Текст книги "Рассказы об астрономах"
Автор книги: Василий Чистяков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 3 (всего у книги 11 страниц)
Галилео Галилей (1564 – 1642)
В начале XVII века появились телескопы. Первый из ученых, применивший их для наблюдения небесных светил, был Галилео Галилей. Производство зрительных труб тогда еще не было налажено, поэтому Галилею приходилось изготовлять их самому. Первая труба Галилея увеличивала наблюдаемый объект всего в три раза. Путем дальнейшего усовершенствования ученый добился, что его труба стала давать тринадцатикратное увеличение (современные телескопы увеличивают в тысячи раз). Но и это небольшое увеличение сыграло огромную роль в развитии наблюдательной астрономии.
Замечательные открытия Галилея, сделанные при помощи изобретенного им телескопа, подтвердили основную идею Коперника о вращении Земли и обращении ее вокруг Солнца, а также идею Джордано Бруно о бесконечной множественности миров. Произведя свои телескопические наблюдения, Галилей открыл, что Луна имеет специфический рельеф, на ней есть горы, долины, равнины, что Венера светит отраженным светом Солнца, о чем говорят изменения формы ее видимой части (фазы Венеры), что вокруг Юпитера обращаются четыре спутника аналогично Луне – спутнику Земли, что Млечный Путь является огромным скоплением звезд, неразличимых невооруженным глазом, что звезды – это тела, подобные Солнцу, причем Солнце является одной из бесчисленных звезд. Кроме того, он открыл солнечные пятна и по их перемещению – вращательное движение Солнца.
Эти открытия вызвали негодование со стороны богословов, которые, по словам Галилея, об истине судили только по библейским текстам и, несмотря на многократные приглашения ученого, не хотели взглянуть ни на планеты, ни на Луну, ни даже на телескоп.
Как и Джордано Бруно, Галилей жестоко преследовался католической церковью. Он дважды привлекался к суду «святой инквизиции». Первый раз – за опубликование своих знаменитых телескопических открытий, которые подтвердили правильность воззрений Коперника о вращении Земли вокруг своей оси и обращении ее вокруг Солнца. Второй раз Галилея привлекли к суду в связи с выходом в свет его большого труда «Диалог о двух главнейших системах мира, птолемеевой и коперниковой», в котором гениальный ученый, сравнивая геоцентрическую и гелиоцентрическую системы мира, показал абсолютное превосходство второй над первой.
Путем подлога и вымогательств инквизиция добилась от Галилея формального отречения от своих взглядов и организовала постыдное «раскаяние» его. Чтобы избежать судьбы Джордано Бруно, семидесятилетний старец вынужден был, стоя на коленях в рубашке кающегося грешника и держа перед собой «святое» евангелие, «отречься» от приверженности системе Коперника и все свои исследования в ее пользу объявить ложными и несовместимыми со «святым» писанием и религиозными догматами.
Копию приговора и «отречения» Галилея инквизиция постаралась немедленно разослать всем научным обществам, университетам и монастырям с требованием широко оповестить об этом городское и сельское население. Но народ не верил в искренность отречения Галилея и создал легенду, будто бы он на суде после церемонии, топнув ногой, упрямо произнес: «А все-таки Земля вертится!» В этом красивом вымысле народ как нельзя лучше выразил свою симпатию к великому ученому и ненависть к его преследователям и мучителям.
Совершенно ясно, что Галилей пошел на мнимое отречение от своих научных взглядов исключительно по принуждению, чтобы избежать преследования со стороны инквизиции и сохранить свою жизнь. Однако и после отречения Галилей не избежал преследований и все время находился под надзором инквизиции, оставаясь ее вечным узником.
…Галилео Галилей родился в семье небогатого дворянина по имени Винченцо. Отец промышлял торговлей сукном и давал уроки музыки. Детство свое Галилей провел в итальянском городе Пизе, который в то время был большим портовым городом Тосканского государства. Одиннадцати лет его отдали учиться в монастырь святого Бенедикта. Там он изучил «семь свободных искусств», куда входила и математика. Когда Галилею исполнилось 15 лет, отец взял его из монастырской школы и стал учить у себя дома. Предметами домашнего обучения были музыка, литература и живопись. Отец передавал свои знания не без успеха. Галилей с жадностью усваивал преподаваемые дисциплины и, как утверждают его биографы, был бы хорошим художником, если бы этому делу отдался целиком. Но отец хотел, чтобы сын стал врачом, и, когда Галилео исполнилось 16 лет, его устраивают в Пизанский университет. Однако получилось так, что студент охладел к медицине и увлекся геометрией и практической механикой, которыми занимался самостоятельно. Он пристрастился к трудам Архимеда, которые читал в латинских переводах.
Через четыре года Галилей из-за недостатка средств вынужден был покинуть Пизанский университет. Он вернулся в дом отца, который тогда проживал во Флоренции. Здесь он познакомился с математиком Риччи, преподавателем Флорентийской художественной академии, который оказал на него большое влияние. В частности, по указанию Риччи Галилей в совершенстве усвоил «Начала» Евклида, о которых раньше имел смутное представление.
22 лет Галилей написал первую свою научную работу «Маленькие гидростатические весы». В 1589 году, когда Галилею исполнилось 25 лет, он назначается профессором математики в Пизанский университет, где когда-то учился сам. Хотя профессорское жалованье было небольшое, но и ему радовался Галилей, так как дела отца шли плохо, и жить на иждивении старика стало невыносимо. В университете ему вменялось в обязанность читать курс элементарной геометрии и разъяснять («комментировать») студентам вершину древнегреческой геометрической мудрости – «Начала» Евклида, а также вести занятия по астрономии в рамках геоцентрической системы Птолемея.
В Пизанском университете Галилей производит первые астрономические наблюдения и изучает законы движения свободно падающих тел. Для изучения законов падения Галилей использовал знаменитую пизанскую «падающую башню» (высота – около 55 м, отклонение от вертикали – 4,3 м), с вершины которой бросал к подножию различные тела.
Происки и козни реакционных преподавателей скоро сказались на судьбе молодого профессора. Им было не по нутру свободное толкование Галилеем идей Аристотеля, которого они считали непогрешимым.
Но, как говорят, нет худа без добра. В это время ученый получает лестное приглашение в Падуанский университет, который пользовался тогда славой далеко за пределами Италии (в этом университете училось много иностранных студентов).
В Падуе Галилей читал курс астрономии и писал учебное руководство по этому предмету. Уже тогда он был коперниканцем. Но для маскировки на лекциях придерживался официальных воззрений Птолемея-Аристотеля.
18-летний падуанский период Галилей считал самой счастливой порой своей жизни. В это время он написал «Трактат по механике», «Руководство к познанию сферы», «Обращение с геометрическим военным циркулем» и т. д.
Вторую половину жизни Галилей отдает главным образом астрономическим исследованиям и пропаганде гелиоцентрического учения Коперника и Джордано Бруно. Основными работами этого периода являются «Звездный вестник» (1610), «О солнечных пятнах» (1613), наконец, трактат, который явился манифестом воинствующего коперниканства – «Диалог о двух главнейших системах мира, птолемеевой и коперниковой» (1632).
Погребен Галилей по его завещанию во Флоренции. Его могила находится рядом с могилами гениальных сынов Италии, титанами Возрождения – Микеланджело и Данте.
Иоганн Кеплер (1571 – 1630)
Иоганн Кеплер родился в Вюртемберге (Германия) в семье бедных родителей. Учиться Иоганн пошел шести лет и обнаружил блестящие способности. Быстро научился считать, читать и писать. Для продолжения учебы родители отдали его в духовное училище при Маульбрунском монастыре. Здесь он тоже проявил себя как одаренный мальчик. Когда Кеплеру исполнилось 18 лет, его как подающего «особые надежды» переводят в Тюбингенскую семинарию. Через два года он получает звание учителя и поступает учиться в Тюбингенскую академию. В этой академии Кеплер увлекается астрономией, знакомится с профессором астрономии Местлином (1550–1631), который, приблизив его к себе, знакомит с учением Коперника. И Кеплер становится убежденным коперниканцем.
В 22 года Кеплер блестяще оканчивает академию и начинает работать профессором математики и морали в коллегии (гимназии) города Граце. Там он читает лекции не только по математике, но и по астрономии.
Не прошло и года, как молодой профессор составил свой календарь с предсказаниями погоды и как дань эпохе – гороскоп с астрологическими предсказаниями будущих событий.
Когда Кеплеру исполнилось 26 лет, он публикует книгу с длинным названием: «Предвестник космографических сочинений, содержащий космографическую тайну об удивительном соотношении пропорциональности небесных кругов, о причине числа небес, их величинах, о периодических их движениях, общих и частных, – объясненную из пяти правильных геометрических тел». В ней молодой ученый предпринял попытку объяснить структуру мира исходя из геометрических соображений. При этом он положил в основу, как это делали древние ученые, «космические тела»: куб, тетраэдр, октаэдр, додекаэдр и икосаэдр. Эта геометрическая структурная схема Кеплера получила одобрение современников, в том числе Тихо Браге и Галилея.
Из-за формальной принадлежности к лютеранству Кеплер должен был бежать из Граца, так как 17 сентября 1598 года всем «еретикам» было предписано под страхом смерти покинуть город.
В 1600 году, в год казни Джордано Бруно, Кеплер приезжает в Прагу и устраивается на работу к Тихо Браге, известному в то время астроному. Последний обещал Кеплеру выхлопотать для него звание «императорского математика» и приличное жалованье. Но все обещания, к сожалению, повисли в воздухе. По этому поводу Кеплер писал: «Здесь (в Праге) нет ничего верного… Содержание обещано блестящее, но казна пуста, и жалованья не дают»[8]8
См.: К. А. Баев. Создатели новой астрономии. М., 1955, стр. 78.
[Закрыть].
Через год Тихо Браге умер. Все рукописи этого ученого, как указывалось выше, были переданы Кеплеру. Используя материалы Тихо Браге и свои собственные девятилетние наблюдения над Марсом, Кеплер пишет трактат, в котором гелиоцентрическая астрономия получила новое научное освещение и обоснование. Этот трактат был издан в 1609 году под названием «Новая астрономия, причинно обоснованная или небесная физика, изложенная с комментариями на движения планеты Марс по наблюдениям благороднейшего мужа Тихо Браге».
Работа потребовала много бессонных ночей и кропотливых вычислений, от которых, по выражению самого Кеплера, он «чуть не сошел с ума». В своем исследовании он делает гениальное открытие, согласно которому орбитой Марса служит не круг, а эллипс, причем характерно, что Солнце находится в одном из фокусов этого эллипса. Здесь же были сформулированы два закона планетарных движений, которые позднее стали называться первым и вторым законами Кеплера.
Наступил 1611 год. Он принес много огорчений Кеплеру. Прага, где со своей семьей жил ученый, стала ареной военных действий. В довершение всех несчастий разразилась эпидемия оспы. Ею заболели три сына Кеплера, из которых старший умер. Вскоре умерла и жена. Жалованье Кеплеру не выплачивали. Чтобы не умереть с голоду, оставалось одно – покинуть Прагу и искать средства к существованию. Выбор пал на австрийский город Линц, где ученому обещали место учителя гимназии.
Но здесь, в Линце, Кеплера ждала другая неприятность. Мать ученого, Екатерину, обвинили в колдовстве и посадили в Штутгартскую тюрьму. Ей грозила смерть на костре. Только вмешательство сына-астронома и его слава отвели руку палача от несчастной женщины. Процесс над Екатериной Кеплер длился пять лет. За отсутствием улик ее оправдали. После тюрьмы и всего, что было на суде, она прожила лишь два года и умерла. Этот процесс повредил ученому. Над ним стали издеваться, его стали травить.
Безденежье и беспросветная нужда, а также враждебное отношение к нему заставили Кеплера покинуть Линц и скитаться по городам Германии. Он жил на случайные заработки. В это время великий ученый не гнушался даже составлением ненавистных ему гороскопов для высокопоставленных лиц.
В 1621 году Кеплер получил весьма выгодное и почетное приглашение в Падуанский университет, но решительно отверг это предложение, заявив: «Я привык везде и всегда говорить правду, а потому не желаю взойти на костер, подобно Джордано Бруно»[9]9
См.: К. А. Баев. Создатели новой астрономии. М., 1955, стр. 8.
[Закрыть].
Можно только удивляться мужеству и терпению Кеплера. В этот невыносимо тяжелый для него период жизни у него хватило духа написать два великолепных трактата: «Гармония мира» (1619) и «Сокращение коперниковой астрономии» (1618 – первые четыре части и 1620 – остальные три). В трактате «Гармония мира» впервые в истории науки дается третий закон планетных движений, который известен нам как третий закон Кеплера. Этот закон гласит, что квадраты времен обращения планет вокруг Солнца пропорциональны кубам их средних расстояний от Солнца.
В 1627 году Кеплер издает «Рудольфовы таблицы всей астрономической науки, начатые впервые Тихо Браге, продолженные и доведенные до конца Иоганном Кеплером». Роль этих таблиц как вычислительной базы гелиоцентрической системы Коперника трудно переоценить. Ими пользовались астрономы более полутора веков.
Кроме работ по астрономии, Кеплер написал трактат по физике «Диоптрика», посвященный геометрической оптике, и трактат по математике «Новая стереометрия винных бочек», в котором заложил основу анализа бесконечно малых, нашедшего позднее завершение в трудах Лейбница и Ньютона. В 1624 году Кеплер вместе с Бюрги издал «Таблицу тысячи логарифмов».
Кеплер живо интересовался литературой. В последние годы жизни он даже написал полунаучный-полуфантастический роман о «лунной астрономии» под названием «Сон», изданный после смерти ученого его сыном.
Кеплер умер в большой нужде на 59-м году жизни. В истории астрономии Кеплер занял видное место, снискав почетный титул «законодателя неба». Недаром католическая церковь подвергла его гонениям, стремясь с корнем вырвать распространяемое им «безбожное» учение. Ватикан поторопился сразу же занести астрономические сочинения Кеплера в список запрещенных книг.
Высокую оценку Кеплеру дали основоположники научного коммунизма К. Маркс и Ф. Энгельс. Рассматривая великие достижения первого периода нового естествознания, Энгельс в «Диалектике природы» связывает эти достижения с замечательными открытиями ученых, среди которых на первое место ставит имя Кеплера. А Маркс на вопрос знаменитой анкеты «Ваш любимый герой?» без колебаний ответил: «Спартак и Кеплер». Более высокую оценку Кеплеру трудно придумать.
Джованни Доменико Кассини (1625–1712)
Так уж получилось, что в роду Кассини увлечение астрономией передавалось по наследству. Основатель «династии» астрономов Джованни Доменико Кассини – виднейший астроном, первый директор Парижской обсерватории – беспредельную любовь к науке передал сыну Жаку Кассини, который тоже был замечательным астрономом и геодезистом. От Жака эстафету принял его сын Франциск, и так до четвертого поколения. Любопытно, что все Кассини – дед, сын, внук, правнук и сын правнука, являясь астрономами-наблюдателями, были членами Парижской академии наук и наследовали друг от друга пост директора Парижской обсерватории.
Мы здесь расскажем о замечательных открытиях родоначальника «династии» Джованни Доменико Кассини.
В 1665 году он обнаружил вращение Юпитера, а через год – вращение Марса. В результате тщательных наблюдений в течение 13 лет Кассини открыл четыре новых спутника Сатурна (Япет, Рея, Диона, Феба) и в 1675 году обнаружил, что между первым и вторым (средним) кольцами Сатурна существует промежуток, вошедший в историю астрономии под названием «щель Кассини» или «деление Кассини». В течение 5 лет ученый вместе со своим сотрудником Фасью провел наблюдение зодиакального света, природа которого в достаточной степени не изучена до настоявшего времени. Известно, что зодиакальный свет в X веке наблюдал Бируни, описание этого света в Европе относится к концу первой половины XVII века. Явление зодиакального света весьма сложно и обусловливается различными причинами. В настоящее время оно изучается советскими учеными во главе с академиком В. Г. Фесенковым.
Джованни Кассини сформулировал три приближенных закона относительно Луны.
Первый закон. Время оборота Луны вокруг оси равно времени оборота вокруг Земли.
Второй закон. Наклон лунного экватора к эклиптике всегда составляет 1°32′.
Третий закон. Три плоскости – лунного экватора, лунной орбиты и эклиптики, перенесенные в центр Земли, пересекаются по одной прямой, причем плоскость эклиптики проходит между плоскостями лунного экватора и лунной орбиты.
Известно, что совпадение периодов вращения Луны вокруг своей оси и обращения ее вокруг Земли ведет к тому, что Луна всегда повернута к Земле одной стороной. Противоположная сторона лунного шара нам полностью не видна. Только иногда вследствие так называемой либрации Луны, сущность которой заключается в том, что Луна, наблюдаемая с Земли, кажется вращающейся вокруг своей оси неравномерно, как бы покачивающейся немного относительно своего среднего положения, область наблюдения увеличивается до 60 % поверхности лунного шара. Заслуга Джованни Кассини заключается в том, что он весьма основательно исследовал все три вида оптической лунной либрации (либрация по долготе, по широте, параллактическая).
В результате многолетних наблюдений Солнца Джованни Кассини составил довольно точные солнечные таблицы и в 1673 году дал описание этого светила. Ученый интересовался также величиной солнечного параллакса, т. е. величиной угла, под которым с Солнца виден экваториальный радиус Земли. С помощью вычисленного параллакса Кассини определил расстояние от Земли до Солнца. По его расчетам это расстояние равно 140 миллионам километров (по современным данным, 150 миллионов километров).
Много времени Джованни Кассини уделял составлению и уточнению астрономических таблиц. Так, в 1693 году он издал новые таблицы спутников Юпитера и атмосферной рефракции (вследствие астрономической рефракции небесные светила наблюдаются с Земли выше их действительного положения, в результате чего они в течение некоторого времени видны над горизонтом до их восхода или уже после захода).
Ко всему, что говорилось выше, надо добавить, что ученый организовал и провел многочисленные геодезические измерения на территории Франции.
Имя Джованни Кассини известно и математикам. Он впервые в истории математики рассмотрел плоскую кривую, являющуюся геометрическим местом точек, произведение расстояний которых от данных двух точек есть величина постоянная. Эту кривую ученый открыл в связи со своими астрономическими исследованиями. В его память она названа «овал Кассини».
В заключение заметим, что Джованни Кассини по ряду важнейших вопросов астрономии придерживался явно ошибочных взглядов, которые никак не согласуются с его замечательными открытиями. Так, спустя сто лет после открытия законов Кеплера, когда система Коперника получила всеобщее признание, Кассини решительно отвергал гелиоцентрическое учение коперниканцев. Еще более удивительно, что он не признавал всемирного тяготения, открытого Ньютоном. Отрицая теорию тяготения, ученый пришел к неверному выводу о вытянутости Земли по оси вращения.
Однако эти ошибки не могут умалить значения трудов неутомимого труженика Джованни Кассини, оставившего благодаря своим замечательным открытиям глубокий след в науке.
Христиан Гюйгенс (1629–1695)
Еще в глубокой древности люди научились приближенно измерять время. В их распоряжении были солнечные, водяные и песочные часы. С ростом науки и техники появилась потребность в точном измерении времени, а для этой цели стали нужны более усовершенствованные часы. Необходимость в точных часах особенно обнаружилась в астрономии и мореплавании. Так, например, для определения местонахождения корабля в открытом море надо вычислить широту и долготу той точки, в которой корабль находится, а для этого необходимо знать местное время и время нулевого меридиана. Вот тут-то и нужны точные часы. По словам К. Маркса, «часы – это первый автомат, употребленный для практических целей. На их основе развилась вся теория производства равномерного движения»[10]10
К. Маркс и Ф. Энгельс. Соч., т. 30, изд. 2-е. М., 1963, стр. 263.
[Закрыть].
Изобрел современные механические часы с маятником голландский ученый Христиан Гюйгенс. Тогда ему было всего 28 лет. Чтобы добиться равномерного перемещения стрелок часов, Гюйгенс создал так называемый «спуск», который под действием силы завода помогает маятнику равномерно колебаться. Спустя короткое время молодой ученый сделал еще одно замечательное открытие: предложил такую систему для измерения времени, в основе которой лежит конический маятник.
Но имя ученого связано не только с открытием маятниковых часов. Он был великим астрономом и занимался астрономией в течение всей жизни. Не удивительно, что именно Гюйгенс изобрел телескоп особой системы. Он много трудился над тем, чтобы увеличить светосилу астрономических труб и устранить сферическую и хроматическую аберрации, из-за чего изображение получалось нечетким и окруженным цветной радужной каймой.
С помощью своего телескопа Гюйгенс 25 марта 1655 года открыл спутник планеты Сатурн – Титан и определил период его обращения вокруг Сатурна. По подсчетам ученого, этот период равняется 15 суткам 22 часам. Свое открытие Гюйгенс опубликовал в 1656 году в работе «Наблюдение Луны Сатурна».
Работая над усовершенствованием телескопа своей системы, Гюйгенс добился 100-кратного увеличения. При помощи этого телескопа он открыл кольцо Сатурна и исследовал его. Кольцо оказалось плоским, оно нигде не прилегало к планете, причем имело некоторый наклон к эклиптике. Свои наблюдения над планетой Сатурн и ее кольцом Гюйгенс опубликовал в 1659 году в классической работе «Система Сатурна».
В ней же он дал первое описание туманности в созвездии Ориона и сообщил о полюсах на поверхности Юпитера и Марса. И если инструментальная наблюдательная астрономия во второй половине XVII века имела крупные успехи, то этим она обязана в первую очередь астрономическим исследованиям Христиана Гюйгенса.
Гюйгенс был энтузиастом по шлифовке объективов с большим фокусным расстоянием. Будучи пожилым человеком, он в течение нескольких лет шлифовал объективы с фокусным расстоянием в 37, 54 и 63 м. Затем он сконструировал окуляр, носящий его имя, который представлял собой оптическую систему, состоящую из двух плоско-выпуклых линз, разделенных значительным воздушным промежутком. Ученый много поработал и над созданием планетарной машины, которая явилась прообразом современного планетария.
Гюйгенс был убежденным коперниканцем. В своей последней книге «Космотеорос» («Созерцатель мира»), опубликованной через три года после смерти автора, Гюйгенс пропагандировал систему Коперника и идеи Джордано Бруно о множественности миров и их обитаемости. «Космотеорос» в 1717 году по указу Петра I был переведен на русский язык под названием «Книга мирозрения или мнение о небесно-земных глобусах и украшениях».
Об авторитете Гюйгенса как астронома можно судить по словам великого французского ученого Пьера Ферма (1601–1665). Когда последнему задали вопрос, какого мнения он о системе Сатурна, созданной Гюйгенсом, ученый ответил, что, не читая работ Гюйгенса по этому вопросу, можно заранее сказать о совершенстве этой системы, так как порукой тому служат все другие прекрасные произведения этого автора.
Родился Гюйгенс в Гааге. Его отец принадлежал к высшему дворянскому сословию и активно участвовал в политической жизни страны. Уже в раннем детстве Христиан поражал родных своим необыкновенным дарованием. К восьми годам мальчик изучил латинский язык, постиг арифметику pi законы пения. В девять лет Христиан увлекся астрономией и географией. В десять будущий ученый научился играть на скрипке и много времени уделял латинскому стихосложению. Одиннадцати лет он овладел игрой на лютне – струнном инструменте восточного происхождения, получившем в средние века широкое распространение в Европе. А когда будущему астроному и математику исполнилось двенадцать лет, он усвоил основные правила логики и успешно применял их в своих рассуждениях и доказательствах.
Первоначальное образование Христиан получил дома под руководством своего отца. Когда же отец участвовал в длительных военных походах, то воспитание сына поручалось двум учителям – профессору Миркинию и Генриху Бруно. Оба учителя были в восторге от успехов Христиана. В одном из писем к отцу Бруно называет Христиана «чудом среди мальчиков».
После домашнего изучения греческого, французского и итальянского языков Христиан перешел к занятиям по механике, ставшей вместе с астрономией одним из любимейших его предметов. Занимаясь механикой, Христиан находил время для конструирования различных машин и механизмов. В частности, для личного пользования он смастерил токарный станок, на котором изготовлял мудреные модели будущих машин.
Последние два года до поступления в Лейденский университет Христиан с увлечением занимался математикой по программе и учебному руководству, специально составленному для него профессором инженерной школы при Лейденском университете Франциском Схоутеном (1616–1661), автором «Трактата о конических сечениях» и нескольких книг «Математических упражнений».
Студентом Лейденского университета Гюйгенс стал, когда ему исполнилось шестнадцать лет. В университете он изучает юридические науки и математику. Ему доставляло истинное наслаждение знакомиться с трудами Архимеда, Аполлония и Декарта. Параллельно он внимательно изучил труды Птолемея, Коперника, а также механику Стевина.
Уже в студенческие годы Христиан занимается научными исследованиями. В частности, он доказывает, что фигурой равновесия материальной нити, свободно подвешенной между двумя точками, является не парабола, как неверно утверждал Стевин, а так называемая цепная линия. О самостоятельных работах ученого с похвалой отзывался непререкаемый авторитет в области математики – Рене Декарт. Он писал Схоутену, что Гюйгенс со временем станет выдающимся ученым.
Гюйгенс подарил человечеству ряд замечательных научных открытий и изобретений. В области математики, развивая идеи Архимеда, Гюйгенс предложил более эффективный метод для приближенного вычисления числа π (отношение длины окружности к длине диаметра). В двадцать восемь лет он дал миру одно из первых исследований по теории вероятностей. Его трактат носит название «О расчете при игре в кости». Вместе с физиком Робертом Гуком Гюйгенс установил постоянные точки термометра – точку таяния льда и точку кипения воды.
За пять лет до смерти ученый выпускает «Трактат о свете», в котором излагается его волновая теория. Свет, по мнению Гюйгенса, представляет движение некоторой материи. В приложении к «Трактату о свете» Гюйгенс близко подошел к открытию закона всемирного тяготения, который позднее в отчетливой форме сформулировал и обосновал Исаак Ньютон.
Гюйгенс любил путешествовать. Он посетил Лондон и Париж. В том и другом городе ученый общался с выдающимися астрономами и математиками и вместе с ними содействовал организации Парижской академии наук и Лондонского королевского общества. Он был первым иностранным членом Лондонского королевского общества и первым председателем Парижской академии наук.
Лейбниц с гордостью считал себя учеником Гюйгенса и сделал все возможное, чтобы физико-математические и астрономические открытия учителя были достоянием ученых. В частности, с работами Гюйгенса он познакомил Эйлера и братьев Бернулли (Даниила и Николая), работавших в Петербурге.