355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вадим Охотников » В мире застывших звуков » Текст книги (страница 1)
В мире застывших звуков
  • Текст добавлен: 24 сентября 2016, 04:33

Текст книги "В мире застывших звуков"


Автор книги: Вадим Охотников



сообщить о нарушении

Текущая страница: 1 (всего у книги 3 страниц)

Вадим Охотников
В МИРЕ ЗАСТЫВШИХ ЗВУКОВ


Введение


Как разнообразен и как красочен мир звуков, окружающий нас! Человеческая речь, раскаты грома, шум морского прибоя, шелест листвы, крики животных и пение птиц… Не перечислить всех звуков, слышимых нами.

Ещё в очень глубокой древности люди научились рисовать различные предметы. Рисунки, нацарапанные или высеченные на камне, были найдены в пещерах первобытных людей. Через тысячелетия дошли до нас изображения уже исчезнувших предметов и прошедших событий. Мы можем видеть изображения давно умерших людей, картины давно прошедших битв.

Как же обстоит дело со звуком? Можем ли мы услышать голос минувшего, былые песни или шум исторических битв?

Каждый знает, что нет. Люди не умели запечатлевать звук. Его нельзя было высечь на камне. Родившись, звук пропадал, как бы растворяясь в пространстве. Застывшие звуки существовали лишь в сказке.

Но вот случилось то, что раньше казалось совсем невозможным. Люди научились «записывать» звук и воспроизводить его затем снова в любое время.

Каким образом научились записывать звук, какие для этого пришлось придумать машины, как совершенствовались эти машины со временем, какую роль играет искусство записи и повторения звука в современной жизни – обо всём этом и рассказывается в нашей книге.

1. Первая звуковая машина

Это произошло в 1878 году.

В зале заседания учёных стояла напряжённая тишина. Почтенные, седовласые люди внимательно прислушивались к звукам, которые шли из небольшого прибора, стоявшего на столе. Прибор говорил человеческим голосом! Он повторял только что произнесённые слова.

Учёные пробовали сами вращать металлическую ручку прибора. И неизменно при этом из маленького рупора слышался приглушённый, немного дребезжащий голос.

Новый, только что изобретённый прибор назывался фонографом.

Необыкновенно просто было устройство первого фонографа. Он изображён на рисунке 1.

Рис. 1. Первый фонограф.

Металлический валик вращается с помощью рукоятки. В валик упирается стальная игла. Она чертит на поверхности валика неглубокую борозду. Игла укреплена на круглой металлической пластинке – мембране. Мембрана закрывает собой конец небольшого металлического рупора.

Но как работает фонограф? Где записывается человеческий голос? Как воспроизводится этот голос снова?

Посмотрите внимательно на валик. Он аккуратно покрыт тонким оловянным листом. Блестящая поверхность листа уже не гладкая, как раньше, перед началом записи звуков. Стальная игла вычертила на ней бороздку (рис. 2).

Рис. 2. Так выглядит звуковая бороздка на оловянном листе фонографа.

Весь лист покрыт этой тонкой винтообразной линией.

Рассмотрим бороздку под увеличительным стеклом. Под ним глубокая линия видна значительно яснее. Теперь видно, что игла не царапала поверхность металла, а вдавливала её. Стенки образовавшейся канавки блестящи и гладки. Но – странное дело – глубина этой канавки не везде одинакова. Она – то глубже, то мельче. В канавке образовался ряд бугорков и впадин. Если присмотреться внимательно, стараясь глядеть вдоль канавки, то какой-то удивительно знакомый пейзаж покажется нам. Что это такое? Не крохотные ли волны расположились на дне этого маленького металлического оврага?

Кто наблюдал волнение на море или озере, тот легко согласится, что это, действительно, волны. Вот виднеются крупные гребни волн; на них набегают мелкие. Еле заметная рябь кое-где покрывает канавку.

Словно застывшими волнами выглядит звук, выдавленный металлической иглой на дне оловянной канавки.

Почему это так?

Чтобы лучше понять это, разберёмся, как образовались такие волны. Проследим за работой всего прибора.

Вот равномерно вращается валик. Человек говорит несколько фраз в рупор. Игла углубилась в олово и выдавила канавку. Эта канавка, казалось бы, должна быть всюду одинаковой глубины. Однако это не так.

Чем можно объяснить, что канавка получается не одинаковой, волнистой?

Ясно, что игла, выдавливающая борозду, не неподвижна, а меняет своё положение, углубляясь в поверхность олова то больше, то меньше. Но ведь игла укреплена на круглой металлической пластинке – на мембране. Значит, колебание иглы может происходить только в том случае, когда колеблется сама мембрана. А колебаться мембрану заставляют звучащие перед рупором слова.

Но почему колебания мембраны фонографа получаются волнообразными? Разве звук похож на волны?

Оказывается, да. Звук – это воздушные волны. Сейчас вы поймёте это.

2. Звук – это волны

Вспомним волны на море.

Одна за другой набегают зеленоватые волны на берег. Кажется, будто к берегу беспрерывно движется масса воды. Но так ли это? Ведь тогда вода должна была бы вскоре залить весь берег.

Бросим в волнующееся море несколько щепок и посмотрим, куда они поплывут. Мы увидим, что щепки то опускаются, то поднимаются на волнах, но остаются почти на одном месте. Значит, вода не переносится вместе с волнами к берегу, как это кажется на первый взгляд, а остаётся на месте. Каждая частица воды лишь двигается всё время вверх и вниз. Такое колебание частичек воды и есть водяные волны.

Волны на воде легко получить. Опустите, например, в воду палку одним концом и начните качать её. На поверхности воды появятся волны, которые побегут от палки во все стороны.

Волны существуют не только на воде. Есть они и в воздухе. Только мы не можем их видеть, как видим волны на поверхности воды.

Возьмите гитару и резко дёрните у неё басовую струну. Если затем внимательно присмотреться к этой струне, то нетрудно заметить, что она дрожит – колеблется. Колебание струны передаётся воздуху, и в воздухе возникают невидимые воздушные волны – так же, как от колеблющейся в воде палки образуются водяные волны. Невидимые воздушные волны и есть звук.

Звуковые воздушные волны распространяются в воздухе со скоростью приблизительно 340 метров в секунду. Встречая на своём пути какую-либо твёрдую преграду, они заставляют её колебаться так же, как водяные волны заставляют качаться, например, доску, опущенную одним концом в воду.

Вот почему колебания мембраны фонографа (а значит, и иглы) волнообразны.

Записанный таким образом на валик фонографа звук нетрудно воспроизвести вновь. Для этого металлическую иглу устанавливают в начале оловянной канавки (на которой уже лежит «отпечаток» звука) и вращают валик. Игла следует по канавке и в точности повторяет все те движения иглы, благодаря которым образовалась волнистость канавки. Колебания иглы передаются мембране фонографа, на которой она укреплена. Мембрана приходит в движение и, как поршень, начинает качать воздух, заключённый в рупоре. В рупоре снова образуются воздушные волны. Они расходятся в воздухе и, попадая в наше ухо, заставляют колебаться так называемую барабанную перепонку. Наш организм воспринимает это колебание как звук.

Наблюдая волнение на море, мы видим, что волны бывают разной высоты и расстояние между гребнями волн также неодинаково. Если качать в воде палкой часто, то на поверхности воды появятся мелкие волны. Расстояние от гребня до гребня у таких волн мало (это расстояние называется длиной волны). Если же палку качать медленно, то по воде побегут длинные волны с большим расстоянием от гребня до гребня.

Если вы понаблюдаете, стоя на одном месте, как часто проходят одна за другой водяные волны, то легко увидите, что чем длиннее волны, тем меньшее число волн пройдёт около вас за одну секунду.

Так же различны и волны в воздухе. Струна, совершающая малое число колебаний в секунду, вызывает в воздухе волны большей длины, чем струна, совершающая частые колебания. От частоты колебаний зависит высота звука: чем больше число колебаний в секунду, тем выше – «тоньше» – звук.

Не все волны, существующие в воздухе, наше ухо воспринимает как звук. Струна, совершающая 30 колебаний в секунду, вызывает в воздухе волны длиной около 11 метров. Это «нижний» предел колебаний воздуха, который человеческое ухо улавливает как звук. Меньшее число колебаний воздуха ухо, как правило, уже не слышит. Существует также верхний предел звуковых колебаний.

Самое большое число колебаний в секунду, которое человеческое ухо воспринимает как звук, не одинаково для различных людей. Некоторые хорошо слышат звук, состоящий из 16 тысяч колебаний в секунду, что соответствует волнам длиной около 21 мм. Но у большинства людей пределом является примерно 10–12 тысяч колебаний в секунду.

3. Спор между диском и валиком

Фонограф первое время имел во всех странах огромный успех. Его показывали в театрах и цирках как чудо. Лишь значительно позднее фонографы появились у отдельных граждан.

У этих аппаратов металлический валик с оловянным листом был заменён валиком из воска. Такой валик был много удобнее. После прослушивания записанного можно было соскабливать восковую поверхность валика и записывать на ней новые звуки. Обладатель фонографа мог сам «наговорить или напеть», что ему вздумается, а затем слушать собственный голос.

Появились в продаже и «напетые» валики. На них уже было записано выступление какого-либо знаменитого певца или рассказчика.

Скоро, однако, у фонографа появился соперник – «граммофон».

Чем же отличается граммофон от фонографа?

Прежде всего у граммофона отсутствует цилиндрический валик. Он заменён плоским и круглым диском. На граммофонном диске, так же как и на валике фонографа, имеется звуковая бороздка. Но выглядит она иначе.

У фонографа, как вы помните, глубина бороздки неодинакова; в ней расположены гребни и впадины звуковых волн. У граммофона же, наоборот, бороздка везде одинакова по глубине. Зато она извивается, как змея, и таким образом на ней запечатлеваются звуковые волны (рис. 3).

Рис. 3. Вид звуковой бороздки: I – у фонографа; II – у граммофона.

Граммофонный диск удобнее в хранении. Диски, сложенные, как блины, занимают очень мало места.

Но дело не только в удобстве хранения. Покупатели всё больше и больше интересовались «наговорёнными» валиками. А размножать такие валики было очень сложно. И в продажу поступало лишь столько валиков с напетой песней, сколько раз пел её певец на фабрике.

Куда проще обстояло дело с диском. Его можно было штамповать на обыкновенных прессах из специальной массы. Нужно было только иметь прочную металлическую форму – матрицу с отпечатком на ней звуковых извилин.

Возможность дешёвого производства пластинок закрепила окончательную победу граммофона. Неважно, что граммофон не годится для записи звука. Потребители стали рассматривать его как музыкальный ящик.

«Граммофон поёт, говорит, смеётся, исполняет оркестровый ансамбль, играет соло на разных инструментах… Граммофон поёт хором…», – так говорилось в одной из первых реклам о граммофоне.

Рис. 4. Внешний вид первого граммофона.

4. Первые фабрики звуков

Как же устроена фабрика, где записывают звук? В каких условиях работают люди, голоса которых продают на пластинках?

Совершим экскурсию на одну из таких первых фабрик.

Мы входим в комнату очень странного вида. Она не прямоугольная и сужается к одному концу. На что похожа эта комната?

Да ведь это рупор! Действительно, мы зашли внутрь огромного, горизонтально расположенного рупора. Но как здесь тесно. Плотно прижавшись друг к другу, в три этажа, сидят музыканты. В комнате душно. Прислонившись к стене, стоит дирижёр. Все трубы музыкантов направлены к сужающейся части комнаты-рупора.

Странные музыкальные инструменты находятся тут. Вот мы видим как будто бы скрипку. Но к ней почему-то прикреплён маленький рупор. Певец тоже вооружён рупором, который он держит у рта.

Что же находится в узкой части комнаты-рупора, куда всеми возможными усилиями собирается и направляется звук? Сужение постепенно переходит в трубу, которая направляется в соседнюю комнату. Там расположен звукозаписывающий механизм.

Устройство его не сложно. Вот уже знакомая нам круглая пластинка – мембрана. Именно к ней подошла труба – звукопровод.

И сложная комната в виде рупора, и скученность оркестра – всё это сделано для того, чтобы не рассеять мощность звука. Звук нужно собрать весь без остатка, направить его в одно место. Он должен как можно сильнее заставить колебаться мембрану. Ведь чем с большей силой колеблется мембрана, тем с большим размахом прикреплённый к ней резец будет вырезать звуковую извилину на восковом диске. Значит, звук запишется громко. Громче будет звучать и будущая пластинка.

По окончании записи диск переносится в другое отделение фабрики. Здесь электрическим способом – гальванопластикой, изобретённой в 1838 году русским учёным Якоби, восковой диск покрывается с одной стороны– именно там, где находится звуковая извилина, – тонким слоем красной меди. Получившаяся таким образом медная пластинка легко снимается с воска. На ней до самых мельчайших подробностей отпечатан след звуковой извилины.

Медная пластинка поступает в следующий цех. Это – прессовое отделение. Здесь с помощью пресса между двумя медными пластинками сжимается специальная нагретая масса, мягкая, как воск. Когда она остывает, получается хорошо всем известная чёрная граммофонная пластинка.

Современные фабрики звука выглядят иначе. Многое изменилось в настоящее время в технике записи звука. Уже не нужно оркестру тесниться в комнате-рупоре. Специальные приборы – микрофоны и электрические усилители – позволяют записывать самый слабый звук (об этом мы расскажем подробно дальше). Но техника размножения пластинок осталась почти без изменения.

5. Слава индийских букашек

Следует коротко рассказать и о материале, из которого изготовляются пластинки.

Долгое время одно вещество казалось совершенно незаменимым для изготовления граммофонных пластинок. Это вещество называется шеллак.

Где и как добывается шеллак? Какими особенными качествами он обладает?

Крохотные насекомые густо облепляют листья некоторых растений, растущих в далёкой Индии.

Шеллак выделяется этими насекомыми подобно тому, как у шелковичных червей выделяется шёлк.

По некоторым свойствам шеллак напоминает обыкновенную канифоль. Он также размягчается и плавится при сравнительно низкой температуре. Он жёлтого цвета и ломок. Но одно свойство резко отличает его от канифоли. Шеллак выдерживает огромные давления при сжатии. Это свойство шеллака и является самым ценным для граммофонной пластинки.

Ведь звуковая бороздка пластинки при проигрывании выдерживает огромную нагрузку: кончик граммофонной иглы давит на звуковую канавку с силой около… тонны на один квадратный сантиметр!.. Это объясняется тем, что весь вес граммофонной мембраны целиком ложится на остриё иглы, а остриё иглы – на крохотную поверхность. Обод паровозного колеса давит на поверхность рельса с меньшей силой.

Кроме того, стальная граммофонная игла легко скользит по шеллаку. А это необходимо для получения чистого звука.

Долгое время без шеллака нельзя было производить пластинки. Только в самое последнее время, после больших трудов, удалось, наконец, найти несколько заменителей шеллака.

Перед Великой Отечественной войной советские учёные разработали новый способ производства сложного химического вещества – винилита. По внешности он мало походил на шеллак. Но применённый в производстве пластинок, винилит показал, что он не только вполне заменяет шеллак, но даже превосходит его по качеству. Пластинки, изготовленные с применением винилита, меньше шумят при проигрывании и более долговечны.

Кроме того, в годы войны были организованы поиски отечественного растения, дающего заменитель шеллака. Такое растение было найдено в степях Казахстана. Местное население называет его «шаир». Смола, заключённая в его корнях, оказалась прекрасным заменителем далёкого индийского шеллака.

6. Радио совершенствует звукозапись

Осенью 1924 года в нашей стране появилось новое средство массового распространения музыки и человеческой речи.

Это было радиовещание.

Век граммофона кончился, – говорили многие. Зачем приобретать граммофонные пластинки, когда передачу пения н музыки можно слушать по радио.

Однако радио не заменило граммофон.

Наоборот, граммофон тесно подружился с радио. С помощью радиотехники необыкновенно усовершенствовалась по качеству граммофонная запись. Радиовещание, в свою очередь, получило огромную помощь от граммофона.

Техника радиовещания' дала граммофону совершенно новый способ записи звука – электромеханический.

Чтобы хорошо разобраться в этом способе, познакомимся сначала с тем, как в радиовещании превращают звук в электрические сигналы и электрические сигналы – снова в звук.

Мы входим в просторную и светлую комнату. Здесь слышатся звуки рояля и пения. По середине комнаты на подставке вышиной в человеческий рост укреплён небольшой металлический предмет. Это – «электрическое ухо» – микрофон. Именно для него раздаётся тут пение. Микрофон – единственный слушатель в этой комнате – студии.

Работа микрофона заключается в том, что он воспринимает волнообразные колебания воздуха, возникающие в комнате, и превращает их в волнообразное колебание электрического тока.

Как это происходит?

Посмотрим, как устроен простейший микрофон (рис. 5).

Рис. 5. Схема простейшего микрофона.

В фонографе колебание мембраны, возникающее от колебаний воздуха, выдавливает с помощью иглы волнистую звуковую канавку на валике. У микрофона мембрана выполняет другую работу. Она, колеблясь, сжимает то больше, то меньше прилегающий к ней с одной стороны угольный порошок. От электрической батареи к угольному порошку подводится электрический ток. Отдельные мелкие зёрна угольного порошка неплотно соприкасаются друг с другом. Благодаря этому электрический ток, проходя через порошок, испытывает сильное сопротивление. Вот тут-то и происходит превращение механических колебаний мембраны, сжимающей в большей или меньшей степени угольный порошок, в изменения силы тока, т. е. электрические колебания. Сильнее сожмёт мембрана порошок– плотнее сожмутся зёрна, и через угольный порошок потечёт более сильный ток. В другую сторону качнётся мембрана – порошок окажется менее сжатым: уменьшится сила тока.

Таким путём звуковые колебания воздуха превращаются в колебания электрического тока. При этом волнообразное изменение силы тока в точности соответствует тем звуковым волнам, которые приводят в колебание мембрану микрофона.

Но для чего нужно превращать звук в электрические колебания?

А вот для чего. Дело в том, что звук распространяется в воздухе не так далеко. Колебания воздуха затухают очень быстро. Зато по проводам можно передать электрические колебания, в точности копирующие колебания воздуха, очень далеко.

Существует много и других систем совершенных «электрических ушей» – микрофонов. Каждый из них по-своему преобразует воздушные волны в неслышимый «электрический звук».

Как же снова сделать электрические колебания слышимыми, т. е. превратить их в колебания воздуха.

Для этого существует очень много приборов. Наиболее известный из них– телефонная трубка. В ней колеблющийся электрический ток проходит через обмотку электромагнита. Электромагнит то в большей, то в меньшей степени притягивает к себе железную пластинку – мембрану: она начинает колебаться. Движение мембраны передаётся воздуху, и в нём возникают звуковые волны – рождается звук. Существуют и другие преобразователи электрических колебаний в звук. Некоторые из них воспроизводят звук очень громко; они называются громкоговорителями.

Для громкоговорителей радиотехники используют специальные приборы – усилители. Главная часть усилителя – электронная лампа. С помощью усилителей очень слабые электрические колебания превращаются в мощные.

Усилители работают необычайно точно. Все мельчайшие изменения первоначального слабого тока в точности соответствуют колебаниям усиленного тока.

Превращение звука в электрические колебания и преобразование их снова в звук были известны давно. Первые телефон и микрофон появились почти одновременно с фонографом. Но в то время казалось, что они не могут дополнять или помогать друг другу. И только с появлением радиотелефонной техники положение резко изменилось.

Посмотрим теперь, как выглядит звукозаписывающий цех современной граммофонной фабрики.

Звукозаписывающий цех – студия – большая и светлая комната. Оркестр уже не теснится здесь, как прежде. Музыканты свободно расположились, как им удобно. Не напрягает изо всех сил свои лёгкие певец. Самые тихие, почти исчезающие звуковые колебания воздуха уловит теперь микрофон. Этих ничтожных колебаний раньше не-хватило бы для того, чтобы записать звук. Теперь это не имеет никакого значения. Пусть от маленьких колебаний возникнут такие же маленькие колебания электрического тока. Как бы они ни были малы, всё равно усилитель с электронными лампами усилит их.

Обычно в студии устанавливается несколько микрофонов. Один из них находится, например, ближе к басовым инструментам, другой – к скрипкам. Провода от всех микрофонов сведены в одно место, где находится специальный контролёр звуков. Он внимательно слушает с помощью громкоговорителя или телефонных наушников, как звучит оркестр, и по мере надобности исправляет это звучание. Ведь у него в руках находится возможность смешивать звуки, поступающие от различных микрофонов. Если слабо, например, звучат басы, он может открыть больше доступ электрическим колебаниям, приходящим от микрофона, стоящего ближе к басам. Можно также приглушить скрипки.

Вот почему современные пластинки, записанные с помощью электрического метода, звучат яснее и естественнее, чем пластинки, записанные прежним способом.

Но как же от микрофона записывается звук?

Последуем в другое отделение современной фабрики звуков.

Здесь, как и прежде, на специальном станке – равномерно вращающийся восковой диск (рис. 6).

Рис. 6. Станок для записи звука на пластинки.

Но к нему подведена уже не труба звукопровода. Трубу заменяют электрические провода, протянутые из студии. По этим проводам течёт колеблющийся со звуковой частотой электрический ток. Он поступает в прибор, который называют рекордером. Рекордер – это электрический записыватель звука. Его задача заключается в том, чтобы колебания электрического тока преобразовывать в механические колебания резца.

В рекордере, как и в телефонной трубке, колеблющийся электрический ток проходит через обмотку электромагнита. Электромагнит то сильнее, то слабее притягивает к себе маленький железный сердечник – якорь. А на конце якоря укреплён резец. Таким образом, колебания якоря в точности передаются резцу, и он пишет на восковом валике звуковую канавку.


    Ваша оценка произведения:

Популярные книги за неделю