Текст книги "100 великих научных достижений России"
Автор книги: Виорэль Ломов
сообщить о нарушении
Текущая страница: 13 (всего у книги 34 страниц) [доступный отрывок для чтения: 13 страниц]
ХРОМОТОГРАФИЯ ЦВЕТА
Химик, ботаник-физиолог, биохимик, приват-доцент Варшавского, профессор Юрьевского (ныне Тарту) и Воронежского университетов, действительный член Петербургского общества естествоиспытателей и Немецкого ботанического общества; лауреат Академической премии им. М.Н. Шахматова I степени, кавалер орденов Святого Станислава 3-й и 2-й степени, Святой Анны 3-й степени, юбилейной медали в честь 300-летия дома Романовых, Михаил Семенович Цвет (1872–1919) основные свои труды посвятил изучению пластид и пигментов растений и разработке методов их исследований. Созданная ученым хроматография стала одним из 20 великих открытий, преобразовавших, по мнению экспертов, науку, технику и промышленность XX века. Федерация европейских химических обществ относит М.С. Цвета наряду с четырьмя другими русскими учеными – Ломоносовым, Менделеевым, Бутлеровым и Семеновым к числу ста выдающихся химиков прошлого.
Наименование науки, открытия или изобретения довольно часто состоит из собственного названия и имени своего создателя. Например, геометрия Лобачевского, сварка Патона, «свеча Яблочкова». Но чтобы название науки совпадало с именем ее родоначальника – такое случается крайне редко. Ярчайший пример подобного слияния можно найти в хроматографии (от др.-греч. χρωµα – цвет и γράφω – пишу), открытой М.С. Цветом. В ней автор идеально вписался в название своего детища, невольно породив тавтологию и в заглавии нашего очерка – «Цвет Цвета», а точнее – «Цветопись Цвета». К слову заметим, что сам химик не был обуреваем тщеславием и менее всего повинен в таком совпадении; оно – всего лишь дело случая (а может, и судьбы). Михаил Семенович Цвет, сын итальянки – Марии де Дороцца и крупного русского чиновника Семена Николаевича Цвета, высшее образование получил в Швейцарии. Там же он стал доктором естественных наук. В 1896 г. Цвет приехал в Россию и несколько месяцев не мог устроиться на работу по единственной причине – степень доктора Женевского университета у нас не признавалась, поскольку по тогдашним требованиям не «тянула» даже на степень бакалавра. Многомесячное прозябание подтолкнуло ученого к повторной защите магистерской диссертации в Казанском университете в 1901 г., после чего он занял место ассистента кафедры физиологии и анатомии растений Варшавского университета. Житейские неурядицы (Цвет, не имея жилья, несколько лет ночевал в ботаническом кабинете на лабораторном столе), видимо, только способствовали его истовым занятиям.
М.С. Цвет
Изучая физиологию растений, ученый жаждал расшифровать зеленый пигмент листьев. Этой проблемой в мире занималось тогда множество химиков и ботаников, но никто не мог разделить близкие по свойствам пигменты (неорганические красители). Применявшиеся для этих целей стандартные процедуры были невероятно сложны и громоздки и требовали большого числа реактивов.
Чтобы выделить и очистить пигменты зеленого листа – хлорофиллы, Цвет провел множество опытов (было исследовано более ста различных по своей природе минеральных и органических адсорбентов), заключавшихся в том, что в стеклянную трубку с тонко измельченным порошком очищенного мела он наливал зеленый раствор пигментов, а затем по каплям добавлял бензол. Пигменты адсорбировались (поглощались) крупинками мела и, растворяясь, опускались вниз. Там они разделялись с образованием окрашенных колец – от ярко-зеленого до желто-оранжевого цвета.
Извлеченный из трубки мел разрезался на цветные кружочки, представлявшие собою индивидуальные вещества, и затем исследовался. Полученную при разделении веществ разноцветную картину, напоминавшую разложение света на спектр, Цвет и назвал хроматограммой, а метод – хроматографией.
Ученый нашел, что кружочки являли собою два вида хлорофиллов и каротиноиды (пигмент, окрашивающий осенью листья в разные цвета). То есть разделив считавшийся дотоле однородным зеленый пигмент на несколько веществ, Цвет впервые получил в чистом виде хлорофиллы А и B. Эти исследования вообще развеяли убежденность ботаников в том, что в каждом растении содержится свой вид хлорофилла – дубовый, пихтовый, ромашковый… Цвет сузил поиск хлорофиллов до двух форм. Позднее этот метод позволил получить в чистом виде хлорофиллины a, b, g (хлорофиллы a, b, с) и ряд изомеров ксантофилла.
Химик был уверен, что новый метод подойдет и для разделения бесцветных веществ, что вскоре нашло свое подтверждение. Тогда же Цвет сформулировал и закон адсорбционного замещения.
Впервые о своих исследованиях Цвет сообщил в двух докладах – на XI Съезде естествоиспытателей и врачей в Санкт-Петербурге (1901) и на заседании ботанического отделения Варшавского общества естествоиспытателей (1903).
Термин «хроматография» в первый раз появился в двух печатных работах Цвета в 1906 г., опубликованных в немецком журнале «Berichte der Deutschen Botanischen Gesellschaft». А в 1907 г. Цвет выступил на заседании Немецкого ботанического общества с сообщением об открытии хроматографии и продемонстрировал первый хроматограф и принцип его действия.
После этого ученый занимался доработкой своего метода до начала Первой мировой войны. В 1910 г. Цвет защитил диссертацию на степень доктора ботаники; в 1911 г. сделал доклад на втором Менделеевском съезде «Современное состояние химии хлорофилла»; получил Большую премию РАН им. М.Н. Ахматова за книгу по теме диссертации – «Хромофиллы в растительном и животном мире».
Гениально простой метод был не воспринят современниками. Более того, нашлось немало ниспровергателей. Скорее всего, по этой причине ученого забаллотировал Нобелевский комитет в 1918 г. и открытие было забыто на 10 с лишним лет.
В конце войны немцы заняли Юрьев, где в университете преподавал Михаил Семенович. Цвет вынужден был эвакуироваться в Воронеж. Там профессор ботаники по какой-то причине остался без продовольственных карточек. Он читал лекции в университете, хотя в последние дни от слабости не мог стоять за кафедрой. 26 июня 1919 г. ученый умер от голода. Могила была затеряна, найдена лишь в 1992 г. На плите оставили надпись: «Ему дано открыть хроматографию – разделяющую молекулы, объединяющую людей».
Открытие Цвета получило широкое признание в 1930-х гг., когда стало применяться для разделения и идентификации пигментов, витаминов, ферментов, гормонов и других органических и неорганических соединений.
В СССР метод и имя Цвета вернулись с Запада, где сохранились считавшиеся утраченными в войну рукописные труды ученого.
Вряд ли какой другой метод исследования веществ развивался в середине XX в. так же бурно, как хроматографический. Он стал «виновником» доброго десятка Нобелевских премий, поскольку был основой большинства достижений в науке и технике XX в.
По мнению доктора химических наук В.А. Даванкова и доктора химических наук Я.И. Яшина, хроматография представляет собою сегодня «самый распространенный и совершенный метод разделения смесей атомов, изотопов, молекул… уникальный метод качественного и количественного анализа сложных многокомпонентных смесей; самостоятельное научное направление и важный физико-химический метод исследования и измерения; препаративный и промышленный метод выделения веществ в чистом виде; мощную отрасль научного приборостроения».
Это чрезвычайно эффективный процесс, позволяющий в одном эксперименте разделять более 1000 индивидуальных компонентов и до 2000 белков в биологических объектах либо использовать его для сверхтонкой очистки вещества.
Диапазон применения хроматографических методов огромен: от анализа атмосферы планет Солнечной системы до полного анализа содержимого одной живой клетки.
Выдающуюся роль хроматография играет в химической, нефтехимической, газовой, целлюлозно-бумажной, пищевой и других отраслях промышленности; в технологическом контроле и поддержании оптимального режима производства; в контроле исходного сырья и качества готовой продукции; в анализе газовых и водных сбросов производства.
На каждом крупном заводе постоянно функционирует до 600 газовых хроматографов; в лабораториях Госсанэпиднадзора, экологических центрах, токсикологических лабораториях, в учреждениях Водоканала, в лабораториях Госкомгидромета, в ветеринарных лабораториях, на станциях защиты растений, в лабораториях судебной и судебно-медицинской экспертизы эксплуатируются десятки, если не сотни тысяч газовых, жидкостных и ионных хроматографов.
СИНТЕТИЧЕСКИЙ КАУЧУК С.В. ЛЕБЕДЕВА
Химик-органик; профессор Военно-медицинской академии, Ленинградского технологического, Психоневрологического и Женского педагогического институтов, ЛГУ; академик АН СССР; организатор и руководитель ряда лабораторий (химической переработки нефти, каменного угля, синтетического каучука, высокомолекулярных соединений АН СССР); заведующий химической частью завода «Нефтегаз»; кавалер золотой медали Международной выставки по железнодорожному делу, двух почетных золотых медалей Российской АН, ордена В.И. Ленина; лауреат Большой премии И.Д. Толстого Российской АН, Премии им. Ф.Э. Дзержинского за исследования в области каталитической гидрогенизаци, Сергей Васильевич Лебедев (1874–1934) является основоположником промышленного способа получения синтетического каучука.
С появлением в начале XX в. автомобилей, аэропланов, танков и тракторов на резиновом ходу резко возросла потребность в шинах. Новые отрасли промышленности (в первую очередь электротехническая) нуждались в электроизоляционных материалах, прорезиненных тканях, конвейерных лентах, приводных ремнях, уплотнителях, резиновых клеях, всевозможных шлангах и рукавах. Ассортимент товаров широкого потребления пополнился резиновой обувью, одеждой, игрушками, спортивным инвентарем, предметами санитарии и гигиены. Появился спрос на водолазные костюмы и прочую экзотику. Поначалу резины на эти цели хватало. Сырьем для нее служил натуральный каучук из млечного сока (латекса) бразильской гевеи, произраставшей на плантациях в тропических странах. ( «Каучу»– сок гевеи, с языка индейцев Амазонки.)
Резину получают при вулканизации этого полимера – высокомолекулярного непредельного углеводорода элементарного состава (С5Н8)n. Главная способность каучука заключается в высокой эластичности при комнатных и умеренно низких температурах – метровую пластинку можно растянуть до 9 м без потери свойств.
В довоенной России резиновая промышленность была развита слабо, и отношение властей, да и научного сообщества к работам химиков, занимавшихся невероятно сложной «резиновой» проблемой, также оставляло желать лучшего.
С.В. Лебедев
Первая мировая война выявила колоссальную зависимость любой страны от каучука. Стоило Антанте отрезать Германию от импорта каучука, как у подданных кайзера Вильгельма II тут же начались серьезные проблемы с шинами для танков, пушек, машин. Немецкие химики смогли получить из изопрена первый синтетический метилкаучук, но от него из-за дороговизны и крайне низких эксплуатационных свойств после войны тут же отказались.
Правительство СССР, не желая повторять печальный опыт противника, проявило максимум усилий по созданию резиновой промышленности на основе отечественного каучука. Прорабатывались два варианта получения каучука: натурального – поиск каучуконосов, пригодных для разведения в нашей стране (этой проблемой занимался Н.И. Вавилов); и синтетического, для чего в 1926 г. был объявлен всемирный конкурс на производство искусственного каучука с премиальным фондом 150 000 рублей (100 000 – за первое место). Через 2 года конкурсанты должны были передать в жюри 2 кг дешевого продукта, не уступающего по свойствам природному, описание лабораторного и заводского способов его получения.
С.В. Лебедев занимался синтезом каучука еще в 1900-х гг. параллельно с другими химиками – И.Л. Кондаковым и И.И. Остромысленским. В 1910 г. Лебедев впервые получил из дивинила синтетический бутадиеновый каучук. 19-граммовый образец произвел впечатление на коллег ученого, но никак не на представителей промышленности. «Исследование в области полимеризации двуэтиленовых углеводородов» (1913) Лебедева стало в дальнейшем научной базой промышленного синтеза каучука, а целый цикл работ ученого по полимеризации этиленовых углеводородов лег в основу промышленных методов получения бутилкаучука и полиизобутилена.
Лебедев создал «великолепную семерку» энтузиастов-химиков и в свободное от работы время и за свой счет занялся невероятно трудоемкой работой. Все приходилось делать самим – закупать подсобные материалы, колоть и таскать с Невы необходимый для опытов лед. Руководитель группы был одновременно «и исполнителем, и лаборантом, и слесарем, и стеклодувом, и электромонтером». Без опыта и интуиции Лебедева, без его железной уверенности в правильности выбранного пути вряд ли это предприятие увенчалось успехом.
Разработав «одностадийный промышленный способ получения бутадиена из этилового спирта путем совмещенной каталитической реакции дегидрогенизации и дегидратации», ученый успел получить в лаборатории общей химии в Ленинградской военно-медицинской академии к установленному сроку 2 кг синтетического натрий-бутадиенового каучука – диолифина.
Сырьем для получения каучука вначале была нефть, но вскоре перешли на этиловый спирт, получаемый из картошки. В качестве катализаторов Лебедев взял природные глины, а катализатором полимеризации послужил металлический натрий. Первоначальный 20-процентный выход дивинила на затраченный спирт затем был доведен до 40 %.
Жюри конкурса признало лебедевский продукт победителем, способ его получения – перспективным и дало добро на его дальнейшую разработку, для чего правительством были отпущены необходимые средства.
Лебедев составил проект Опытного завода, который был построен в Ленинграде в 1930 г. В течение года синтетический каучук был получен в промышленных масштабах (первый блок весом 260 кг), изучены его свойства, найдены активные наполнители, предложены методы и технологии получения из него высокотехничной резины и резинотехнических изделий. Автомобильные покрышки успешно выдержали серьезное испытание в знаменитом Каракумском пробеге (9400 км по дорогам и бездорожью маршрута Москва – Ташкент – Красноводск – Баку – Москва).
В 1931 г. Сергей Васильевич Лебедев был награжден орденом Ленина за «особо выдающиеся заслуги по разрешению проблемы получения синтетического каучука», а в следующем году избран действительным членом АН СССР.
Совет труда и обороны СССР принял решение о строительстве первых трех заводов синтетического каучука проектной мощностью 10 000 т в год каждый. Так в мире появилась новая промышленность синтетического каучука.
Когда американский изобретатель Т.А. Эдисон, тщетно занимавшийся каучуковой проблемой, узнал об успехе русских, он не поверил и заявил: «Этого нельзя сделать. Я бы сказал даже больше, весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других стран сейчас нельзя сказать, что получение синтетического каучука вообще когда-либо будет успешным» (В. Азерников).
Тем не менее именно СССР накануне Второй мировой войны занял первое место в мире по производству синтетического каучука.
В Германии каучук был синтезирован в 1936–1937 гг., а в США – в 1942 г.
В 1950-х гг. советские химики вернулись к одному из путей, которые осваивал С.В. Лебедев – к производству каучука из нефтяных газов и продуктов переработки нефти. Это был новый шаг в получении еще более высококачественного искусственного каучука.
2 мая 1934 г. Лебедев скончался от сыпного тифа. Его жена Анна Петровна Остроумова исполнила последнее желание Сергея Васильевича – «деньги за внедрение синтетического каучука передала на устройство будущей химической лаборатории в Академии наук».
ХИМИЧЕСКАЯ ФИЗИКА СЕМЕНОВА
Химик, физик, общественный деятель, депутат Верховного Совета СССР нескольких созывов; профессор, заведующий кафедрой химической кинетики МГУ; академик, академик-секретарь отделения химических наук, вице-президент АН СССР, родоначальник огромной научной школы; член 14 иностранных академий и обществ; заместитель директора Ленинградского физико-технического института, директор Института химической физики АН СССР; один из основателей Московского физико-технического и Московского инженерно-физического институтов, основатель и председатель Научного центра АН СССР в Черноголовке; один из главных участников советского ядерного проекта; председатель правления общества «Знание»; лауреат двух Сталинских и Ленинской премий, Нобелевской премии 1956 г. по химии (совместно с С. Хиншелвудом); обладатель почетной степени Honoris causa восьми известных университетов мира; кавалер 9 орденов Ленина, Золотой медали им. Ломоносова АН СССР; дважды Герой Социалистического Труда, Николай Николаевич Семенов (1896–1986) является первооткрывателем ионно-гетерогенного катализа, автором общей количественной теории цепных реакций, теории теплового взрыва газовых смесей и других открытий мирового уровня. Главной заслугой Семенова считается основание им нового направления в физической химии – химической физики.
На первый взгляд большой разницы между физической химией и химической физикой нет. Но это, конечно, только на первый взгляд – для людей особо не отягощенных естественно-научным образованием. Впрочем, даже они наверняка слышали о таинственных алхимиках, которые и занимались на стыке средневековой науки и искусства «физической химией», а попросту – «химичили». Так вот, никакого отношения к нашему предмету это не имеет. Первым этот термин ввел в 1752 г. М.В. Ломоносов, назвав свои лекции «Курсом истинной физической химии». Это направление «наше всё» определил так: «Физическая химия – наука, которая должна на основании положений и опытов физических объяснить причину того, что происходит через химические операции в сложных телах». (Сегодня определение сократили до «науки об общих законах физики и химии».)
Получив методологическое основание, физическая химия развивалась и обогащалась, пока в 1930-х гг. от нее не отпочковалась самостоятельная ветвь – «химическая физика». Это направление узурпировало часть функций родоначальницы и занялось изучением физических законов, управляющих строением и превращением химических веществ. «Предметом физической химии (классической) является суммарное рассмотрение химических процессов, протекающих с одновременным участием множества частиц, тогда как предметом химической физики – рассмотрение отдельных частиц и взаимодействий между ними, то есть элементарных процессов».
Термин обязан своим рождением немецкому физико-химику А. Эйкену, выпустившему в 1930 г. «Учебник химической физики». (Справедливости ради стоит отметить, что за 3 года до этого вышла книга советских ученых В.Н. Кондратьева, Н.Н. Семенова и Ю.Б. Харитона «Электронная химия», в которой была изложена суть науки, не получившей еще своего названия.) Сама наука возникла не по прихоти ученых, а вследствие появления квантовой механики с ее представлениями, теории химической связи, открытия межмолекулярных взаимодействий и реакционной способности молекул.
Н.Н. Семенов
Спрос на новую отрасль знания оказался столь велик, что уже в 1931 г. у нас был организован Институт химической физики АН СССР, а в США с 1933 г. стал издаваться «Journal of Chemical Physics» («Журнал химической физики»).
Пограничная область между химией и новыми разделами физики, вобравшая в себя последние научные достижения, получила быстрое развитие – в первую очередь благодаря открытию и изучению ранее неизвестные типов химических реакций. В частности, теории разветвленных цепных реакций, которую независимо друг от друга развивали в 1920–1930-е гг. советский ученый Н.Н. Семенов и английский физико-химик С.Н. Хиншвулд. В 1956 г. оба исследователя были удостоены Нобелевской премии по химии (к слову, из российских химиков Семенов – единственный лауреат по этой номинации) – «за исследования в области механизма химических реакций». Разработанная Семеновым теория цепных химических реакций легла в основу создания полимеров – веществ с заранее заданными свойствами, химических лазеров и др.
(Цепными реакциями называют сложные реакции, в которых промежуточные активные частицы, регенерируясь в каждом элементарном акте, вызывают цепь превращений исходного вещества. Различают химические цепные реакции (горение, полимеризация) и ядерные. В первых активными частицами выступают свободные радикалы, возбужденные атомы и молекулы, во вторых – нейтроны.)
Опубликованная в 1934 г. Семеновым монография «Цепные реакции» закрепила за ним и руководимым им Институтом химической физики роль мирового лидера в области химической кинетики.
Еще одним шагом по развитию новой науки стало создание Семеновым теории теплового взрыва газовых смесей (самовоспламенения), впервые изложенной в его статье «К теории процессов горения» (1928). На основе этой теории химик в дальнейшем построил учение о распространении пламени, детонации, горении взрывчатых веществ и порохов.
Предыдущие открытия априори подготовили Семенова к участию в ядерном проекте. В 1945 г. Николай Николаевич сам обратился к правительству с предложением участвовать в работах по созданию атомного оружия. Институт химической физики успешно участвовал в расчетах, измерении констант, подготовке полигона и оборудования для испытаний.
В 1955 г. Семенов сделал очередное выдающееся открытие: новый тип катализа – ионно-гетерогенный. Ученым и его учениками была развита цепная теория гетерогенного катализа, разработаны статистическая теория каталитической активности, теория топохимических процессов и кристаллизации.
Во второй половине XX в. Семенов стал инициатором нового направления развития химической физики – биологического. В результате за несколько десятилетий химическая физика стала теоретической основой науки о жизни, и на слиянии ее и биологии возникла новая наука – биохимическая физика, которая по прогнозам (академик А.Е. Шилов) в нашем веке должна стать основной в понимании молекулярных механизмов процессов, происходящих в живых организмах.
Н.Н. Семенов создал знаменитую семеновскую научную школу химической физики и воспитал блестящую плеяду учеников, ставших академиками: В.Н. Кондратьева, Л.Б. Зельдовича, Ю.Б. Харитона, В.В. Воеводского, В.И. Гольданского, Н.С. Ениколопова, Н.М. Эмануэля, А.И. Шальникова, А.Е. Шилова, Д.Г. Кнорре, М.А. Садовского, А.Б. Налбандяна и многих других.
Современный этап в развитии химической физики характеризуется широким применением масс-спектрометрии, рентгеноструктурного анализа, электронной микроскопии, ядерного магнитного резонанса, метода спинового эха, электронографии и ионографии, ударно-волновых и десятков, если не сотен других методов теоретической и экспериментальной физики.
Химическая физика нашла широчайшее применение в науке и технике. Она изучает процессы горения и взрыва, электронную структуру молекул и твердых тел, элементарные акты химических реакций, молекулярные спектры и т. д. В ней сегодня выделились два основных направления: «определение электронной и атомно-молекулярной структуры химических частиц и образованных ими веществ и исследования, связанные с решением проблем химической динамики, то есть изменений во времени энергетических и структурных характеристик частиц».
Ныне получили дальнейшее развитие многие разделы химической физики, разработанные Семеновым и его учениками – электрохимия и катализ, квантовая и ядерная химия; появилась химия низких температур и высоких энергий, фото– и плазмохимия, радиационная химия… Не забыта и прародительница этой науки – физическая химия.
Говорить о применении этой науки на практике можно много, но разве упомянутых полимеров, химических лазеров и атомной бомбы мало?