355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Попенко » Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации » Текст книги (страница 21)
Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации
  • Текст добавлен: 6 октября 2016, 23:25

Текст книги "Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации"


Автор книги: Виктор Попенко


Жанр:

   

Cпецслужбы


сообщить о нарушении

Текущая страница: 21 (всего у книги 30 страниц) [доступный отрывок для чтения: 11 страниц]

Чтение симпатических чернил в специальном освещении

Как уже упоминалось в предыдущей теме, в набор для тайнописи входят авторучки с симпатическими флуоресцирующими чернилами, которые можно прочитать только при освещении невидимого текста определенным способом.

Оптические методы включают: – просмотр в видимом свете; – под проникающим излучением; – в ультрафиолетовом свете от кварцевой лампы и в инфракрасных лучах; – использование фотографии. При использовании видимого света, он направляется на лист с тайнописью прямо или наклонно, а сам лист размещается на матовом светотехническом стекле, причем подсветка создается расположенной под ним лампой накаливания с матированной колбой. При таком просвечивании надпись, содержащая, например, нитрат серебра, темнеет и становится видимой. Проникающее излучение может направляться на документ прямо, наклонно или почти параллельно поверхности.

Флуоресцирующие чернила в своей основе содержат определенные виды красителей, к их числу относятся: аурамин; родамин; азур; кислотный оранжевый; кислотный красный; кислотный фиолетовый; кислотный зеленый; кислотный голубой; прямой алый; фиолетовый прямой; фуксин кислотный; эозин; фиолетовый основной; малахитовый зеленый; бриллиантовый зеленый; метиленовый голубой.

В зависимости от типа симпатических чернил их чтение может осуществляться: а) в инфракрасных, рентгеновских или гамма-лучах;

б) в отраженных невидимых лучах с применением электронно-оптического преобразователя (ЭОП);

в) при люминесценции в видимой или инфракрасной зонах спектра. Иногда маскировку написанного обычными чернилами сообщения осуществляют при помощи якобы случайной заливки текста более темными чернилами (ставят на месте тайнописи кляксу). Но при правильном освещении текст станет виден. Соответственно, агент, который получает такое сообщение, должен быть заранее осведомлен о способе его чтения, т. е. знать, под действием какого излучения текст станет доступен для чтения, и иметь под рукой соответствующую оптическую аппаратуру. Причем последняя обычно не является чем-то секретным и может свободно храниться у агента дома или находиться у него на работе в качестве служебного оборудования.

Люминесцентное чтение

Для такого чтения могут использоваться люминесцентные аналитические осветители. Источником излучения в таком осветителе является лампа, представляющая собой кварцевый цилиндр, заполненный парами ртути и аргона. Последовательно с лампой включается дроссель. Для зажигания лампы служит конденсаторная полоса. Включение лампы производится быстрым замыканием кнопки. Максимум испускания лучей лампой находится на спектральной линии 365 мм. Для фильтрации света применяется ультрафиолетовый фильтр. Лампа может быть включена в сеть с переменным напряжением 127 и 220 В. Мощность равна 220 Вт при силе тока, равной 3,7 А.

Для чтения в коротковолновых ультрафиолетовых лучах применяется лампа, работающая в режиме тлеющего разряда, при котором 90 % излучения находится на линии 253,7 ммк, с ультрафиолетовым светофильтром. Прибор может быть включен в сеть с напряжением 127 В и 220 В.

Люминесценция может быть возбуждена не только ультрафиолетовыми лучами, но и видимым фиолетовым, синим или зеленым светом. При этом спектр люминесценции будет смещен по отношению к свету, возбуждающему люминесценцию, в сторону более длинных волн, то есть соответственно в сторону желто-оранжевой, красной или инфракрасной части спектра.

На рисунке 217 приведена схема установки для возбуждения люминесценции видимым светом. При визуальном наблюдении люминесценции должны соблюдаться следующие условия:

1. Освещение текста должно быть произведено светом, возбуждающим люминесценцию текста, либо фона, на котором он находится. В качестве источника света используется лампа накаливания с фиолетовым, синим или зеленым светофильтром.

2. К глазу наблюдателя пропускается только свечение люминесценции. Лучи, возбуждающие люминесценцию, и другие посторонние лучи должны быть отсечены, так как в противном случае произойдет искажение картины люминесценции. С этой целью для рассмотрения люминесценции применяется желтый или оранжевый светофильтры.

3. Для возбуждения люминесценции текст должен освещаться фильтрованным светом в течение 5–10 мин.

Следует обеспечить темновую адаптацию глаза, так как свечение люминесценции имеет значительно меньшую яркость, чем привычные для обычного наблюдения тексты. При недостаточной люминесценции текста (что может иметь место, например, из-за несоблюдения технологии при самостоятельном изготовлении агентом-отправителем красителя) используются приемы, усиливающие его люминесценцию. Так, с текстов, слабо люминесцирующих вследствие сильной концентрации красителя, изготавливаются оттиски, имеющие меньшую концентрацию и потому лучшую люминесценцию.

Некоторые красители, например красного копировального карандаша, люминесцируют при легком увлажнении написанного таким карандашом текста.

Чтение в отраженных инфракрасных и ультрафиолетовых лучах

Многие тексты, одинаково отражающие видимый свет, по-разному отражают и поглощают невидимые лучи спектра: ультрафиолетовые и инфракрасные. На использовании этого свойства невидимых лучей основана методика дифференциации неразличимых при обычном освещении текстов. Цветоделение в невидимых лучах принципиально не отличается от цветоделения в видимых лучах и сводится к выбору спектральной зоны, в которой различие дифференцируемых текстов в отражении и поглощении лучистой энергии выражено наиболее сильно. Однако техника выделения нужной спектральной зоны и наблюдения построенного невидимыми лучами изображения зависит от длины волны света, а параметры излучения, необходимые для чтения, заранее оговариваются между агентами, чтобы затем не тратить время на их установку (подбор).


Рис. 217.

Различается чтение: 1) в коротковолновых ультрафиолетовых лучах (длина волны короче 275 ммк);

2) длинноволновых ультрафиолетовых лучах (длина волны 400–320 ммк);

3) коротковолновых инфракрасных лучах (длина волны до 2 мк);

4) длинноволновых инфракрасных лучах (длина волны до 15–20 мк). Хорошими источниками ультрафиолетовых лучей являются ртутно-кварцевые лампы и лампы накаливания. Последние используются также как источники инфракрасных лучей.

Необходимая для чтения спектральная зона выделяется путем установки соответствующего источника света и светофильтра.

Коротковолновое ультрафиолетовое излучение поглощается стеклом. Поэтому для чтения в этой зоне применяется специальная кварцевая оптика.

Кроме того, используется метод чтения на флюоресцирующих экранах. В этом случае изображение текста с помощью объектива проецируется на экран, флюоресцирующий под действием ультрафиолетовых лучей. Благодаря свечению экрана невидимое изображение преобразуется в видимое.

Для чтения в невидимых лучах могут использоваться ЭОПы. Изображение, построенное невидимыми лучами, объективом направляется на катод преобразователя. В преобразователе используется катод, чувствительный к невидимым лучам определенной спектральной зоны (до 2 мк).

Под действием падающих на катод лучей с каждой точки его поверхности происходит эмиссия электронов, пропорциональная количеству падающих лучей. Между катодом и анодом приложено ускоряющее напряжение, под действием которого электроны направляются на соответствующие участки анода. Для фокусировки электронного пучка служит магнитная линза.

Поверхность анода покрыта веществом, люминесцирующим под действием падающих на него электронов. Невидимое изображение преобразуется в видимое и через окуляр может наблюдаться глазом и (после удаления окуляра) фотографироваться. Фотографирование наблюдаемого в преобразователе изображения производится любой фотокамерой. Спектральная чувствительность ЭОП зависит от чувствительности используемого в нем катода. ЭОП, снабженный кислородно-цезиевым фотокатодом, чувствителен как к инфракрасным (до 1,3 мк), так и к ультрафиолетовым (до 0,3 мк) лучам. Поэтому такой ЭОП можно использовать для чтения в той и другой спектральных зонах.

С помощью ЭОП можно читать тексты, поверх которых посажены маскировочные синие чернильные кляксы, а также тексты, выполненные графитным карандашом и залитые затем сверху фиолетовыми чернилами. В качестве осветителя при чтении в инфракрасных лучах может быть использован любой достаточно мощный осветитель. При чтении в ультрафиолетовых лучах рекомендуется лампа со светофильтром, выделяющим лучи с длиной волны около 360 ммк. Светофильтр может быть выполнен в виде солнцезащитных очков, которые (в зависимости от вида тайнописи) могут использоваться как самостоятельный фильтр, так и комбинированно – в сочетании с внешними осветителями, снабженными фильтрами. Для чтения в инфракрасных лучах могут быть использованы любой мощный источник инфракрасных лучей и инфракрасные светофильтры.

Рассмотрим еще некоторые типы излучателей невидимых лучей, которые могут применяться для чтения тайнописных текстов.

Ультрафиолетовые излучатели.Ультрафиолетовые излучатели (УФИ) – аппараты для искусственного получения ультрафиолетового (УФ) излучения (радиации). В составе УФИ имеется источник УФ излучения, в качестве которого используются ртутно-кварцевые, эритемные или увиолевые лампы.

Люминесцентная ртутно-кварцевая лампа является источником УФ излучения с длинами волн от 180 до 400 нм. Она состоит из кварцевой трубки, заполненной аргоном и содержащей небольшое количество ртути. УФ излучение появляется в результате электрического разряда в парах ртути внутри кварцевой трубки, прозрачной для УФ лучей. В оба конца трубки впаяны электроды. В цепь лампы включены: конденсатор, соединенный с пружинной кнопкой (для облегчения зажигания); дроссель и повышающий трансформатор (при напряжении тока в сети 127 В). Рабочий режим горения лампы с излучением полного спектра УФ лучей устанавливается спустя 5 мин после включения в сеть.

УФИ может быть стационарным – настольным, напольным или переносным, который помещается в кейсе или чемодане. Для работы лампы используется электрический ток ультравысокой частоты, генератор которого смонтирован в чемодане облучателя.

Некоторые излучатели имеют несколько ламп (или тубусы с различными светофильтрами), охватывающих весь диапазон УФ излучения.

Микроточки (микродоты)

При микрофильмировании изображение можно уменьшить в десятки (и более) раз, что позволяет большой объем информации «спрессовать» в довольно маленький микрофильм. Но даже небольшой по объему микрофильм все равно требует тайника и может быть обнаружен при обыске, после чего изображение (хотя и очень маленькое, но тем не менее заметное глазу) будет, конечно, выявлено. Вариантом фотосъемки, исключающим случайное обнаружение на пленке отснятого материала, является использование технологии микроточек, позволяющее уменьшить изображение в сотни раз.

Микроточка представляет собой часть обыкновенной стандартной пленки (используемой обычно в данной стране), на которой наряду с малозначительными кадрами имеется сверхминиатюрное изображение, совершенно неразличимое невооруженным глазом и могущее читаться только с помощью некоторой увеличительной аппаратуры (которая будет рассмотрена ниже).

Агентами ЦРУ изготовление микроточек производится с помощью совместного использования двух фотоаппаратов: стандартного 35-мм аппарата «Kodak» (с пленкой «Special Kodak 649 F») и суб-миниатюрной камеры «Minox» (на рисунке 218 – общая схема и ход лучей в системе).

Микроточка должна располагаться на заранее оговоренном между агентами номере кадра и быть в определенном его месте (чтобы получателю не пришлось просматривать всю пленку).

Микроточка также может быть просто вырезана с пленки и наклеена, например, в тексте какого-либо письма или книги вместо обычной точки над буквой «i» или точки в конце любого предложения и т. п. Соответственно получатель заранее уведомляется, где эта «точка» будет стоять.


Рис. 218. Способ изготовления микроточек при помощисовместного использования фотоаппаратов «Kodak», и «Minox» (общая схема и ход лучей в системе)


Просмотр пленок
Чтение микроточек

Для просмотра негативов и позитивов могут применяться (в зависимости от их уменьшения) самая различная аппаратура и оптические приспособления и устройства – от обычной лупы до электронного микроскопа. Работа с микроскопом (например, при просмотре микроточек) требует определенной подготовки.

Рассмотрим общие моменты такой работы. Сначала осуществляется наводка микроскопа на резкость, которая складывается из нижеследующих операций.

Вначале объектив микроскопа располагается от просматриваемого кадра на расстоянии, меньшем фокусного расстояния объектива. Для средних объективов это расстояние равно 2–4 мм. Фронтальная линза сильных объективов приближается к кадру почти до соприкосновения. Установка контролируется сбоку, при этом глаз должен находиться на уровне объектива. Затем путем медленного подъема тубуса или опускания столика микрометрическим винтом добиваются появления изображения на микроточке. В заключение микрометрическим винтом производится точная наводка.

Важным условием получения четкого изображения является освещение. Для предотвращения попадания в объектив микроскопа лишних лучей, создающих блики и снижающих контраст изображения, освещенное поле кадра должно соответствовать по величине полю зрения микроскопа.

Освещение кадра должно быть равномерным, что достигается специальной фокусировкой используемого для освещения света в осветителях и конденсорах. Наивысшая разрешающая способность объектива и максимальная контрастность изображения достигаются в случае, когда угол лучей, падающих в объектив, соответствует его угловой апертуре. С этой целью регулируется апертурная диафрагма конденсора микроскопа.

Апертура – это действующее отверстие оптической системы, определяемое размерами линз. Угловая апертура характеризуется углом, а между крайними лучами конического светового пучка, входящего в оптическую систему.

Иногда (редко) микроточки изготавливаются таким образом, что их чтение (просмотр) возможно только в отраженном или проходящем свете и под определенным углом.

Просмотр в отраженном свете может осуществляться при боковом или вертикальном освещении.

При боковом освещении пучок света от осветителя под соответствующим углом направляется на пленку через конденсор. В качестве конденсора может использоваться собирательная линза или вогнутое зеркало. Для получения равномерного освещения: а) перед осветителем помещается матовое или молочное стекло; б) на кадр с помощью конденсора проецируется не нить лампы, а коллектор осветителя или матовое стекло; в) со стороны кадра, противоположной осветителю, устанавливаются экраны-подсветки или зеркала.

Угол бокового освещения заранее оговаривается между агентами, чтобы не тратить время на его подбор.

Вертикальное освещение создается специальными осветителями: опак-иллюминаторами. В корпусе опак-иллюминатора помещаются лампа, коллектор с полевой диафрагмой, призма или остекленная пластинка, направляющая свет на кадр через объектив микроскопа. При этом объектив выполняет роль конденсора, собирая лучи света на поверхности кадра. Отраженные лучи вновь собираются микроскопом, образуя изображение микроточки, видимое в окуляре.

Схему опак-иллюминатора можно использовать и при просмотрах с малым увеличением, например, на стереоскопических микроскопах. Для этого перед объективом микроскопа под углом 45° к оптической оси укрепляют чистую стеклянную пластинку, отражающую на кадр свет от бокового осветителя.

При освещении проходящим светом изображение образуется за счет различия в поглощении и пропускании света кадром.

В установку для освещения проходящим светом входит специальный осветитель, состоящий из источника света, коллектора и полевой диафрагмы, зеркала и конденсора микроскопа с апертурной диафрагмой.

Пучок света от осветителя с помощью зеркала через конденсор направляется на кадр, производится наводка микроскопа на резкость. Для получения равномерного освещения, перемещая источник света относительно коллектора, получают изображение нити лампы на закрытой диафрагме конденсора. Чтобы получить нужное поле освещения, открывают диафрагму конденсора и закрывают диафрагму осветителя. Регулируя положение конденсора микроскопа и зеркала, получают резкое изображение диафрагмы осветителя в центре поля зрения микроскопа. Затем открывают диафрагму осветителя настолько, чтобы освещалось только видимое поле зрения. Путем изменения апертурной диафрагмы конденсора регулируется угол входящих в объектив лучей, и таким образом достигаются яркость и контраст изображения.

В случае отсутствия специального осветителя с коллектором и диафрагмой можно применить любой источник света. При этом используется вогнутая сторона зеркала, которая играет роль коллектора, направляющего пучок света через конденсор в объектив. В этом случае, однако, нельзя регулировать размер освещенного поля.

При чтении микроточек могут использоваться инструментальные, металлографические, биологические, сравнительные и стереоскопические микроскопы. Что касается последних, то они позволяют вести наблюдение двумя глазами через два объектива и окуляра. Конечно, никакого объемного изображения микроточка не содержит, но при длительном чтении глаза на этом микроскопе устают меньше. Оптическая система стереомикроскопа состоит из передних линз, сменных объективов, вводимых поворотом барабана. Изображение с помощью линз направляется на оборачивающие призмы и сводится в фокальные плоскости окуляров.

Агенты ЦРУ используют для чтения микроточек специальный «карманный микроскоп».

Просмотр (чтение) микрофильмов

Если для чтения микроточек требуется микроскоп, то для просмотра (чтения) микрофильмов можно использовать самые разные оптические системы и проекторы. Ниже представим некоторые из них.

Проекторы позволяют воспроизводить изображение негатива микропленки на экране. Различают диаскопические, эпископические и эпидиаскопические проекторы. Диаско-пические проекторы (проекционные аппараты, кинопроекторы – (рис. 219) дают изображения в проходящем свете, эпископические проекторы – изображения в отраженном свете. Эпидиаскопические проекторы представляют собой их комбинацию (эпидиаскоп). На рис. 220 представлен прибор, оптическая схема которого сочетает схемы эпископа и диапроектора. При диаскопической проекции диапозитив освещается проходящим направленным пучком света, поэтому изображение на экране имеет достаточную яркость даже при использовании источника света небольшой мощности и проекционных объективов не очень высокой светосилы. При эпископической проекции необходимо применять более мощные источники света и светосильные объективы.

Диаскоп – оптико-механический прибор для проецирования изображений оригиналов на экран, встроенный в прибор, позволяющий чтение микрофильмов (микрофот) и т. д. (рис. 221).

Простейшим оптическим увеличительным приспособлением является обычная лупа (рис. 222). Бинокулярная лупа позволяет рассматривание одновременно обоими глазами стереоизображений. Она состоит из двух линз, вмонтированных в оправу (рис. 226).

К аппаратам, позволяющим осуществлять чтение микропленок, относятся читающие устройства и читальные аппараты. Некоторые модели таких аппаратов позволяют делать копии микропленки.

Читальный аппарат представляет собой проекционный аппарат, в котором изображение кадра микрофильма через объектив и систему зеркал проецируется на встроенный в аппарат или вынесенный экран. По принципу действия читальные аппараты подразделяются на аппараты для просмотра микрокопий в проходящем или отраженном свете. Настольные читальные аппараты позволяют просматривать как микрофильмы, так и микрокопии (микрокарры, микрофиши).

Конструктивно читальные аппараты подразделяются на аппараты с диффузно отражающим и просветным экраном. Основные узлы читального аппарата с диффузно отражающим экраном показаны на рис. 12. В комплект аппарата может входить также зеркальная приставка для проецирования изображения на внешний экран. В читальных аппаратах этого типа свет от электрической лампы через теплофильтр и систему линз попадает на кадр микрофильма. Полученное таким образом оптическое изображение микрокадра проецируется с помощью объектива и зеркала на экран, установленный в глубине светозащитного кожуха, что позволяет пользоваться читальным аппаратом в незатемненных помещениях.



Рис. 219. Устройство для просмотра кинопленки 1 – кинопроекционный аппарат; 2 —усилитель электрических сигналов; з – громкоговорящее устройство; 4 – автотрансформатор


Рис. 220. Эпидиаскоп

Схема эпископической (1–5) и диаскопической (6–9)

проекций эпидиаскопа: 1 – плоское зеркало; 2 и 9 —объективы; 3 – зеркальный отражатель света; 4 и 6 – специальные лампы накаливания; 5 – непрозрачный рассматриваемый оригинал; 7 – конденсор; 8 —прозрачный рассматриваемый оригинал; 10 – экран

Оптическая схема простейшего эпидпаскопа в двух режимах его работы (для простоты показан Лиан) один источник света – лампа накаливания 2): а) эпископическая проекция; б) диаскопическая проекция. При эпископической проекции в светозащитном кожухе 1 лучи от 2 c помощью сферических зеркал 3 и 5 освещают непрозрачный объект 6. диффузно рассеянные к – рым лучи частично попадают в светосильны й проекционный объектив 7, отражаясь от зеркала 4. 11 – вентилятор, изображение к – рого символизирует наличие системы охлаждения. При диаскопической проекции зеркало 5 отклоняется, открывая доступ лучам от источника 2 в конденсор 8. Последний, равномерно освещая диапозитив, вставленный в рамку 9, направляет лучи в объектив 10, проецирующий изображение на экран.


Рис. 221. Диаскоп: 1–фонарь; 2–проекционный объектив Бобина с плёнкой


Рис. 222. Лупы


Рис. 223. Ход лучей в линзе: a – собирающей; 6–рассеивающей

О – оптический центр, F – передний фокус, F’ – задний фокус, f – фокусное расстояние.


Рис. 224. Лупы


Рис. 225. Оптическая схема лупы


Рис. 226. Налобные бинокулярные лупы

Простейший оптический увеличительный прибор – лупа представляет собой обычную собирательную линзу. Основными характеристиками линзы являются: главный фокус и главное фокусное расстояние. Главный фокус есть место схождения лучей, параллельных главной оптической оси линзы. Расстояние от линзы до главного фокуса есть главное фокусное расстояние. Для того, чтобы узнать главное фокусное расстояние лупы, нужно получить изображение предмета, находящегося на удалении, например, изображение солнца и измерить расстояние изображения от лупы. Просматриваемый кадр АВ (рис. 225) помещается на расстоянии d, меньшем главного фокусного расстояния F. Получается мнимое прямое увеличенное изображение кадра А ‘В’ на расстоянии f от оптического центра С лупы. Наилучшие условия для просмотра создаются в том случае, когда кадр находится в фокальнои плоскости лупы*, a глаз непосредственно приближен к лупе. Степень увеличения лупы – N определяется по формуле Н = 250/F, где F– главное фокусное расстояние лупы, a 250 – расстояние наилучшего зрения в мм. Так, при F = 50 мм лупа имеет пятикратное увеличение. Чем меньше фокусное расстояние лупы, тем больше её увеличение. Обычно пользуются лупами с увеличением от 2 до 10X. Лупы с большим увеличением дают существенные искажения.

*Фокальной плоскостью называется плоскость, проходящая через главный фокус перпендикулярно главной оптической оси.

В читальном аппарате с просветным экраном лучи света через теплофильтр попадают на кадр микрофильма, изображение которого с помощью объектива и системы зеркал проецируется на просветный экран.


Рис. 227. Читальный аппарат с диффузно отражающим экраном: а – внешний;, б – оптическая схема, 1 – светозащитный кожух, 2 – экран, 3 – объектив. 4 – фильмовый канал, 5 – зеркало, 6 – кадр микрофильма, 7 – коллективная линза, 8 – конденсор. 9 – теплофильтр, 10 – электрическая лампочка, 11 – рефлектор


Рис. 228. Схема читающего устройства


Схема проекционного аппарата с конденсором, S – источник света, oabb – конденсор, AB – проецируемый предмет, pq – проекционный объектив, MN – экран, Угол aSa раствора лучей, собираемых конденсором, значительно больше угла ASB раствора лучей, попадающих на предмет в отсутствие конденсора.

Иногда у агента возникает необходимость получить увеличенный дубликат какого-либо кадра. Для этого служит читально-копировальный аппарат, в котором конструктивно объединены читальный аппарат и репрографическое устройство. Первые читально-копировальные аппараты фирмы «Kodak» (США, 30-е гг. XX в.) осуществляли копирование на фотобумаге. В современных читально-копировальных аппаратах увеличенные копии получают на электрофотополупроводниковой бумаге или на обычной бумаге способом электрофотографического копирования. Работа с читально-копировальными аппаратами осуществляется в два этапа: поиск (чтение) нужного кадра микрофильма на экране и получение с него увеличенной копии.

Читающее устройство служит для автоматического распознавания рукописных букв, цифр или других знаков на микропленке с последующим кодированием считанных данных для ввода в компьютер непосредственно «с листа», без предварительной перезаписи ее на другие носители информации.

Читающее устройство (рис. 228) состоит из блоков развертки изображения и опознавания. Оно характеризуется скоростью чтения и опознавания, видом распознаваемого алфавита, методами опознавания.

Распознавание знаков в читающем устройстве основано на измерении «черноты»(т. е. коэффициента поглощения света) отдельных очень маленьких (например, размером 0,1 х 0,1 мм2) элементарных участков, площадок, на которые при чтении разделяется поле с изображением читаемого знака, и последующем сравнении полученных результатов с аналогичными данными по идеализированным, обобщенным изображениям, знаков-эталонам. Как правило, точного совпадения изображения с эталоном не требуется: сравнение обычно продолжается до тех пор, пока не будет достигнуто наименьшее допустимое значение величины, характеризующей сходство изображения с эталоном. В результате сравнения вырабатывается код, соответствующий номеру эталона, наименованию знака или его положению в алфавите. Вырабатываемые коды на выходе читающего устройства обычно реализуются в виде электрических сигналов.

Для измерения черноты применяют либо системы сканирующего типа, подобные тем, что используются в телевизионных передающих камерах, либо системы параллельной дискретизации, в которых с помощью миниатюрных светочувствительных элементов (например, фотодиодов) одновременно измеряется чернота многих элементарных участков изображения (такая система по своему устройству напоминает сетчатку глаза).

В отличие от телевизионной передающей камеры и аппаратов факсимильной связи (фототелеграфа), читающее устройство не только преобразует видимое изображение в электрический сигнал, но и отбраковывает сигналы, соответствующие посторонним изображениям, отделяет незначащие детали и извлекает наиболее существенную информацию о принадлежности читаемого изображения к определенному классу знаков. Наиболее простые читающие устройства предназначены для чтения стилизованных знаков, которым придана специальная форма. Более сложные читающие устройства служат для распознавания шрифта обычной пишущей машинки.


    Ваша оценка произведения:

Популярные книги за неделю