355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Чернов » Артиллерийское орудие » Текст книги (страница 5)
Артиллерийское орудие
  • Текст добавлен: 25 февраля 2018, 00:00

Текст книги "Артиллерийское орудие"


Автор книги: В. Чернов


Жанр:

   

История


сообщить о нарушении

Текущая страница: 5 (всего у книги 8 страниц)

Несмотря на простоту устройства, поворотный механизм этого типа имеет довольно существенный недостаток: усилие на маховике в процессе поворота не постоянно, а это создает большие неудобства при работе для наводчика. Кроме того, угол поворота ствола орудия, снабженного поворотным механизмом винтового типа, не превышает 40 градусов в ту и другую сторону, в то время как поворотный механизм секторного типа, при замене сектора круговым погоном, обеспечивает круговое ведение огня, без изменения положения лафета.

Развитие дальнобойной артиллерии, приведшее к удлинению ствола орудия, и появление быстро движущихся целей, вследствие чего необходимо было увеличить скорость наводки, настойчиво потребовали уменьшить усилие на маховике подъемного механизма. Для облегчения работы на подъемном механизме орудия стали снабжать уравновешивающими механизмами. В современных артиллерийских орудиях широко применяются уравновешивающие механизмы тянущего и толкающего типа (рис. 31).

Рис. 31. Уравновешивающие механизмы: а – толкающий; б – тянущий.

Уравновешивающий механизм толкающего типа (см. рис. 31а) обычно состоит из двух пар цилиндров с пружинами, расположенными впереди цапф. Иногда орудия имеют два цилиндра с одной пружиной, которые располагаются под люлькой, также впереди цапф. Такая конструкция уменьшает диапазон углов возвышения, так как расположение под люлькой ограничивает длину цилиндра.

Пружина, находящаяся между двумя цилиндрами, подпирает переднюю часть люльки и тем самым уменьшает влияние веса дульной части ствола на подъемный механизм. Кроме того, уравновешивающий механизм толкающего типа, действуя на люльку снизу, уменьшает давление цапф на цапфенные гнезда верхнего станка, а значит и трение при наводке. Основным недостатком такого механизма является его уязвимость, кроме того, этот механизм расположен почти вертикально, вследствие чего увеличивается общая высота орудия.

Схема уравновешивающего механизма тянущего типа следующая (см. рис. 316). К станку орудия прикреплена коробка уравновешивающего механизма так, что она может вращаться в вертикальной плоскости. В коробке находится сжатая между дном коробки и шайбой пружина. Конец тяги, соединенной с шайбой, при помощи цепи закреплен на люльке позади цапф. Вследствие такого расположения деталей пружина через шток тянет люльку, создавая тем самым момент, который и уравновешивает перевес качающейся части.

Горизонтальное или почти горизонтальное расположение цилиндров в механизмах тянущего типа представляет большие удобства. Основным же недостатком данных механизмов является большое трение в цапфах при работе подъемным механизмом.

В некоторых новейших орудиях применяются гидропневматические уравновешивающие механизмы. Идея их устройства такая же, как и идея устройства уравновешивающего механизма толкающего типа, но пружина заменена сильно сжатым (до 50 атмосфер) воздухом, заключенным в цилиндре механизма. Чтобы сжатый воздух не просочился наружу и давление не упало, нижняя часть цилиндра уравновешивающего механизма заполняется специальной жидкостью, которая принимает на себя давление воздуха и в силу своей несжимаемости передает его на нижний цилиндр.

Основным достоинством этого уравновешивающего механизма является его компактность. Основным недостатком является то, что его работа в большой степени зависит от изменения температуры окружающего воздуха.

Отдача

В момент выстрела под действием пороховых газов снаряд с большой скоростью вылетает из канала ствола вперед, а ствол начинает двигаться назад. Если бы ствол не был закреплен на лафете, он полетел бы на некоторое расстояние в направлении, обратном движению снаряда.

Для того, чтобы ясно представить себе явление отката, проделайте простой опыт. Возьмите обыкновенную стеклянную пробирку, налейте в нее немного воды и заткните пробкой. Пробирку нагревайте до тех пор, пока не закипит вода. Образующиеся водяные пары выбьют пробку, которая полетит в одну сторону, а пробирка в тот же момент полетит в противоположную.

Сила отдачи, толкающая ствол орудия назад, очень велика; она достигает примерно 112 тонн у 76-миллиметровой пушки и превосходит 400 тонн у 152-миллиметровой гаубицы-пушки. Старые орудия, стволы которых были жестко закреплены на лафете, после каждого выстрела откатывались назад. Приходилось тратить много времени и много сил, чтобы возвратить орудие на место и восстановить наводку. Скорострельность таких пушек была, конечно, небольшой. Особенно трудно было накатывать тяжелые орудия. Поэтому артиллеристы всегда стремились затормозить откат орудия и облегчить накатывание его на прежнее место. Сначала они применяли для этого простые приспособления в виде клиньев, которые подкладывались под колеса орудия. При откате орудие накатывается на эти клинья, а затем скатывается по наклонной плоскости и занимает первоначальное положение. Позднее в дополнение к клиньям к лафету орудия присоединяли пружинный тормоз, который поглощал часть энергии отката. Этот тормоз еще не составлял одного целого с лафетом. Понятно, что и клинья и тормоз отката значительно сокращали время подготовки орудия к следующему выстрелу. Но все же оно оставалось значительным, так как наводка орудия сильно сбивалась при откате и накате. Чтобы затормозить откат всего орудия, нужно было построить прочную платформу. Это можно было сделать для крепостных орудий или для тяжелых осадных орудий, но это лишило бы подвижности полевую артиллерию. Все это поставило перед конструкторами задачу изобрести такой лафет, который при выстреле оставался бы на месте.

В результате плодотворной работы выдающемуся русскому изобретателю В. С. Барановскому удалось сконструировать скорострельную горную пушку, у которой при выстреле лафет оставался на месте, а ствол сначала откатывался, а затем накатывался на прежнее место. Такого результата В. С. Барановский достиг, применив гидравлический тормоз отката и пружинный накатник. Его идеи, заложенные в основу проектирования скорострельных артиллерийских орудий, были использованы не только в России, но и за границей.

Откат ствола современного орудия тормозится при помощи гидравлического тормоза, а накат его на свое место производится пружинным, пневматическим или гидропневматическим накатником.

Тормоз отката (рис. 32) состоит из двух основных частей – цилиндра и вставленного в него штока с поршнем – и целого ряда других деталей.

Рис. 32. Тормоз отката.

Цилиндр заполнен жидкостью – веретенным маслом или глицериновой жидкостью.

Он может закрепляться на стволе при помощи специальных обойм. При выстреле ствол орудия под действием пороховых газов откатывается назад, вместе с ним откатывается цилиндр тормоза отката. Шток, закрепленный в крышке люльки, остается на месте. Поэтому при откате ствола с цилиндром поршень штока сильно давит на жидкость, которая под этим давлением начинает пробрызгиваться через отверстия, имеющиеся в поршне. Пройдя эти отверстия, жидкость пойдет по двум направлениям: в заднюю часть цилиндра через кольцевой зазор между регулирующим кольцом и веретеном и в переднюю полость штока через отверстия в модераторе, сдвигая клапан модератора. Незначительное количество жидкости проходит в переднюю полость штока по канавкам переменной глубины на внутренней поверхности штока.

По мере отката величина кольцевого зазора между веретеном и регулирующим кольцом меняется, так как веретено имеет переменное сечение.

На преодоление сопротивления жидкости пробрызгиванию и расходуется главным образом энергия откатных частей.

У некоторых орудий тормоз устроен несколько иначе: цилиндр тормоза закреплен неподвижно в люльке, а шток тормоза при помощи специальной детали, называемой бородой, прикрепляется к казеннику.

При откате люлька, а следовательно, и цилиндр остаются неподвижными, ствол же, откатываясь, тянет за собой шток тормоза. Несмотря на некоторое различие в конструктивном отношении, принцип действия этого тормоза остается прежним.

В некоторых описаниях пушек вы можете встретить в разделе «Противооткатные устройства» название «тормоз отката и наката». Это означает, что в данном тормозе имеется специальное приспособление, которое принимает участие в торможении наката. Чаще всего встречаются тормозы наката веретенного типа. При накате часть жидкости, попавшая в замодераторное пространство, давит на клапан модератора, сдвигает его и закрывает отверстия в модераторе, вследствие чего жидкость пробрызгивается только через канавки переменной глубины, находящиеся на внутренней поверхности штока.

Сопротивление жидкости пробрызгиванию через канавки переменной глубины и создает необходимое торможение наката. Плавность наката достигается тем, что в конце наката канавки переменного сечения сходят на нет.

В результате работы, происходящей в тормозе отката во время стрельбы, температура жидкости в цилиндре увеличивается. При каждом выстреле она увеличивается примерно на один градус. Как вы знаете, при нагревании тела расширяются, следовательно, расширится и жидкость, которая заполняет внутреннюю полость цилиндра тормоза отката. В результате этого ствол орудия не сможет возвратиться в свое первоначальное положение, или, как говорят артиллеристы, произойдет «недокат». При большом же недокате сильно уменьшится длина той части цилиндра, в которой поршень штока тормозит откат, что может вызвать резкий удар деталей в конце отката и поломку противооткатных устройств.

Для того, чтобы уменьшить объем жидкости, достаточно выпустить часть жидкости из цилиндра, и тогда можно было бы продолжать стрельбу. Но в этом случае при охлаждении противооткатных устройств пришлось бы доливать выпущенную жидкость в цилиндр. Между тем в бою не всегда можно вовремя отбавить жидкость и добавить ее. Необходимо специальное приспособление, которое могло бы автоматически регулировать количество жидкости в рабочем пространстве цилиндра тормоза отката.

В современных орудиях с успехом применяются приспособления, называемые компенсаторами. Компенсатор отделяется от рабочего объема цилиндра тормоза тонкой перегородкой – диафрагмой – с очень узкими отверстиями и крышкой компенсатора с одним отверстием, в которое вварена изогнутая трубка. Компенсатор частично заполняется жидкостью. Во время стрельбы, при расширении жидкости в цилиндре, часть жидкости через отверстия в диафрагме перетекает из цилиндра в пространство между диафрагмой и крышкой компенсатора и дальше по трубке в корпус компенсатора, сжимая находящийся над жидкостью воздух. При перерывах в стрельбе жидкость в цилиндре тормоза охлаждается и объем ее уменьшается. Сжатый в компенсаторе воздух, стремясь расшириться до первоначального объема, вытесняет жидкость в цилиндр тормоза отката.

Таким образом, тормоз отката представляет собой довольно сложную тепловую машину, в которой энергия механическая переходит в тепловую. После того, как энергия отдачи целиком израсходуется на преодоление силы сопротивления жидкости пробрызгиванию, начинает действовать накатник, задача которого возвратить откатившиеся части в первоначальное положение.

В современных орудиях можно встретить накатники двух типов: пружинный и гидропневматический. Пружинный накатник действует так. В момент отката ствола пружины накатника сжимаются, принимая частично на себя силу отдачи. Сжатие пружины при откате равно длине отката. После остановки ствола в заднем крайнем положении пружины, разжимаясь, возвращают откатившиеся части в первоначальное положение, в результате чего происходит накат. Такие накатники применяются преимущественно в орудиях малого калибра и редко в артиллерии среднего калибра.

Гидропневматический, или, как его называют, воздушный, накатник устроен следующим образом. В обоймах ствола закреплены сообщающиеся между собой цилиндры (рис. 33); один цилиндр и часть другого цилиндра заполнены жидкостью.

Рис. 33. Накатник.

Свободная часть верхнего цилиндра заполнена воздухом, сжатым до 25–40 атмосфер. В нижнем, или рабочем, цилиндре помещен шток с поршнем, причем в поршне нет никаких отверстий.

При выстреле ствол орудия с цилиндрами откатывается назад. Поршень перегоняет жидкость из рабочего цилиндра в воздушный. Так как жидкость практически несжимаема, то сжимается воздух в верхнем цилиндре до 80—100 атмосфер. Когда откат окончен, сильно сжатый воздух выгоняет жидкость из верхнего цилиндра в нижний; жидкость передает давление к поршню; последний, оставаясь на месте, заставляет двигаться цилиндры, а вместе с ними и ствол. В результате ствол возвращается на место.

Таким образом, всю работу по возвращению ствола на место выполняет воздух. Жидкость в накатнике необходима лишь для герметизации, иначе воздух сможет проникнуть через сальники и выйти наружу.

В современных орудиях, помимо противооткатных устройств, уменьшают скорость отката еще другим способом: напору газов, давящих на затвор назад, противопоставляют силу, которая толкает ствол вперед. Для этого на дульную часть ствола навинчивают дульный тормоз.

Чем прикрываются артиллеристы от вражеских пуль

Если вы посмотрите на любое современное орудие, то увидите, что оно имеет стальной щит. За щитом может укрыться от пуль и осколков весь орудийный расчет. Но не всегда орудия имели такие щиты. Когда существовали орудия, которые при каждом выстреле откатывались назад, щиты не были нужны: все равно артиллеристы должны были во время отката отбегать от орудия. Не имело смысла увеличивать вес орудии (что было неизбежно при установке щитов), так как расчет мот укрыться за щитом лишь на короткое время.

Но как только на вооружении русской армии появились новые скорострельные пушки с противооткатными устройствами, вопрос о щите встал совершенно по-иному. Орудийному расчету уже не было надобности отбегать при выстреле от орудия, так как откатывался только ствол, а лафет оставался на месте. При таких условиях щит мот принести только пользу. Однако эта мысль, как и многие другие гениальные предложения русских артиллеристов, встретила ожесточенные возражения со стороны многочисленных консерваторов и рутинеров, которые имелись в старой русской армии.

Среди высших кругов русских офицеров нашлось немало таких, которые считали, что артиллеристам позорно прятаться за щитами в то время, когда пехота наступает без всяких щитов.

И только во время русско-японской войны, благодаря энергии и настойчивости выдающихся русских артиллеристов, была доказана необходимость щитов. Первыми орудийными щитами были щиты, поставленные на орудиях батареи талантливого русского артиллериста подполковника Кугиак. Эти щиты были изготовлены из котельного железа толщиной почти в 3 миллиметра. Японские винтовочные пули не могли пробить их даже с дальности в 700 шагов. Блестящие действия батареи подполковника Кугиак со всей убедительностью доказали огромную пользу щитов.

К концу русско-японской войны по примеру, поданному русскими артиллеристами, все государства снабдили свои полевые орудия щитами.

Щитовое прикрытие современных полевых орудий обычно состоит из двух щитов: неподвижного и подвижного. Неподвижный щит в свою очередь состоит из средней части, верхнего и нижнего откидных щитов. Средняя часть щита при помощи специальных кронштейнов прикрепляется к верхнему станку и имеет вырез, через который проходит ствол с люлькой. Величина выреза должна быть такой, чтобы был обеспечен горизонтальный и вертикальный обстрел, допускаемый механизмами наводки.

Если в целях маскировки необходимо уменьшить высоту орудия, верхний щит опускается. Нижний щит опускается лишь в том случае, когда орудие находится в боевом положении. Подвижная часть щита укрепляется на качающейся части орудия и служит для укрытия расчета от пуль и осколков, которые могут попасть в вырез в неподвижном щите. Толщина щитов возросла с 3 миллиметров до 10. Кроме основного щитового прикрытия, на современных орудиях имеется целый ряд щитков, предназначенных для защиты хрупких деталей и механизмов.

Для уменьшения пробиваемости щитов применяют так называемые экранированные щиты. Сущность экранирования состоит в том, что вместо одного щита используют два, поставленных на расстоянии 20–25 миллиметров друг от друга и жестко скрепленных распорками. После пробивания первого щита пуля или осколок теряет часть своей энергии, изменяет направление своего полета и деформируется. Следовательно, условия для пробивания второго щита ухудшаются. В настоящее время щитовое прикрытие применяется также и в зенитных пушках. Это нововведение вызвано тем, что, как показал опыт Великой Отечественной войны, зенитные пушки могут успешно применяться для борьбы с танками противника. Конструкция щитового прикрытия в значительной степени зависит от назначения, типа и калибра орудия.

Подрессоривание

Если вы посмотрите на старые орудия с жестким лафетом, то увидите, что колеса этих орудий надевались прямо на ось, которая жестко соединялась со станком. В этом случае оси должны быть очень прочными, так как при перевозке орудия резкие толчки передаются непосредственно на ось, а от оси передаются на остальные части орудия. С появлением механической тяги скорости перевозки артиллерийских орудий увеличились. При таких скоростях перевозки толчки усиливаются и, следовательно, артиллерийские орудия могли бы быстро прийти в негодность.

Для уменьшения вредного действия толчков и ударов на механизмы и приборы орудия в современных артиллерийских системах используют специальные механизмы, которые называются подрессориванием. Для подрессоривания в основном применяют рессоры (пружины) и резиновые буферы.

Если произвести выстрел из подрессоренного орудия, то верхний станок со стволом будет колебаться на рессорах. Следовательно, будет нарушено основное требование, предъявляемое к орудию, – устойчивость. Это привело к необходимости использовать особый механизм, который автоматически связывает ось орудия с нижним станком при переходе в походное положение.

Вначале в качестве упругого элемента использовались пластинчатые рессоры и цилиндрические пружины. Позднее было использовано свойство упругого сопротивления цилиндрического стержня. Работа такого механизма подрессоривания заключается в следующем. Один конец цилиндрического стержня жестко закреплен в лафете (рис. 34), а второй конец при помощи балансира и оси соединен с колесом.

Рис. 34. Схема стержневого подрессоривания.

Если колесо во время движения попадет на какое-либо препятствие, то балансир поднимется, а стержень будет закручиваться. Так как сталь обладает упругостью, то при сходе колеса с препятствия стержень раскрутится. Следовательно, в этом механизме стержень играет роль рессоры, работающей на скручивание.

Подрессоривание пластинчатыми рессорами производится путем подвески нижнего станка к боевой оси при помощи рессоры, составленной из пластин, подобно тому, как это делается при изготовлении обыкновенной автомобильной рессоры. Средняя часть рессоры укрепляется на нижнем станке орудия, а концы – на боевой оси. Удары и толчки при этом подрессоривании смягчаются за счет работы этих пластин на изгиб. Подрессоренные орудия можно перевозить с большой скоростью по любым дорогам.

ПРИЦЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ

Для того, чтобы попасть в цель, необходимо придать стволу орудия такое положение, при котором траектория снаряда прошла бы через цель. Несколько десятков лет назад это делалось очень просто, в общем так же, как это делается при стрельбе из пистолета или винтовки. В то время на стволе орудия имелась мушка, а на казенной части – выдвижной прицел с целиком, снабженный прорезью. При наводке орудия наводчик глядел через эту прорезь и мушку на цель. Правильный по указаниям наводчика, поворачивая при помощи правила орудие, придавал ему приблизительное направление на цель. После этого наводчик уточнял наводку, совмещая мушку с целью.

На стволе современного орудия вы не найдете ни целика, ни мушки, тем не менее горизонтальная и вертикальная наводка производится очень быстро и точно.

Это достигается при помощи прицельных приспособлений, которые находятся не на самом стволе, а рядом, с левой стороны. При помощи специальных устройств прицельные приспособления связаны со стволом и поворачиваются вместе с ним. Основным оптическим прибором для придания орудию направления в цель (для горизонтальной наводки) является панорама (рис. 35).

Рис. 35. Панорама.

Она представляет собой оптическую трубку в виде буквы «Г», Благодаря такому устройству голова наводчика не закрывает точек наводки, находящихся сзади. Головка устроена так, что она может вращаться в горизонтальной плоскости; вследствие этого наводчик, находящийся за щитом орудия, может, не отрывая глаз от окуляра, видеть предметы, находящиеся впереди, сбоку или сзади. При этом все предметы будут ему казаться значительно ближе, чем на самом деле, потому что панорама дает увеличенное и прямое изображение. Смотря в панораму, наводчик видит перекрестие, через центр которого проходит оптическая ось прибора. Это перекрестие заменяет мушку и прорезь старинных орудий. При стрельбе ночью перекрестие освещается фонарем через специальное окно в панораме.

Панорама имеет угломер. Угломер панорамы состоит из вращающегося кольца, разделенного на 60 частей, и барабана, разделенного на 100 частей. За один оборот барабана оптическая ось панорамы поворачивается в горизонтальной плоскости на одно деление кольца (1-00), или на 1/60 часть окружности угломерного кольца. При повороте барабана на одно его деление головка переместится на 1/6000 часть окружности угломерного кольца (0-01).

Деления на угломерном кольце нанесены по часовой стрелке, если смотреть на кольцо сверху. Чтобы узнать, на какой угол повернута оптическая ось панорамы, нужно прочитать числа, которые стоят на угломерном кольце под указателем (чертой) и на барабане против указателя.

Оптическая ось может перемещаться не только в горизонтальной, но и в вертикальной плоскости. Для этого в панораме имеется специальная отражательная призма. Вращением этой призмы мы можем увеличивать или уменьшать угол наклона оптической оси панорамы. Механизм, при помощи которого изменяется угол наклона, артиллеристы называют отражателем. Отсчет углов отражателя производится по шкале и по барабану. На шкале деления обозначены точками, по три деления вверх и вниз от среднего. Одно деление шкалы отражателя равно 1/60 окружности, а одно деление барабана – 1/6000 окружности. Основным положением отражателя называется такое положение, когда указатель шкалы стоит против средней точки, а барабан установлен на нуль.

На кольце барабана отражателя нанесены две стрелки с надписями «Вверх» и «Вниз». Если повернуть барабан по направлению стрелки с надписью «Вверх», то оптическая ось панорамы поднимется и, наоборот, опустится, если повернуть барабан в противоположную сторону.

При установке отражателя 0, угломера 30–00 и прицела 0 оптическая ось панорамы параллельна оси канала ствола, но так как расстояние между оптической осью панорамы и осью канала ствола по сравнению с дальностью стрельбы очень мало, то можно считать, что в этом случае оптическая ось панорамы совпадает с осью канала ствола. Положение оптической оси панорамы при этих установках прицельных приспособлений называется нулевой линией прицеливания.

Кроме оптической части, прицельные приспособления имеют собственно прицел, при помощи которого орудийному стволу придается нужный угол возвышения. С увеличением угла возвышения до 43,5 градуса дальность стрельбы увеличивается. Для каждой дальности до цели у орудий всех систем (при одном и том же снаряде и заряде) имеется определенный угол возвышения, который придается при помощи прицела. В современной артиллерии имеются прицелы различных конструкций: нормализованные, независимые от орудия, прицелы противотанковой артиллерии.

Нормализованный прицел (рис. 36) жестко скреплен со стволом орудия, вследствие чего он полностью от него зависит.

Рис. 36. Нормализованный прицел.

Этот прицел обеспечивает ведение огня прямой и непрямой наводкой. Нормализованный прицел включает в себя целый ряд механизмов, которые дают возможность точно и быстро навести орудие в цель. К этим механизмам относятся: механизм углов прицеливания, механизм углов места цели, механизм поперечного качания. Последний механизм предназначен для учета влияния наклона оси цапф качающейся части орудия.

Чтобы понять назначение первых двух механизмов, необходимо усвоить, что такое угол прицеливания и угол места цели.

На рис. 37 показаны точка стояния орудия О, горизонт орудия ОГ, линия цели ОЦ (прямая линия, соединяющая орудие с целью и линия выстрела (продолженная ось канала ствола наведенного орудия) ОА. Угол АОЦ называется углом прицеливания.

Рис. 37. Углы места цели, прицеливания и возвышения.

Дальность до цели определяется по линии горизонта. Если цель находится на линии горизонта орудия, то есть на одном с ним уровне, то угол прицеливания будет тем углом возвышения, который нужно придать стволу орудия, чтобы снаряд попал в цель. Но цель редко бывает на одном уровне с орудием. Обычно она бывает или выше или ниже горизонта орудия.

Допустим, что цель выше горизонта. Легко понять, что если мы придадим орудию угол возвышения, равный углу прицеливания, то снаряд не долетит до цели. Если цель будет ниже линии горизонта, то снаряд перелетит через цель. Ошибка в том и другом случае объясняется тем, что не принят во внимание угол между линией цели и линией горизонта орудия ОГ, который называется углом места цели. Угол места цели может быть положительным (если цель выше линии горизонта орудия) и отрицательным (если цель ниже этого горизонта). Следовательно, угол возвышения орудия всегда должен быть равен алгебраической сумме угла прицеливания и угла места цели. Поэтому на орудийном прицеле имеются и механизм углов прицеливания и механизм углов цели.

Основными частями механизма углов прицеливания являются: стебель прицела с корзинкой панорамы и дистанционный барабан с указателем. Почти каждое орудие может стрелять различными снарядами, а многие и различными зарядами. Поэтому на дистанционном барабане имеется несколько шкал, которые соответствуют различным снарядам и зарядам. При повороте барабана на одно деление какой-либо шкалы дальность стрельбы увеличивается на 50 метров.

Кроме того, на торце барабана нанесена шкала тысячных, цена одного деления этой шкалы равняется двум тысячным (0-02).

Для того, чтобы установить необходимый угол прицеливания, нужно определить дальность до цели, разделить ее на 50 и полученное число установить на шкале, соответствующей выбранному снаряду и заряду.

Механизм углов места цели представляет собой боковой уровень. При помощи червячной передачи мы можем перемещать боковой уровень в вертикальной плоскости. Измерение угла места цели производится по барабанчику, на котором нанесены деления. Цена каждого деления равна одной тысячной (0-01).

Наконец, механизм поперечного качания представляет собой маховик с червяком, при помощи которого можно перемещать весь прицел в плоскости, перпендикулярной оси канала ствола. В вертикальное положение прицел устанавливается по поперечному уровню. Такое качание прицела необходимо производить в том случае, если цапфы качающейся части орудия имеют наклон относительно горизонтальной плоскости.

Основным недостатком прицела этого типа является большая загрузка наводчика. Ему приходится работать на двух механизмах наведения и, кроме того, устанавливать прицел. Наиболее разгружен наводчик при обслуживании прицелов, независимых от орудий.

Такие прицелы могут быть с независимой линией прицеливания и с полунезависимой линией прицеливания.

Прицелами с независимой линией прицеливания (рис. 38) называются прицелы, в которых положение оптической оси не изменяется при изменении установки угла места цели и угла прицеливания.

Рис. 38. Прицел с независимой линией прицеливания.

Прицелами с полунезависимой линией прицеливания называются прицелы, в которых положение оптической оси изменяется при изменении установки угла места цели.

Основными механизмами прицела с независимой линией прицеливания являются (см. рис. 38): механизм углов прицеливания; механизм углов места цели; подъемный механизм прицела; механизм поперечного качания; механизм совмещения стрелок; корзинка панорамы с боковым и поперечным уровнями; индикаторные стрелки – прицельная и орудийная. Прицел этого типа жестко укреплен на верхнем станке. Наводка орудия в цель соответственно поданной команде производится двумя номерами орудийного расчета. Первый наводчик выполняет горизонтальную наводку и устанавливает угол прицеливания и угол места цели. Как уже было сказано выше, угол возвышения равен углу прицеливания плюс угол места цели. При установке угла прицеливания и угла места цели происходит отклонение прицельной стрелки от орудийной на некоторый угол. Для того, чтобы навести орудие в цель в вертикальной плоскости, второй наводчик, вращая маховик подъемного механизма, совмещает орудийную стрелку с прицельной.

Устройство прицела с полунезависимой линией прицеливания несколько проще. В этом прицеле отсутствует механизм угла места цели. Для установления углов места цели на коробке прицела укреплен механизм бокового уровня. Благодаря простоте своего устройства этот прицел широко распространен в современной наземной артиллерии.

Современной артиллерии приходится также стрелять и по быстро движущимся бронированным целям. Стрельба же по ним успешна только при непрерывной наводке орудия в цель и при достаточно большом поле зрения.

При непрерывной наводке нельзя устанавливать прицел по шкалам, так как это требует некоторого времени. Поэтому, кроме описанных выше типов прицельных приспособлений, широкое распространение получили так называемые противотанковые прицелы. Наиболее простым прицелом этой группы является прицел ПП-9 для 45-миллиметровой противотанковой пушки обр. 1937 г. В оптической системе этого прицела имеется стеклянная пластинка, на которой нанесены шкалы в сотнях метров для бронебойного и осколочного снарядов и шкала боковых упреждений в делениях угломера. Прицел соединен с качающейся частью орудия при помощи тяги параллелограмма. Наводка производится чрезвычайно просто. Наводчик, вращая маховики подъемного и поворотного механизмов орудия, совмещает деление шкалы, соответствующее требуемой дальности, с целью. Для учета боковых упреждений используется шкала боковых поправок.

Более сложным прицелом для противотанковых орудий является прицел ПП-1 и ПП-2. Эти прицелы имеют: панораму, дающую возможность вести наблюдение в пределах ±120 градусов, механизм углов прицеливания с двумя шкалами в гектометрах для бронебойного снаряда и осколочной гранаты, механизм углов места цели со шкалой в тысячных. Для стрельбы по подвижным целям прямой наводкой в поле зрения панорамы имеется сетка с дистанционной шкалой и шкалой боковых поправок.


    Ваша оценка произведения:

Популярные книги за неделю