллективом, руководимым Ф.Г. Старосом и И.В. Бергом, начали разрабатываться первые в стране мобильные, управляющие, полупроводниковые ЭВМ [3,11]. Особенностью этих в то время особо секретных работ была изначальная ориентация на микроэлектронные технологии. Это позволило получить первые в СССР крупные результаты в создании и внедрении образцов микроэлектронной управляющей вычислительной техники. В 1956-м году была организована специальная (секретная) лаборатория СЛ-11. Уже в первые годы ее существования были достигнуты серьезные результаты по созданию экспериментальных образцов пленочных микросхем, интегральных, ферритовых пластин для запоминающих устройств и логических узлов ЭВМ с малым потреблением энергии. В 1961-м году правительством было принято решение об организации самостоятельного КБ-2 электронной техники для оборонных систем под руководством Ф.Г. Староса [11].

Первым крупным результатом этой организации, выполненным в два года, явилась разработка бортовой, управляющей ЭВМ УМ1-НХ. В 1962-м году она была принята Государственной комиссией под председательством академика А.А. Дородницына и рекомендована к серийному производству. ЭВМ УМ1-НХ стала предвестницей появления нового класса вычислительной техники мобильных, микроэлектронных управляющих ЭВМ. Существенными отличительными характеристиками УМ1-НХ явились низкая для того времени стоимость и высокая надежность работы машины в производственных условиях. По постановлению правительства в 1963-м году началось освоение и серийное производство УМ1-НХ на Ленинградском электромеханическом заводе (ЛЭМЗ). В последующие годы ЛЭМЗом было освоено производство новых устройств для УМ1-НХ, расширяющих её возможности. Используя их вместе с базовым конструктивом УМ1-НХ, завод выполнял заказы промышленности на управляющие комплексы для конкретных оборонных систем. В 1964-м году в КБ-2 под руководством Ф.Г. Староса была разработана микроминиатюрная ЭВМ УМ-2, ориентированная на применение в аэрокосмических и авиационных системах. Кроме достаточно развитой архитектуры, УМ-2 имела оригинальные конструктивные и технологические решения, которые оказали большое влияние на развитие бортовой вычислительной техники в последующие годы.

Разработка УМ-2, ее удачные архитектурные и конструктивно-технологические решения получили свое развитие и практическое внедрение по двум направлениям: была разработана управляющая ЭВМ «Электроника К-200» и управляющий комплекс с наращиваемыми устройствами ввода-вывода и периферийными устройствами, получивший название «Электроника К-201». Разработки больших интегральных схем послужили базой для развития работ по созданию мобильной машины «Электроника С5» — первого в СССР семейства одноплатных, многоплатных и однокристальной микро-ЭВМ для управления объектами и процессами в реальном времени. Среди этого семейства с оригинальной структурой и архитектурой, в разработке которых приняли участие ученые Института кибернетики АН Украины, следует особо выделить однокристальную микро-ЭВМ «С5-31». [11].

В начале 60-х годов особенно активно развивались мобильные ЭВМ для систем по заказам министерства обороны СССР. Для системы ПВО в Морском научно-исследовательском институте (МНИИ-1) была создана мобильная (в кузовах) полупроводниковая ЭВМ 5Э89 (Главный конструктор – Я.А. Хетагуров) [28]. Разработка завершилась в 1962 году приемными испытаниями и передачей ЭВМ в серийное производство. Ее память составляла 14 тысяч команд, и две тысячи слов оперативной памяти, быстродействие около 60 тыс. операций в секунду. На машине выполнялась обработка информации, поступающей в реальном масштабе времени от радиолокаторов кругового обзора, и автоматизированное сопровождение воздушных целей, истребителей и ракет. Для повышения надежности и производительности была предусмотрена возможность совместной работы двух ЭВМ. До 1970 года ее выпускали на Ульяновском заводе им. Володарского, а затем на Загорском электромеханическом заводе, всего было поставлено в войска около 400 комплектов. В 80-е годы машина прошла модернизацию на новой элементной базе с уменьшением габаритов и энергопотребления, с полным сохранением логики команд ЭВМ 5Э89 и всего комплекса программ РЛУ. Производство модернизированной машины прекратилось только в 1992 году.

В 1969-м году началась разработка ЭВМ 5Э26 для ЗРК С-300 (Главные конструкторы – С.А. Лебедев, B.C. Бурцев) [11]. В 1975-м году началось серийное производство этой мобильной, управляющей, многопроцессорной, высокопроизводительной ЭВМ, которая применялась в ряде оборонных систем. Она была построена по модульному принципу, с высокоэффективной системой автоматического резервирования, базирующейся на аппаратном контроле и обеспечивающей возможность восстановления процесса управления при сбоях и отказах аппаратуры. Работает в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением и системой автоматизации программирования.

Технические характеристики: производительность 1,5 млн. операций в секунду, длина слова 32 разряда, представление информации естественное, целое слово, полуслово, байт, бит, объем оперативной памяти 32–34 кбайт, объем командной памяти 64-256 кбайт. Независимый процессор ввода-вывода информации по 12 каналам связи – максимальный темп обмена свыше 1 Мбайт/с. Объем 2,5–4,5 м3, потребляемая мощность 5–7 кВт. Выпускалась в двух модификациях, различающихся объемом памяти.

Принципиальные особенности ЭВМ:

впервые в СССР создана мобильная многопроцессорная высокопроизводительная структура с модульной памятью, легко адаптируемая к различным требованиям по производительности и памяти в различных системах управления;

• машина с автоматическим резервированием на уровне модулей и обеспечивающая восстановление вычислительного процесса при сбоях и отказах аппаратуры в системах управления, работающая в реальном времени;

• мобильная машина, снабжена развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня;

• энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи;

• введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В 1988-м году линию мобильных, управляющих, многопроцессорных вычислительных систем, начатую ЭВМ 5Э26, продолжила машина 40У6 (серийное производство). Главный конструктор Е.А. Кривошеев) [11]. Эта ЭВМ построена по модульному принципу, с высокой жизнеспособностью за счет дублирования некоторых модулей и резервирования, базирующейся на мощной системе аппаратного контроля и обеспечивающей возможность восстановления процесса управления при сбоях и отказах аппаратуры. ЭВМ работает в режиме жесткого реального времени, рассчитана на работу в широком диапазоне климатических и механических воздействий, имеет развитое обеспечение автоматизации программирования.

Технические характеристики. 32-разрядное слово, плавающая запятая, оперативная память 256 Кб (дублируется), командная память 512 Кб (дублируется), 15-канальный процессор ввода-вывода информации (дублируется). Процессор ввода-вывода имеет 13 специализированных каналов и 2 стандартных канала. Память команд 512 Кб, имеет внутренний контроль по кодам Хемминга, байтовый контроль передач, информация не пропадает от выключения питания, что обеспечивается переходом на аккумуляторное питание. Элементная база Маломощная серия ТТЛ-микросхем, КМОП-микросхемы памяти. Потребляемая мощность 5,5 кВт, объем 2,5–4,5 куб. м.

Программное обеспечение. Трансляторы с автокода, Фортрана, СИ, Паскаль.

Разработка средств цифровой вычислительной техники для бортового оборудования самолетов, ракет, космических аппаратов началась в СССР во второй половине 60-х годов. В это время подавляющее большинство НИИ и приборостроительных КБ минавиа-прома (ОКБ «Электроавтоматика» – ЛНПОЭА, МИЭА, ГосНИИАС, НИИП) и минрадиопрома (НИИ «Аргон» – НИЦЭВТ, ВНИИРА, НПО «Вега», МНИИ «Агат») (везде использованы современные названия) и ряд других предприятий начали разработку макетов различного рода цифровых вычислительных устройств (ЦВУ), бортового оборудования самолетов, а затем ракет и космических аппаратов.

Цифровые вычислительные средства в составе бортового оборудования самолетов появились в начале 60-х годов и за относительно короткий срок практически полностью заменили используемые ранее аналоговые вычислители, поскольку обеспечивали более высокую точность решения задач, характеризовались большей универсальностью применения и обладали широкими логическими возможностями. Эти качества бортовой цифровой вычислительной машины (БЦВМ) позволяют использовать ее практически во всех подсистемах бортового оборудования самолета, обеспечивают устойчивость БЦВМ к усложнению алгоритмов и позволяют применять более сложные, а значит, и более совершенные алгоритмов управления самолетом и его подсистемами. Они позволили осуществить информационное взаимодействие между отдельными (ранее непосредственно не взаимодействовавшими) подсистемами бортового оборудования и образовать единый комплекс бортового оборудования (КБО), что, в конечном счете, повысило эффективность выполнения полетного задания и безопасность полета.

Решением комиссии Президиума СМ СССР по военно-промышленным вопросам в 1963-м году Научно-исследовательский институт электронных математических машин (НИЭМ) был назначен головным предприятием страны по бортовым ЭВМ [11], а в 1986-м году выделилось в самостоятельное предприятие – НИИ «Аргон». За это время было разработано более 30 типов БЭВМ и вычислительных комплексов на их основе. Создание ряда «Аргон» шло в три этапа. На первом этапе (1964-й год – середина 70-х годов) были разработаны 11 моделей машин для ракетно-космических, авиационных и наземных автоматизированных систем управления. Базой для первых моделей послужил созданный к этому времени научно-технический задел по ЭВМ общего назначения.

К ЭВМ, используемым в составе систем управления летательных аппаратов, предъявлялся ряд специфических требований, которые значительно усложняли проектирование бортовых машин. К числу важнейших требований, во многом определявших выбор основных проектных решений, относились ограничения на массогабаритные характеристики и потребляемую мощность, необходимость придания повышенной надежности функционирования, устойчивости к широкому диапазону внешних воздействий (механических, климатических, радиационных), возможность обмена в реальном времени информацией с разнообразными датчиками и исполнительными устройствами систем управления.

Создание БЭВМ на. первом этапе велось на основе ряда принципиальных положений, выработанных с учетом специфических требований к бортовым машинам в результате многочисленных исследований, осуществления эскизных и технических проектов. С самого начала было принято решение проектировать БЭВМ на новой для того времени элементной базе – интегральных схемах (ИС). Только применение ИС давало возможность обеспечить необходимые параметры машин, в первую очередь массогабаритные, энергетические и прочностные. Работы по созданию ряда «Аргон» дали мощный толчок развитию элементной базы для ЭВМ оборонного значения. НИЭМ и его преемники, были инициаторами, заказчиками и соисполнителями разработки ряда выпускавшихся крупными сериями ИС. Некоторые из них получили широкое применение не только в бортовых, но и в стационарных ЭВМ.

Введение программной совместимости между моделями БЭВМ в то время было признано нецелесообразным. Это потребовало бы разработки единой для всех машин сложной системы команд, часть из которых во многих случаях оказалась бы излишней. При достигнутом в тот период уровне технологии производства элементов единственным путем удовлетворения разнообразных, жестких требований к бортовым ЭВМ была специализация систем команд к решаемым задачам. Вместе с тем системы команд и организация вычислений для различных моделей строились на основе общих исходных принципов и являлись достаточно близкими. Для повышения плотности компоновки ИС использовался многослойный печатный монтаж. С целью сокращения сроков разработки и числа ошибок при выполнении ручных операций, основные узлы БЭВМ создавались с применением систем автоматизированного проектирования на базе универсальных ЭВМ.

Машины первого этапа по типу используемой элементной базы разделялись на две группы. К первой, более ранней по времени разработки группе, относились БЭВМ «Аргон-1», «Аргон-10», «Аргон-11А», «Аргон-12А», собранные на гибридных ИС типа «Тропа». Серия гибридных ИС «Тропа-1» была предложена НИЭМ совместно с НИИТТ министерства электронной промышленности для первых БЭВМ ряда «Аргон». Вторую группу составили – БЭВМ «Аргон», выполненные на твердотельных ИС, а «Аргон-17» – на первых микропроцессорных БИС. БЭВМ ракетно-космического назначения в большинстве случаев являлись необслуживаемыми и строились по моноблочному принципу.

Серьезную проблему при проектировании бортовых ЭВМ представляло обеспечение устойчивости к негативному воздействию внешней среды. Ввиду их компактности существенное значение имел отвод тепла. В большинстве машин обеих групп было применено принудительное воздушное охлаждение их внутренних частей. Ракетные машины были помещены в герметизированный корпус, служащий радиатором для отвода тепла в окружающую среду.

Впервые резервирование аппаратуры было использовано в БЭВМ «Аргон 11С» – первой отечественной машине космического назначения, осуществлявшей автоматическое управление полетом космического аппарата, совершившего облет Луны с возвращением спускаемого аппарата на Землю (программа «Зонд»). В ходе исследований, выполненных при проектировании этой машины, оптимальной структурой резервирования, обеспечивающей экономию машинных ресурсов и приемлемый уровень надежности, была признана троированная структура с голосованием по большинству (мажорирование). Эта структура получила дальнейшее развитие в бортовом вычислительном комплексе «Аргон-16» – уникальной разработке в мировой практике создания бортовых ЭВМ. За четверть века эксплуатации на космических кораблях Союз, транспортных кораблях Прогресс, орбитальных станциях Салют, Алмаз, Мир не было отмечено ни одного отказа комплекса в составе системы управления. За это время было выпущено более 300 экземпляров – рекордный показатель для машин космического применения. Высоконадежная троированная структура в модифицированном виде использована в БЭВМ, предназначенной для применения в инерциальной системе управления ракетой комплекса ПРО. Отличительная особенность «Аргон-17» – высокая радиационная стойкость аппаратуры, гарантирующая выполнение задачи в условиях воздействия ядерного взрыва. Работы первого этапа сыграли исключительно важную роль в развитии отечественной бортовой вычислительной техники. При разработке функциональных комплексов программ оборонных систем для ряда типов ЭВМ «Аргон» в 1970 – 80-е годы активно использовалась инструментальная система автоматизации программирования и отладки Яуза-6, адаптированная для соответствующих ЭВМ (см. главу 3) [11, 18].

Многие системы военного назначения на базе специализированных ЭВМ предполагались для производства и применения в относительно небольшом количестве (единицы, десятки, или сотни экземпляров), что ориентировало разработчиков на применение оригинальных технических решений и вызывало пренебрежение унификацией и стандартизацией аппаратуры, комплексов программ и технологий их производства. Практически независимая разработка такого широкого спектра вычислительных машин и комплексов программ, конечно, обходилась очень дорого, однако в результате появлялось множество эффективных технических решений при разработке и применении ЭВМ и комплексов программ. Ведомства заказчиков систем не координировали между собой технические требования к вычислительным средствам, каждое из которых вынуждено, адаптировалось разработчиками к задачам конкретного заказчика.

Использование БЦВМ потребовало определенной унификации радиоэлектронного оборудования самолетов, в результате которой сократились сроки и снизились затраты на разработку и последующую модернизацию. Поэтому на ранних стадиях развития цифровой авионики основное внимание уделялось разработке БЦВМ и средств ее сопряжения с бортовой аппаратурой. Проблема создания программных продуктов обострялась по мере усложнения структуры машин, расширения круга решаемых задач, появления и развития бортовых вычислительных систем.

На основе анализа, проведенного в конце 1970-х – начале 80-х годов, была разработана программа создания семейств, унифицированных БЦВМ для использования на подвижных объектах всех классов. Эта программа была утверждена в 1984-м году решением Государственной Комиссии. В соответствии с ней были начаты работы по созданию унифицированных семейства БЭВМ – СБ3541 и СБ3542 с архитектурой типа «Электроника-32», а в НИИ «Аргон» – СБ5140 с архитектурой «ПОИСК».

На протяжении трех десятилетий БЦВМ качественно изменялись. Их быстродействие увеличилось более чем на три порядка и достигло десятков миллионов операций в секунду, а емкость запоминающих устройств достигает 8 -16 Мб. Одновременно уменьшились вес и энергопотребление. Это было обусловлено совершенствованием элементной базы, архитектуры и структурной организации машин. Замена дискретных компонентов большими интегральными схемами позволила повысить быстродействие машины более чем на два порядка при одновременном снижении на порядок и более энергопотребления и веса. Совершенствование микропроцессоров в 80-х и начале 90 – х годов позволило поднять еще как минимум на порядок быстродействие БЦВМ, также улучшились внутренние и внешние интерфейсы вычислительных машин.

В структуре БЦВМ второго поколения (начало 70-х годов) начинают использоваться элементы конвейеризации, обеспечивающие совмещение в выполнении операций, процессоры, содержащие более совершенные сумматоры и специальные устройства для выполнения операций умножения, деления и вычисления элементарных функций. Структура машин реализуется на интегральных схемах, но остается детерминированной и трудно модернизируемой, т. е., по существу, закрытой. Для написания программ начинают использоваться языки уровня ассемблера, а для их отработки – специальные отладочные комплексы, объединяющие БЦВМ с инструментальной вычислительной машиной. К середине 80-х годов было разработано четыре модификации машины: «Аргон-15» (ОЗУ – 1К, ПЗУ – 24К слов) имеет массу 35 кг и наработку на отказ 500 ч. Быстродействие машины «Аргон-15К» – 500 тысяч, а «Аргон-15-М» – 800 тысяч коротких операций в секунду; имеет наработку на отказ 5000 ч и весит 16,6 кг.


    Ваша оценка произведения:

Популярные книги за неделю