355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виталий Тихоплав » Новая Физика Веры » Текст книги (страница 3)
Новая Физика Веры
  • Текст добавлен: 24 сентября 2016, 06:17

Текст книги "Новая Физика Веры"


Автор книги: Виталий Тихоплав


Соавторы: Татьяна Тихоплав

Жанр:

   

Эзотерика


сообщить о нарушении

Текущая страница: 3 (всего у книги 25 страниц) [доступный отрывок для чтения: 10 страниц]

Стоит отдать должное великому ученому, который позднее пересмотрел ранее сделанные выводы и публично признал свою ошибку. Он пришел к выводу, что существование эфира все-таки следует признать, ибо, по его мнению, в любой теории, в том числе квантовой, эфир необходим для обеспечения непрерывности физических полей и устранения дальнодействия.

Эйнштейн писал:

Согласно общей теории относительности пространство немыслимо без эфира… Мы не можем в теоретической физике обойтись без эфира, то есть континуума, наделенного физическими свойствами… В пространстве без эфира не только было бы невозможно распространение света, но не могли бы существовать масштабы и часы и не было бы никаких пространственно-временных расстояний в физическом смысле (10).

К сожалению, основы «безэфирной физики» не были пересмотрены, ибо к тому времени ее развитие зашло уже достаточно далеко. Следует отметить, что сегодня существование эфира признано наукой, но под термином «физический вакуум».

Академик А. Е. Акимов говорит: «Для нас сейчас физический вакуум – это то, что остается в пространстве, когда из него удаляют весь воздух и все до последней элементарные частицы. В результате получается не пустота, а своеобразная материя – Прародитель всего во Вселенной, рождающий элементарные частицы, из которых потом формируются атомы и молекулы» (2).

Общая теория относительности. Необычен подход Эйнштейна к интерпретации геометрического знания. До конца XIX века на западноевропейскую философию и науку оказывала огромное влияние греческая геометрия. Считалось, что евклидова геометрия отражает истинную сущность пространства, поэтому она чаще всего интерпретировалась как универсальная, присущая самой природе система законов. Теория относительности в значительной степени изменила это понимание.

А все началось с того, что Эйнштейн обратил внимание на связь между гравитационными полями и геометрией пространства. В 1915 году он выдвинул общую теорию относительности (ОТО), в которой осуществил еще одно объединение. Геометрические свойства пространства были объединены с чисто физической сущностью гравитации. Оказалось, что богатые свойствами геометрические структуры, такие как псевдориманово пространство, в состоянии абсорбировать в себе всю физическую сущность даже такой фундаментальной природной силы, как гравитация. Гениальность Эйнштейна проявилась в том, что он сумел на языке свойств геометрического пространства описать физическую реальность.

Согласно ОТО, гравитация способна «искривлять» время и пространство. Это означает, что в искривленном пространстве законы евклидовой геометрии не действуют, так же как двухмерная плоскостная геометрия не может быть применена на поверхности сферы. Теория Эйнштейна утверждает, что трехмерное пространство действительно искривлено под воздействием гравитационного поля тел с большой массой.

Массивное тело не может существовать, не создавая гравитационного поля, проявляющего себя в искривлении окружающего это тело пространства. Не следует считать, что поле «наполняет» пространство и тем самым искривляет его. Поле само по себе является искривленным пространством! В общей теории относительности гравитационное поле и структура, или геометрия, пространства воспринимается как одно и то же понятие. В уравнениях поля Эйнштейна им соответствует одна и та же математическая величина. Следовательно, в теории Эйнштейна вещество не мыслится вне этого гравитационного поля, а гравитационное поле не мыслится без искривленного пространства. Таким образом, вещество и пространство воспринимаются как непрерывно связанные понятия, даже более того – как взаимосвязанные частицы единого целого.

Пространство вокруг таких тел – планет, звезд и т. д. – искривлено, и степень искривления зависит от массы тела. А поскольку в теории относительности время не может быть отделено от пространства, присутствие вещества оказывает воздействие и на время, вследствие чего в разных частях Вселенной время течет с разной скоростью. В то время как классическая физика рассматривает движение твердых тел в пустом пространстве, в ОТО сама структура пространства – времени зависит от распределения вещества во Вселенной и понятие «пустого пространства» вообще теряет смысл (2). Более того, если раньше полагали, что с исчезновением материи остается пустое пространство, то теория относительности утверждает, что с исчезновением материи исчезнет и пространство.

Что касается понятия твердого тела, то оно было поставлено под сомнение атомной физикой – наукой о бесконечно малом. Одновременное появление теории относительности и теории атома поставило под сомнение представление ньютоновской механики об абсолютном характере времени и пространства, о твердых элементарных частицах, о строгой причинной обусловленности всех физических явлений и о возможности объективного описания природы. Старые понятия не находили применения в новых областях науки.

Первые шаги в мир бесконечно малого

Началом атомной физики явились два открытия конца XIX века, необъяснимые с позиций классической физики. Первое свидетельство в пользу того, что атомы обладают какой-то структурой, появилось в 1895 году с открытием немецким физиком В. Рентгеном рентгеновских лучей – нового вида излучения, быстро нашедшего свое применение в медицине. При помощи рентгеновских лучей Макс фон Лауэ исследовал атомную структуру кристалла. Однако рентгеновские лучи были не единственным видом излучения, испускаемого атомами. Вскоре после их открытия французский физик А. Беккерель в 1896 году обнаружил другой вид излучений, испускаемых так называемыми «радиоактивными элементами». Это излучение стали называть радиоактивным. «Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием некоторых частиц» (4).

Явление радиоактивности подтверждало, что атомы таких элементов не только испускают различные излучения, но и превращаются при этом в атомы совершенно других элементов, что говорит о сложности строения атома.

Планетарная модель атома. Английский физик Эрнест Резерфорд обнаружил, что так называемые альфа-частицы, исходящие от радиоактивных веществ, можно использовать в качестве высокоскоростных снарядов субатомного размера для исследования внутреннего строения атома. Он подвергал атом обстрелу альфа-частицами и по их траекториям после столкновения определял, как устроен атом.

В результате бомбардировки атомов потоками альфа-частиц Резерфорд получил сенсационные и совершенно неожиданные результаты. Вместо описанных древними твердых и цельных частиц перед ученым предстали невероятно мелкие частицы-электроны, движущиеся вокруг ядра на достаточно большом расстоянии. Электроны, казалось, были прикованы к ядрам некими силами.

В 1911 году Резерфорд предложил планетарную модель атома, состоящего из тяжелого ядра и окружающих его электронов. Миниатюрный атом, диаметр которого примерно одна миллионная сантиметра, состоит из положительно заряженного ядра, которое на то время считалось неделимым, и движущихся вокруг него по орбите отрицательно заряженных электронов. Стоит заметить, что электрический заряд атома равен вовсе не нулю, а нулевой сумме противоположных электрических зарядов. Нуль есть тривиальность (небытие), которая не содержит в себе никаких компонентов, в то время как нулевая сумма есть объективная реальность (бытие), состоящая из компонентов, равных по величине, но противоположных по знаку.

Если мы возьмем в руки металлический шарик диаметром 1 мм, то диаметр атома окажется в 100 млн раз меньше его, а радиус ядра атома в 10 тысяч раз меньше радиуса самого атома. И сам атом практически состоит из пустоты. Атомное ядро занимает одну триллионную часть всего атома. Позднее, когда удалось разделить ядро, выяснилось, что оно состоит из еще более мелких элементов: протонов и нейтронов.

Хорошее представление об атоме дает такой пример. Если в центре Исаакиевского собора в Санкт-Петербурге, самого большого собора России, поместить крупинку сахара, олицетворяющую ядро, вращающееся вокруг собственной оси, а в самом дальнем углу собора расположить пылинку – электрон, – вращающуюся с неимоверной скоростью вокруг крупинки сахара, то это будет приближенная модель атома водорода.

Вскоре после появления этой «планетарной» модели атома было обнаружено, что от количества электронов зависят химические свойства элемента, что явилось прекрасным подтверждением правильности Периодической системы элементов Д. И. Менделеева (1869). Все элементы отличаются друг от друга только количеством электронов, вращающихся вокруг ядра. Сегодня мы знаем, что периодическую систему элементов можно составить, добавляя последовательно протоны к ядру самого легкого атома – атома водорода, а также соответствующее число электронов к «оболочкам» атома (или к сферическим орбитам).

Например, если представить, что в центре Исаакиевского собора вращается сахарная крошка, состоящая из 56 крупинок сахара, а вокруг нее носятся с огромной скоростью 26 пылинок, то получится модель атома железа.

Перед учеными встал ряд вопросов. Если атомы, образующие твердую материю, например железо, состоят практически из пустого пространства, то почему мы не можем проходить сквозь стены? Что придает веществу твердость? Вторая загадка связана с невероятной стабильностью атома. На основе классических представлений существование стабильных атомов в принципе невозможно. Согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен непрерывно уменьшаться, и за время примерно 10–8 с электрон должен упасть на ядро. В действительности же атомы не только существуют, но и весьма устойчивы (4).

Кроме того, в воздухе, например, атомы кислорода миллионы раз в секунду сталкиваются друг с другом и тем не менее после каждого столкновения приобретают прежнюю форму. Никакая система планет, подчиняющаяся законам классической механики, не выдержала бы таких столкновений. Однако сочетание электронов атома любого элемента (кислорода, железа и т. д.) всегда одинаково, сколько бы они ни сталкивались с другими атомами. Два атома железа и два железных бруска абсолютно идентичны, где бы они ни находились и как бы с ними ни обращались до этого.

Результаты всех экспериментов были парадоксальны и непонятны, и все попытки выяснить, в чем тут дело, оборачивались неудачей.

Становление квантовой механики

Механика Ньютона и классическая электродинамика Максвелла оказались не способны объяснить процессы, происходящие со скоростями, близкими к скорости света, и ответить на вопросы, возникшие в результате исследования атома. Однако трудности в поисках ответов не останавливают, а, наоборот, стимулируют развитие науки, ибо, как сказал П. Капица: «Наука – это то, чего мы не знаем, а чего знаем – это технология».

Не сразу физики пришли к выводу о том, что парадоксы[1]1
  Парадокс – кажущаяся нелепость.


[Закрыть]
обусловлены их стремлением описывать явления атомной действительности в терминах классической физики. Однако, убедившись в этом, они стали по-другому воспринимать экспериментальные данные и искать новые теоретические подходы.

В начале ХХ века зародилась новая теория – квантовая механика, которая стремительно заняла лидирующее положение в науке. По словам В. Гейзенберга, они «каким-то образом прониклись духом квантовой теории» и смогли четко и последовательно сформулировать ее в математическом виде (1).

Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомного ядра, изучить свойства элементарных частиц. А поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания всех макроскопических явлений, с которыми мы, люди, сталкиваемся повседневно.

Эти законы не так-то легко было открыть. Они были сформулированы лишь в 20-е годы прошлого века благодаря усилиям физиков разных стран: датчанина Нильса Бора, француза Луи де Бройля, австрийцев Эрвина Шредингера и Вольфганга Паули, немцев Макса Планка и Вернера Гейзенберга, англичанина Поля Дирака и др. И конечно, огромная заслуга в развитии новой науки принадлежит Альберту Эйнштейну. Эти люди первыми соприкоснулись с неведомой необычной реальностью мира атома.

Корпускулярно-волновой дуализм. В 1900 году немецкий физик М. Планк, исследуя тепловое излучение тел, пришел к выводу, что тепловое (термодинамическое) равновесие между излучением и веществом невозможно объяснить на основе теории теплового излучения, построенной по законам классической электродинамики и статистической физики. В соответствии с этими законами тепловое равновесие в принципе не может быть достигнуто, так как вся энергия должна перейти в излучение.

Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, предположив, что свет испускается не непрерывно (как это следовало из классической теории излучения), а определенными порциями – квантами. (Квант – минимальная порция чего-либо.) Величина такого кванта энергии Е зависит от частоты света n (ню) и равна: E = , где h – постоянная Планка, называемая также квантом действия, h = 6,62 · 10–27 эрг · с. Постоянная Планка устанавливает предел измерений всех физических параметров, она является фундаментальной величиной квантования. Вследствие чрезвычайно малой величины постоянной Планка квантование в макроскопических физических экспериментах остается незамеченным.

От этой работы Планка можно проследить две линии развития, завершившиеся к 1927 году окончательной формулировкой квантовой механики в двух ее формах. Обе эти линии начинаются с работ Эйнштейна: первая связана с теорией фотоэффекта, а вторая – с теорией теплоемкости твердых тел.

В 1905 году, занимаясь теорией фотоэффекта, Эйнштейн развил идею Планка, предположив, что свет не только испускается и поглощается, но и распространяется квантами, то есть дискретность присуща самому свету: свет состоит из отдельных порций – световых квантов, названных фотонами. Эйнштейн дал кванту следующее определение:

Это особая точка в пространстве, в которой локализована электромагнитная энергия, а электрический и магнитный векторы периодически и согласованно изменяют свою величину. Она окружена силовым полем, имеющим характер плоской волны (9).

На основании этой гипотезы Эйнштейн объяснил установленные на опыте закономерности фотоэффекта и в 1921 году получил Нобелевскую премию за выполненную работу.

В 1922 году американский физик А. Комптон экспериментально доказал, что свет наряду с волновыми свойствами, проявляющимися, например, в дифракции или интерференции, обладает и корпускулярными свойствами.

Направляя рентгеновское излучение на свободные электроны, Комптон обнаружил, что рассеяние света электронами происходит по законам упругого столкновения частиц – налетающего рентгеновского фотона и покоящегося электрона. В каждом акте столкновения соблюдаются характерные для частиц законы сохранения энергии и импульса, причем энергия и импульс фотона связаны между собой соотношением, справедливым в релятивистской механике для частицы с нулевой массой покоя E = hν. Уже в самой этой формуле содержится дуализм, не позволяющий выбрать какую-либо одну из двух концепций: энергия Е относится к частице, а частота n является характеристикой волны. Таким образом, было доказано экспериментально, что природа света корпускулярно-волновая. Возникло логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других – корпускулярную. По существу, разрешение этого противоречия и привело к созданию квантовой механики.

В 1924 году французский физик Луи де Бройль выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма, по которой не только фотоны, но и все «обыкновенные» частицы (протоны, нейтроны, электроны и т. д.) также обладают волновыми свойствами. Позднее гипотеза де Бройля была подтверждена экспериментально: на уровне атома материя имеет двойственный аспект; он проявляется как частицы и как волны. И проявление это зависит только от конкретной ситуации. Например, электроны обычно считаются частицами, однако, если направить узкий поток этих частиц в узкую щель, он дефрагирует точно так же, как луч света, то есть электроны в этой ситуации обнаруживают свойства волн (4). Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение их волновых свойств оказывается весьма затруднительным.

Двойственность материи буквально ошарашила ученых и стала поразительным и непонятным свойством природы, создав многие квантовые парадоксы, лежащие в основе квантовой теории. Ведь волна, распространяющаяся на огромные расстояния, и частица, имеющая более или менее определенное местонахождение в пространстве, значительно отличаются друг от друга.

«Фундаментальные физические сущности микромира – частицы и волны – выявили невиданную ранее в опытах способность заявлять о себе лишь в момент их наблюдения, проявляясь или как волна, или как частица» (11).

Вторая линия развития является обобщением гипотезы Планка и начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел, в которой была обоснована идея квантования энергии. Эйнштейн предположил, что испускание и поглощение электромагнитного излучения веществом происходят квантами с энергией . Теория Эйнштейна была уточнена П. Дебаем, М. Борном и Т. Карманом и сыграла выдающуюся роль в развитии теории твердых тел.

Квантовый эффект. В 1913 году Н. Бор, стремясь объяснить устойчивость атома в рамках модели Резерфорда, использовал идею квантования энергии применительно к теории строения атома. Он принял три постулата (12).

Первый постулат (постулат стационарных состояний): в атоме существует набор стационарных состояний (или уровней энергии), находясь в которых атом не испускает электромагнитных волн. Стационарным состояниям соответствуют стационарные орбиты, по которым ускоренно движутся электроны, но излучения света при этом не происходит. В 1913–1914 годах существование уровней энергии в атомах было подтверждено опытами Франка – Герца.

Второй постулат (постулат квантования орбит): в стационарном состоянии атома электрон, движущийся по круговой орбите, имеет квантованные значения момента импульса, удовлетворяющие определенному условию.

Третий постулат (правило частот): при переходе атома из одного стационарного состояния в другое испускается или поглощается один фотон. Излучение фотона происходит при переходе атома из состояния с большей энергией в состояние с меньшей энергией. При обратном переходе происходит поглощение фотона.

Таким образом, Бор, используя квантовую постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме, законы которого существенно отличаются от законов классической механики. Этот факт позднее был объяснен на основе универсальности корпускулярно-волнового дуализма.

Твердость материи оказалась результатом типичного квантового эффекта, обусловленного прежде всего волновой природой материи и не имеющего аналогов в макроскопическом мире. В чем суть квантового эффекта? Когда частица находится в ограниченном объеме пространства, она начинает усиленно двигаться, и чем значительнее ограничение, тем выше скорость. С другой стороны, электрические силы стремятся как можно сильнее приблизить электрон к ядру. Электрон реагирует на это, также увеличивая свою скорость вращения, и чем сильнее притяжение ядра, тем выше скорость; она может достигать больше тысячи километров в секунду. Вследствие этого атом воспринимается как непроницаемая сфера, точно так же, как воспринимается вращающийся с большой частотой вращения пропеллер, который выглядит как диск. Очень сложно еще больше сжать атом, и поэтому материя кажется нам твердой.

Электроны в атоме размещаются на различных орбитах с тем, чтобы уравновесить притяжение ядра и свое противодействие этому. Причем электроны внутри атома могут существовать только на определенных атомных орбитах, имеющих определенный диаметр. Например, электрон атома водорода может находиться только на его первой, второй или третьей орбите, но не между ними. При нормальных условиях он всегда будет на нижней орбите, которая называется «стационарным состоянием» атома. Оттуда электрон, получив необходимое количество энергии, может перескочить на более высокие орбиты, и тогда говорят, что атом находится в «возбужденном состоянии», из которого он может вновь перейти в стационарное, испустив избыточное количество энергии в виде фотона, или кванта электромагнитного излучения.

Все атомы, обладающие одинаковым количеством электронов, характеризуются одинаковыми очертаниями электронных орбит и одинаковым расстоянием между ними. Поэтому такие атомы абсолютно идентичны. Например, приходя в возбужденное состояние, атомы кислорода, сталкиваясь в воздухе друг с другом, неизбежно возвращаются в одно и то же состояние. Именно волновая природа электронов обуславливает идентичность атомов одного химического элемента и их высокую механическую устойчивость.

Тем не менее орбиты электронов значительно отличаются от орбит планет Солнечной системы вследствие их волновой природы. Атом нельзя уподобить маленькой планетарной системе. Мы должны представить себе не частицы, вращающиеся вокруг ядра, а вероятностные волны, распределенные по орбитам.

Однако успехи теории Бора, как и предыдущие успехи квантовой теории, были достигнуты за счет нарушения логической цельности: с одной стороны, использовалась механика Ньютона, с другой – привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике.

Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение связи между атомами, приводящей к образованию молекулы, не могла ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой.

Дальнейшая разработка вопросов теории атома привела ученых к убеждению, что движение электронов в атоме нельзя описывать в понятиях классической механики (как движение по определенной траектории, или орбите), что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

Окончательное формирование квантовой механики как последовательной теории с ясными физическими основами и стройным математическим аппаратом произошло после работы В. Гейзенберга (1927), в которой было сформулировано соотношение неопределенностей – важнейшее соотношение, освещающее физический смысл уравнений квантовой механики и ее связь с классической механикой (4).

Итак, ранее эксперименты Резерфорда обнаружили, что атомы не являются твердыми и неделимыми, а состоят из незаполненного пространства, в котором движутся очень маленькие частицы, а теперь квантовая теория утверждала, что эти частицы, из которых состоят атомы, обладают, подобно свету, двойной природой. Их можно рассматривать и как волны, и как частицы.

Это свойство материи и света очень необычно. Кажется совершенно невероятным, что что-то может одновременно быть частицей – величиной чрезвычайно малого объема – и волной, способной распространяться на большие расстояния. Это противоречие породило большую часть тех парадоксов, что легли в основу квантовой теории. Очевидное противоречие между свойствами волн и частиц разрешилось совершенно непредвиденным образом, поставив под вопрос саму основу механистического мировоззрения – понятие реальности материи. И прежде всего полностью трансформировались представления о материи как о незыблемой тверди.


    Ваша оценка произведения:

Популярные книги за неделю