Текст книги "Рассказы о поделочном камне"
Автор книги: Валерий Петров
Жанры:
Научпоп
,сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц)
Лабрадор – известково-натровый полевой шпат, отливающий при некоторых поворотах яркими цветами, т. е. обладающий иризацией. Вызвано это явление тем, что кристаллы лабрадора состоят из серии пластинок, толщина которых соизмерима с длиной световой волны. Возникло такое строение в результате распада твердого раствора.
Из современных учебников минералогии
Лабрадор, сизяк, радужник. Цвет всегда почти светло-серый, темно-серый или черно-серый, но в разных направлениях отливает большею частью весьма яркими пестрыми цветами, как то: лазуревым, голубым, разных оттенков зеленым, иногда лимонным и таким цветом, который находится на середине между медным и томбаковым, а иногда иссера-фиолетовым... редко сии цветы простираются по всему куску, а обыкновенно видны только местами...
Сей камень не больше как около 22 лет тому назад найден в Северной Америке на берегу Лабрадора.
Севергин В. Первые основания минералогии. СПб., 1798, кн. I, с. 368—369
Пожалуй, трудно более точно охарактеризовать этот минерал, да и старинные народные названия, правда сейчас уже забытые, хорошо передают блеск камня. Открытое в XVIII в. месторождение лабрадора в Канаде и сейчас продолжает разрабатываться. В Минералогическом музее АН СССР хранятся прекрасные изделия: иризирующая лабрадоритовая плитка размером 15×15 см и вазочка, переливающая ярко-синим и сине-зеленым цветами, глубиной 7 см, диаметром около 20 см. Каждое из них сделано из единого кристалла лабрадора. Кристаллы таких размеров в обычных магматических породах не встречаются. Видимо, в этом месторождении имеются пегматитовые жилы с очень большими кристаллами лабрадора.
После открытия месторождения иризирующего лабрадора в Канаде камень стал очень модным. Из него начали делать броши, вставки в кольца и табакерки. В конце XVIII в. были обнаружены валуны иризирующего лабрадора в районе С.-Петербурга. Это открытие так описывал акад. Паллас: «Осенью 1781 г. под гранитными обломками, которые употреблялись для улучшения дороги из С.-Петербурга к царскому увеселительному дворцу в Петергофе, встретилась значительная, почти сплошь состоящая из полевого шпата, масса; по своему облику и существу вполне была похожа на североамериканский сырой лабрадоровый камень. Часть этой массы была разломана и употреблена для укрепления дороги еще до того, как острый глаз генерал-лейтенанта фон Боль открыл ее редкие качества по некоторым отбитым кускам. Генерал, от внимания которого ничего не ускользало, распорядился отыскать еще имеющийся остаток и отвезти его в город, чтобы преподнести открытую ныне и в Русском государстве редкость великой царице».
Ценность и популярность таких находок была совершенно исключительной. В архиве Минералогического общества А. Е. Ферсман нашел доклад ювелира Калау от 24 июня 1817 г., в котором указывается, что валун лабрадора длиной 80 см и толщиной около 45 см, найденный К. Эттером у Калинкина моста, был куплен герцогом Девонширским за 1000 руб. ассигнациями. Вскоре лабрадор начали применять в украшениях и предметах искусства. В Эрмитаже из него были сделаны две столешницы. Петербургская знать носила кольца и серьги с лабрадором. В 1790-х годах в зависимости от величины и красоты граненый камень стоил от 29 до 100 руб. и больше, а в золото оправленная табакерка – около 500 руб.
В 1820 г. около Царского Села на реке Пулковке были обнаружены два больших валуна: один весом 250 пудов (4 тыс. кг), а другой – 80 пудов (1280 кг). Большой валун был отправлен на Петергофскую гранильную фабрику, а меньший продан владельцем Горному институту. В настоящее время в Петрографическом музее ИГЕМа АН СССР хранится глыба лабрадора диаметром около 0,5 м с редкими иризирующими кристалликами.
После открытия месторождений иризирующего лабрадора на Волыни, к северу от Житомира, мода на него прошла. Камня оказалось так много, что ценность его сразу упала и иризирующий лабрадор перешел в разряд обычных облицовочных камней. Эти месторождения, приуроченные к очень крупному анортозитовому массиву, были открыты в 1835 г. Название «анортозит» произошло от французского «анортоз» – плагиоклаз. Эти породы на 90—95% сложены плагиоклазом, состоящим из альбита и анортита, но, как мы знаем, еще раньше они были наречены лабрадоритами. Кроме лабрадора, в породе содержатся небольшие количества черного титаномагнетита и пироксена. Титаномагнетит встречается не только между кристаллами лабрадора, но и в виде включений в сами кристаллы. Поэтому волынский лабрадорит – черный, лишь с небольшим желтоватым оттенком. На этом фоне особенно эффектны ярко-синие иризирующие кристаллы. Состав их различен от краев к центру. Отсюда и цвет иризации меняется от красноватого до ярко-зеленого, синего и густо-синего. Оттенки располагают зонально, параллельно граням кристалла.
Массив лабрадорита на Волыни огромен. Вдоль дороги Житомир – Коростень он тянется на протяжении многих километров, однако иризирующий полевой шпат можно найти далеко не везде. К западу от дороги расположился небольшой город Володарск-Волынск. Почти в центре его протекает река Ирша, летом она пересыхает и становится ручьем, через который и курица перейдет, не замочив ноги, но в паводок полноводна. По обоим ее берегам у городского моста видны прекрасно отполированные водой скалы, сложенные черным лабрадоритом. Главную массу породы составляет относительно мелкозернистый лабрадорит, но попадаются и крупные кристаллы-вкрапленники (примерно 10 штук на 1 м2), иногда до 5 см в поперечнике. Некоторые из них замечательно иризируют и обладают зональностью. Сфотографировать эти кристаллы можно, особенно удачные снимки получаются в ясный солнечный день, но отколоть никак не удается – слишком плотны и ровны скалы, и молоток не помогает. Немного поодаль вновь встречаются обнажения черного лабрадорита, но здесь уже нет иризирующих кристаллов и порода не столь радует глаз.
Ниже по Ирше кристаллы лабрадора лишены включений титаномагнетита, порода белая или серая. Когда-то был широко известен турчинский лабрадорит; карьер его располагался почти в русле реки у села Турчинка. Сейчас на этом месте, близ плотины водохранилища, – глубокая яма, залитая водой. В скалах камень виден плохо, а о былой его красоте можно судить лишь по небольшим обломкам, которые иногда удается найти в окрестностях карьера. Турчинский лабрадорит был довольно мелкозернистым, сложенным кристаллами не более 1—1,5 см в поперечнике. В 1 м2 черной породы иногда насчитывалось более сотни мелких, рассыпанных по поверхности иризирующих глазков.
Близ села Головино находится знаменитый карьер лабрадорита. Камень здесь более крупнозернистый, чем в Володарск-Волынском; на каждый квадратный метр его поверхности приходится по нескольку десятков кристалликов вкрапленников размером 1—3 см в поперечнике. Камень отсюда можно увидеть на станциях московского метро, им облицовано множество зданий в городах нашей страны. В Головинском карьере ведется добыча крупных блоков. Из одних изготовляются крупные скульптурные изделия, другие распиливаются на облицовочные плиты. Поэтому мы прежде всего изучали отдельность лабрадорита, которая идет несколько косо к дневной поверхности и по которой камень раскалывается лучше, чем по другим направлениям. При разработке лабрадорита эту отдельность приходится тщательно учитывать.
При добыче строительных блоков в карьере скапливается довольно много крупных и мелких обломков лабрадорита. Частично они используются как дорожный щебень. Среди этих обломков легко найти куски с крупными, ярко иризирующими кристаллами; эти куски, если их хорошо отшлифовать, могут дать изумительные по красоте вставки в перстни, броши, серьги и другие украшения. Рядом с Головинским карьером расположен другой, где добывается лабрадорит, лишенный иризирующих вкрапленников.
Пока неизвестны месторождения, из которых были вымыты валуны, обнаруженные в районе Ленинграда. Сейчас изучены массивы древних анортозитов как на Кольском полуострове, так и в основании осадочных толщ Эстонии. Может быть, они занесены сюда из Финляндии или Швеции.
На крайнем востоке нашей страны располагается крупный Джугджурский хребет, одним склоном обращенный к океану. Это труднодоступные места, и лишь опытные геологи могут решиться совершить сюда путешествия. Почти весь хребет сложен анортозитами и очень напоминает Волынский массив. В последние годы Джугджурский хребет привлекает внимание многих исследователей. В его южной части, там где его размывает река Учур, побывал владивостокский геолог А. М. Ленников. Он нашел замечательные образцы лабрадорита – на квадратном метре пластинки насчитывается по нескольку сот мелких иризирующих кристалликов. Встречаются и крупнозернистые пегматоидные разности, но иризирующих зерен пока отыскать не удалось.
Лунный камень является единственным полевым шпатом, прочно удерживающим высокое положение в мире драгоценностей. Его привлекательность связана с наличием тонких срастаний ортоклаза и альбита в виде слойков, причем чем тоньше эти слойки, тем глубже прекрасное голубое сияние, которое так восхищает знатоков и ценителей драгоценных камней.
Солнечный камень – полевой шпат, который светится желтоватым или красноватым светом благодаря отражению от кристалликов железистых минералов (гематита или гетита), рассеянных в кристалле-хозяине. Когда эти кристаллики включения имеют чешуйчатую форму, они вызывают своеобразное мерцание и камень называется в этом случае «авантюриновым» полевым шпатом.
Смит Г. Драгоценные камни. М.: Мир, 1980, с. 407—408
Адулярия, или лунный камень. Цвет иззелена– и изжелта-белый, приближающийся иногда к серовато-белому, в некоторых направлениях отливает он не только жемчужным цветом, но отчасти и слабым мясным цветом.
Севергин В. Первые основания минералогии. СПб., 1798, кн. I, с. 372
Хорошего солнечного или лунного камня мне встречать не приходилось. Пожалуй, лучший образец я видел только в Дели, мне показал его один ювелир. Но, конечно, в шлифованном камне всю красоту природного минерала увидеть трудно. В литературе описано довольно много иризирующих полевых шпатов типа солнечного или лунного камня, но все они невысокого качества.
Из камней этого типа у нас в стране наиболее известен беломорит – олигоклазовый полевой шпат из пегматитовых жил Карелии, выходящих в районе Беломорско-Балтийского канала к северу от Петрозаводска и в районе города Чупы. Иризация, наблюдаемая на плоскости спайности (001) (хорошо заметны двойниковые полосы), четко выражена в белых, бледно-голубых голубых (лунный камень) и розоватых (солнечный камень) тонах. Наиболее кислые плагиоклазы иногда обладают интенсивной иризацией по спайности (010) (здесь нет двойниковых полос), особенно если смотреть под углом 10—12°. Самая сильная иризация беломорита отмечена минералогом А. Н. Лабунцовым в жилах у деревни Выгостров, Вида-Варака, Шарозера, Синяя Пала и др. Этому полевому шпату свойствен частичный метаморфизм. В зоне наложенных трещин явно тектонического происхождения кристаллы более мутные, голубоватый отлив и иризация, которая типична для неметаморфизованной межтрещинной части кристалла, полностью исчезают.
Близкий характер иризации имеет солнечный камень, описанный уральскими геологами в Вишневых горах на Среднем Урале. Здесь это калиевый полевой шпат. Кристаллы солнечного камня до 30 см в поперечнике встречаются в сиенитовой пегматитовой жиле, проходящей в восточной части миасскитового тела в районе, известном под названием Яскины грязи. Мощность жилы 2 м, протяженность 150 м. Иногда в ней находят пустоты с кристаллами. Эффект солнечного камня создают закономерно врастающие в него чешуйки гематита и альбита. Вдоль тектонических трещин полевой шпат белеет, теряет прозрачность и иризацию. В таких участках вростки альбита распределены менее закономерно.
Некоторые исследователи предполагают наличие подобного солнечного камня и в Ильменских горах. У А. Е. Ферсмана есть указания на солнечный камень у деревни Уточкиной недалеко от Верхнеудинска, вниз по реке Селенге, а на лунный камень – по рекам Слюдянке, Талой и Малой Быстрой. Во всех этих местах мне приходилось бывать, но иризирующих полевых шпатов находить не удавалось.
Наибольший интерес для ювелиров представляет прозрачный полевой шпат, не испытавший метаморфизма и тектонического воздействия. С этой точки зрения поиски особенно перспективны в областях, где имеются относительно молодые породы, содержащие, хотя бы в части кристаллов, неупорядоченный полевой шпат. Это могут быть вкрапленники в различных жильных породах или крупные кристаллы в интрузивных телах. Мне приходилось видеть иризирующий относительно прозрачный полевой шпат на Кавказе, в долине реки Баксан и в сиенитах близ села Вакис-Джвари, в верховьях реки Натанеби в Махарадзевском районе Грузии.
В Киргизии около озера Иссык-Куль расположена крупная Кызыл-Омпульская интрузия, для которой особенно характерны полевошпатовые кристаллы-вкрапленники, местами образующие бруски до 10—15 см в длину и 5—8 см в поперечнике. Когда встречается упорядоченный калиевый полевой шпат, кристаллы красные, непросвечивающие; если разности слабо упорядоченные, кристаллы полупрозрачные, голубоватые, хорошо иризируют.
Поиски месторождений иризирующих полевых шпатов могут дать много интересных открытий.
Почему иризируют полевые шпатыНаверняка, всем приходилось видеть пятно нефти на воде. На первый взгляд ничего особенного, обыкновенная грязь. Но стоит отойти немного и посмотреть на расплывшуюся каплю, как она заиграет всеми цветами радуги. Края, где пленка нефти очень тонкая, бурые, затем идет белесая полоса, а далее множество других: синих, зеленых и ярко-красных тонов. Ближе к центру цвета тускнеют. Причину радужной окраски описал еще великий Ньютон, работа которого о цветах тонких пластинок послужила основой современной оптики. Сущность теории очень проста.
Свет представляет собой электромагнитные волновые колебания. Цвет света определяется длиной волны. Человек видит свет с длиной волны от 380 до 760 мм. Волны малой длины воспринимаются человеческим глазом как фиолетовые, длинные – как красные. Свет других цветов имеет промежуточную длину волны.
Предположим, что одноцветные (монохроматические) лучи света падают на тонкую прозрачную пленку, часть их отразится от верхней поверхности пленки, другая – от нижней. После отражения свет вновь пойдет по одному и тому же направлению. Однако лучи, отразившиеся от нижней поверхности, отстанут от лучей, отразившихся от верхней. Это отставание будет равно удвоенной толщине пленки.
Соотношение величины отставания и длины волны определит и характер взаимодействия двух лучей, идущих по одному пути передового и отставшего. Оба они являются волной. Если гребень волны первого луча после отставания совпадет с гребнем другого, то интенсивность волновых колебаний усилится; если же гребень одной волны совпадает с понижением в другой, то, напротив волна погаснет. Возможны и промежуточные соотношения.
Так как белый свет представляет собой смесь всех видимых разноцветных лучей, среди которых длина самой короткой волны (фиолетовой) примерно вдвое короче самой длинной (красной), то в наборе лучей всегда найдется одна волна, которая будет погашена, а другая усилена. В результате отраженный свет окрасится в цвет усиленной световой волны.
Если пленка по своей толщине приблизится к длине волны того или иного света, то цвета пленки станут очень яркими и четкими. Если же толщина пленки меньше длины самой короткой волны, то цветового эффекта не получится. То же произойдет, если толщина пленки много больше, чем длина самой длинной из световых волн, тогда вновь будет виден белый цвет.
Итак, с цветами нефтяной пленки все ясно. Ну а какое отношение это имеет к камням? Оказывается, очень большое. Цвета и замечательная их игра в солнечном и лунном камнях, а также в лабрадоре объясняются именно тем, что эти минералы состоят из ряда тонких пластинок, толщина которых очень близка к длине светового луча. Иризация этих камней именно – цвета тонких пластинок. Недавно украинские минералоги тщательно изучили лунный камень и иризирующий лабрадор с помощью электронного микроскопа и показали, что в них присутствуют тончайшие пластинки двух фаз. Увидеть эти пластинки довольно трудно. Пришлось проводить травление полевого шпата соляной кислотой и находить положение, в котором они хорошо видны. То, что пластинки удалось рассмотреть под электронным микроскопом, большой успех. Это показало, что иризирующий полевой шпат состоит из двух типов пластинок, имеющих различные свойства. На их границах происходит отражение лучей и взаимодействие, как описано выше. Измерение оптических свойств обоих типов пластинок и их толщины показало полное совпадение теории с практикой. Появляющиеся цвета вполне отвечают особенностям пластинчатого строения.
Что же представляют собой пластинки? Выше говорилось что плагиоклаз – идеальная смесь двух построек, аналогичных по структуре, но различных по составу: натрового альбита и кальциевого анортита. По-видимому, такое смешение происходит только в случае неупорядоченных плагиоклазов. Упорядочение можно связать с распадом смешанного плагиоклаза на тонкие пластинки. Однако распад идет не на конечные члены, а существует еще ряд промежуточных, устойчивых составов, которые сохраняются. Украинские исследователи прикинули (именно так, ибо большой точности здесь добиться нельзя) и показали, что наиболее вероятные компоненты, на которые распадаются промежуточные составы,– это те плагиоклазы, где отношение окиси натрия к окиси кальция будет выражаться целыми числами.
Теперь, казалось бы, ясно, почему иризирует полевой шпат. Но сейчас же возникает другая проблема. Если иризация является нормальным следствием упорядочения полевого шпата, то почему иризирующие полевые шпаты так редки? Колонны Исаакиевского собора, набережная Невы в Ленинграде, московское метро облицованы украинским и карельским гранитом, полевой шпат которых не иризирует. Да и в самом Головино, рядом с карьером иризирующего лабрадора, добывается порода с полевым шпатом, совсем не обладающим иризацией.
Сейчас уже, видимо, можно сказать, что физическая причина иризации установлена. Но это не объясняет пластинчатого строения полевого шпата. Уже сама редкость находок иризирующих полевых шпатов говорит о том, что возникают они в необычных геологических условиях.
Определить их – задача новых исследований. Месторождения беломорита и украинского лабрадорита – благодатные для этого объекты.
Распространение иризирующих и неиризирующих разностей лабрадора в волынских лабрадоритах таково, что заставляет предположить, а не является ли иризация результатом дополнительного контактного прогрева лабрадора? Лабрадорит здесь древний; в него внедрились более молодые граниты, которые, когда еще были магмой, прогревали вмещающие породы, а то и просто растворяли их, как сахар растворяется в чае, и изменяли свой состав. Такие породы, ассимилировавшие лабрадорит, найдены, ну а «прогретые» пока не изучены. Не иризирующие ли это разности? Теоретически вполне возможно. Образовавшиеся при упорядочении пластинки, повторно прогреваясь, могут увеличиваться до размеров, когда начинают вызывать иризацию.
Изучение иризирующих полевых шпатов весьма интересно. Для того чтобы использовать иризирующий полевой шпат как поделочный камень, его следует правильно ориентировать, т. е. найти в минерале такое его положение, при котором игра кристалла будет наиболее эффектной. На московской выставке любителей камня в 1979 г. экспонировались удивительно красивые броши и серьги из волынского лабрадорита.
Минералы окиси кремния
Из окислов земной коры наиболее распространена окись кремния. Так, широко встречающаяся горная порода гранит, кроме силикатов – минералов соединений окиси кремния, содержит кварц, представляющий собой чистейшую окись кремния. Кварц кристаллизуется из магмы, богатой окисью кремния. В дальнейшем, в процессе выветривания гранитов, силикаты переходят в каолин и другие глинистые минералы, а кварц освобождается и дает осадочные накопления – различные рыхлые пески и песчаники.
Как показал опыт, кварц легко растворяется водой, особенно если в ней есть щелочи и она находится под небольшим давлением. Охлаждаясь, водные растворы окиси кремния выделяют последнюю. При этом образуются или свободные кристаллы кварца, или агрегаты, целиком выполняющие трещину, по которой двигаются растворы. Большинство рудных жил, содержащих медные свинцовоцинковые минералы и золото, сложены в основном кварцем. Рудные минералы в них только относительно редко вкраплены.
Близ дневной поверхности вещество окиси кремния кристаллизуется в форме тонковолокнистых натечных агрегатов, называемых халцедоном. По характеру окраски и форме натеков среди них различают большое количество поделочных разностей. Иногда в толще пород и в трещинах на самой дневной поверхности окись кремния выпадает в виде неокристаллизованного аморфного геля (студня) – опала. Кристаллический кварц из водных растворов способен цементировать различные осадочные породы и замещать их. При этом образуются плотные яшмовые породы.
Если в жиле, выполненной кварцем, остается пустота, то в ней могут выкристаллизоваться прекрасные столбчатые, иногда совершенно прозрачные кварцевые кристаллы – так называемый горный хрусталь. В доисторические времена это был, пожалуй, самый распространенный прозрачный драгоценный камень. Кроме того, кварц может быть окрашен в различные цвета: темно-серый, дымчатый (его часто неправильно называют дымчатым топазом), желтый – цитрин, красновато-фиолетовый – аметист. В пегматитовых жилах встречается и розовый кварц.
Каждый минерал окиси кремния имеет свои условия генезиса, закономерности размещения в природе и особенности использования в ювелирном деле.