Текст книги "Древо познания"
Автор книги: Умберто Р. Матурана
Соавторы: Франсиско Х. Варела
сообщить о нарушении
Текущая страница: 3 (всего у книги 13 страниц)
Автономия и аутопоэз
Живые существа отличаются тем, что их организация носит аутопоэзный характер. Они различаются по структуре, но имеют схожую организацию.
Поняв, что именно характеризует живые существа в их аутопоэзной организации, мы получаем возможность унифицировать все множество эмпирических данных по их биохимии и клеточному функционированию. Поэтому понятие аутопоэза не противоречит эмпирическим данным. Скорее наоборот, оно ими подкрепляется; идея аутопоэза явно предлагает интерпретировать эмпирические данные с точки зрения, делающей особый акцент на том, что живые существа представляют собой автономные единства.
Слово «автономия» мы используем в его современном смысле, т. е. система автономна, если она сама устанавливает собственные подходящие законы. Мы отнюдь не утверждаем, будто живые системы – единственные автономные системы. Это заведомо не так. Тем не менее автономность – одна из наиболее бросающихся в глаза отличительных особенностей живых существ. Мы утверждаем, что механизм, превращающий живые существа в автономные системы, – это аутопоэз. Именно это характеризует их как автономные системы.
Вопрос об автономности столь же стар, как и вопрос о живом. Но лишь современные биологи испытывают беспокойство по поводу того, как понимать автономность живых существ. С нашей точки зрения, именно этот вопрос служит путеводной нитью к пониманию автономности живых существ: чтобы понять их, нам необходимо понять ту организацию, которая определяет их как единства. Осознание того, что живые существа являются автономными единствами, помогает показать, каким образом их автономность (обычно казавшаяся таинственно загадочной и неуловимой) становится явной, поскольку теперь мы представляем себе, что определяет живые существа как единства именно их аутопоэзная организация, и именно в аутопоэзной организации они обретают реальность и в то же время специфицируют себя.
Таким образом, мы намереваемся действовать вполне научно: раз мы не в состоянии дать перечень того, что отличает живые существа, то почему бы не предложить систему, которая порождает все явления, присущие живым существам? То, что аутопоэзное единство в точности обладает всеми отличительными
Рис. 12. Электронная микрофотография клетки пиявки. Видны мембраны и внутриклеточные компоненты (при примерно 20000-кратном увеличении)
Клетки и их мембраны
Клеточная мембрана играет более существенную и разнообразную роль, нежели просто роль демаркационной пространственной границы для ряда химических превращений, поскольку она сама участвует в этих превращениях, как и другие компоненты клетки. Происходит это в условиях, когда внутреннее пространство клетки обладает богатой архитектурой больших молекулярных блоков, через которые в процессе постоянного обмена
веществ проходят многие органические молекулы, и мембрана операционально составляет часть внутренности клетки Сказанное относится как к мембранам, которые ограничивают клеточные пространства, соприкасающееся с внешней средой, так и к мембранам, которые ограничивают каждое из различных внутренних пространств клетки (см рисунки).
Внутренняя архитектура клетки и клеточная динамика – взаимно дополняющие особенности клеточного автопозза.
особенностями живого, становится вполне очевидным в свете имеющихся сведений о взаимозависимости между метаболизмом и клеточной структурой.
То, что живые существа обладают организацией, присуще не только им, но и всему, что мы можем анализировать как систему. Однако живые существа отличаются тем, что их организация порождает в качестве продукта только их самих, без разделения на производителя и продукт. Бытие и сотворение аутопо-эзного единства нерасторжимы, и в этом заключается присущий только им способ организации.
Подобно любой организации, аутопоэзная организация может быть достигнута многими различными типами компонент. Однако необходимо сознавать, что в том, что касается молекулярного происхождения наземных живых существ только определенные виды молекул, вероятно, обладали характеристиками, необходимыми для аутопоэзных единств, и тем самым положили начало той структурной истории, которой принадлежим и мы. Например, было необходимо иметь молекулы, способные образовывать мембраны, достаточно стабильные и пластичные для того, чтобы стать эффективными барьерами и в то же время обладать способностью изменять свои свойства, чтобы молекулы и ионы могли диффундировать сквозь них в течение длительных (по сравнению с молекулярными скоростями) периодов. Например, молекулы на основе кремния были бы слишком «жесткими», чтобы участвовать в функционировании динамических единств (клеток) в непрерывном быстром молекулярном обмене с окружающей средой.
И только в тот момент истории Земли, когда на ней возникли условия, благоприятные для появления таких органических молекул, как белки обладающие огромной сложностью и гибкостью, эти условия оказались также подходящими для формирования аутопоэзных единств. Мы можем даже предположить, что когда все эти достаточные условия присутствуют в истории Земли, формирование аутопоэзных систем становится неизбежным.
Можно утверждать, что именно в тот момент началась жизнь Это отнюдь не означает что возникновение жизни произошло единожды и только в каком-нибудь одном месте, равным образом нельзя указать точную дату этого события. Все имеющиеся в нашем распоряжении данные позволяют считать, что коль скоро условия для возникновения живых систем возникли однажды, они стали возникать многократно, т. е. многочисленные аутопоэзные системы во многих структурных вариантах возникали во многих местах на Земле в течение периода, охватывающего возможно, многие миллионы лет.
Рис 13. Схематический разрез клетки пиявки, представленной на рис. 12 Видны основные клеточные структуры – ядерная мембрана, митохондрии, эндо-плазматическая сеть, рибосомы и клеточная мембрана Заметьте, что изображение трехмерное – видно то, что находится под поверхностью среза
Возникновение аутопоэзных систем на Земле – заметная веха в истории нашей солнечной системы. Это необходимо хорошо понимать. Образование любой системы всегда влечет за собой ряд явлений, связанных с ее характеристическими чертами. Таким образом, можно сказать, что каждый класс систем определяет некоторую конкретную феноменологию. Так, аутопоэ-зные системы определяют биологическую феноменологию – феноменологию, присущую тем системам, особенности которых отличны от физической феноменологии. Дело не в том, что аутопоэзные системы выступают против любого аспекта физической феноменологии – поскольку их молекулярные компоненты подчиняются всем законам физики, – а в том, что явления, которые они порождают, функционируя как аутопоэзные системы, зависят от их организации и от того, каким образом возникает эта организация, а не от физической природы их компонент (которая определяет только пространство их существования).
Так, если клетка взаимодействует с молекулой X и включает ее в свои процессы, то последствия этого взаимодействия определяются не свойствами молекулы X, а тем, как эту молекулу «видит» или воспринимает клетка, включая ее в свою аутопоэзную динамику. Изменения, происходящие внутри клетки в результате такого взаимодействия, будут определяться собственной структурой клетки как целостного образования. Следовательно, постольку, поскольку аутопоэзная организация порождает биологическую феноменологию, генерируя живые существа как автономные единства, биологическим явлением будет любое явление, которое включает в себя аутопоэз по крайней мере одного живого существа.
3. История: репродукция и наследственность
В этой главе речь пойдет о репродукции и наследственности. Две причины вынуждают нас к этому. Одна из них состоит в том, что как живые существа (и, к тому же, существа общественные) мы обладаем историей: появившись на свет в результате репродукции, мы являемся потомками не только наших предков – людей, но и самых различных предшественников, вереница которых уходит в прошлое более чем на 3 миллиарда лет. Другая причина заключается в том, что как организмы мы – существа многоклеточные и все наши клетки возникли в результате репродукции вполне определенной клетки, образовавшейся при слиянии яйцеклетки и сперматозоида и положившей начало нашему существованию. Таким образом, репродукция входит и в историю нашего развития как человеческих существ, и в историю формирования наших индивидуальных клеток. Как ни странно, но в силу этого обстоятельства и мы сами, и наши клетки оказываемся существами одного и того же поколения, или, как принято говорить, анцестрального возраста. Кроме того, с исторической точки зрения то же можно сказать и относительно всех живых существ и всех современных клеток: у всех нас один и тот же анцестральный возраст. Следовательно, чтобы понять живые существа во всех их измерениях и тем самым понять самих себя, нам необходимо понять механизмы, делающие живые существа историческими существами. Для этого мы начнем прежде всего с явления репродукции.
Репродукция: что это такое?
Биология изучила процесс репродукции с различных точек зрения, в особенности на клеточном уровне. Давно было показано, что клетка может породить другую при делении.
Исторические явления
Всякий раз, когда в системе одно состояние возникает как модификация предыдущего состояния, мы имеем историческое явление
Организация и история
Динамику любой системы можно объяснить продемонстрировав отношения между ее частями и закономерности их взаимодействия тем самым вскрыв ее организацию Но для того, чтобы полностью понять организацию системы, нам необходимо не только наблюдать, как она действует в своей внутренней динамике, но и рассмотреть ее в конкретной обстановке т е в контексте, связанном с ее функционированием Такое понимание требует. чтобы мы определенным образом дистанцировались от объекта наблюдения дабы обрести перспективу которая в случае исторических систем означает ссылку на их происхождение Все это просто, когда речь идет, например, о машинах, изготовленных руками человека поскольку нам известна любая стадия их производства В случае живых организмов ситуация не столь проста их генвзис и их «стория никогда не доступны прямому наблюдению и поддаются реконструкции лишь по отдельным фрагментам
О делении клетки (или митозе) мы говорим как о сложном процессе перераспределения клеточных элементов вызывающем образование плоскости деления. Что при этом происходит? Репродукция обычно состоит в том, что одно единство в результате некоторого специфического процесса порождает другое единство того же класса, т. е. такое, что наблюдатель считает его обладающим такой же организацией, как и исходное единство.
Нетрудно видеть, что репродукция предполагает два основных условия: существование исходного единства и процесса, который его репродуцирует.
В случае живых существ исходным единством служит живое существо (аутопоэзное единство), а процесс (позднее мы дадим точное определение того, что следует понимать под процессом) должен завершиться образованием по крайней мере еще одного аутопоэзного единства, отличного от того, которое считается первым.
Внимательный читатель, должно быть уже понял, что при такой точке зрения на репродукцию мы не считаем ее определяющей для живых существ и поэтому (как это должно быть уже ясно) не признаем за ней какой-либо роли в их организации. Мы настолько привыкли рассматривать живые существа как некий перечень свойств (считая, что репродукция – одно из них), что описанный подход может показаться шокирующим. На самом деле то, о чем мы говорим, достаточно просто, репродукция не может быть частью организации живых существ поскольку для того, чтобы репродуцировать нечто, это нечто сначала должно представлять собой единое целое и обладать специфической организацией. Этого требует простая логика, которой мы пользуемся ежедневно. Следовательно, если мы будем последовательны, то не сможем не признать, что, говоря о репродукции живого существа, мы подразумеваем, что оно должно обладать способностью существовать, и не репродуцируя самое себя Достаточно вспомнить о муле, чтобы понять, что так действительно должно быть. В этой главе мы собираемся обсудить, каким образом в процессе репродукции происходит усложнение структурной динамики аутопоэзного единства, а также к каким последствиям это приводит в истории живых существ. Но добавление любого нового элемента к структурной динамике есть нечто совершенно отличное от изменения существенных характеристик единства; последнее подразумевает изменение его организации.
Способы порождения аутопоэзных единств
Чтобы понять, что происходит при репродукции клетки, рассмотрим различные ситуации, в которых возникают новые единства того же класса.
Репликация. Мы говорим о репликации (или о производстве) всякий раз, когда имеем действующий механизм с помощью которого могут многократно появляться единства одного и того же класса. Например, любая фабрика представляет собой большой производственный механизм, который путем повторения одного и того же процесса производит серию копий единств одного и того же класса: тканей автомашин, шин (рис. 15).
То же самое происходит и с компонентами клетки. Это отчетливо видно на примере производства белков, когда рибосомы, информационные и транспортные нуклеиновые кислоты и другие молекулы образуют производственный механизм, а продуктом являются белки.
Отличительная особенность феномена репликации состоит в том, что производственный механизм и продукт являются операционально различными системами и производственный механизм порождает элементы,
Рис 16. Пример копирования с заменой модели независимые от него. Заметим, что то, как протекает репликация, влечет за собой важное следствие: производимые единства исторически независимы друг от друга. Что бы ни происходило с любым из них в дальнейшем, это не оказывает никакого воздействия на те единства, которые продуцируются вслед за этим. Какова бы ни была судьба купленной мною «Тойоты», это никак не повлияет на автомобильный завод фирмы «Тойота», который как ни в чем не бывало будет про должать выпускать свои автомашины. Короче говоря, единства, произведенные путем репликации, не составляют историческую систему.
Копирование Мы говорим о копии всякий раз, ког да имеем единство-образец и проекционную процедуру для изготовления идентичного образцу единства. Например, поместив эту страницу в ксерокс, мы получим то, что принято называть копией. Следовательно, единством-образцом в этом случае будет служить страница книги, а в роли процесса выступит способ действия оптического проекционного механизма.
Следует ясно понимать, что могут существовать две принципиально различных ситуации. Если в качестве образца для копирования используется одна и та же модель, то мы получаем множество копий, исторически независимых друг от друга. Но если результат одного копирования служит образцом для получения следующей копии, и так далее, то в результате получается ряд исторически связанных единств, поскольку все, что происходит с каждым из них с того момента, когда они становятся самостоятельными единствами, и до того, как будут использованы в качестве модели, определяет характеристики следующей копии. Например, если ксероксную копию этой страницы в свою очередь скопировать на той же машине, то ясно, что оригинал и две копии будут слегка отличаться друг от друга. Повторив этот процесс много раз, мы после многократного копирования, как нетрудно понять, заметим постепенную трансформацию получаемых копий в наследственном ряду и получим историческую последовательность скопированных единств. Творческое использование этого исторического феномена есть то что известно в изобразительном искусстве под названием анаморфоза (рис. 16) Анаморфоз – превосходный пример исторического дрейфе
Репродукция. Мы говорим о репродукции, когда единство распадается надвое, что приводит к появлению двух единств одного и того же класса. Например, так происходит, когда кусок мела ломается на две части или когда кисть винограда разрывается на две кисти поменьше. Возникающие единства не тождественны исходному; тем не менее они принадлежат тому же классу, что и исходное единство, т. е. имеют ту же самую организацию С иной ситуацией мы сталкиваемся, когда «разрывается» радиоприемник или банковский чек. В этих случаях разрыв исходного единства разрушает его и оставляет после себя два фрагмента, но не два единства того же класса, что и исходное.
Для того, чтобы разрыв приводил к репродукции, структура единства должна быть организована распределенно и некомпартментализовано, при этом плоскость разрыва разделяет фрагменты со структурами, способными независимо воплощать одну и ту же исходную организацию. Кусок мела и кисть винограда обладают структурой этого типа и допускают множество плоскостей разрыва, поскольку их организация включает равномерное повторение однородных компонентов (кристаллов углекислого кальция в куске мела и виноградин в кисти винограда) на всем протяжении.
Многие природные системы удовлетворяют этим требованиям; следовательно, репродукция – часто встречающееся явление. Примерами могут служить зеркала, палки, сообщества и дороги (рис. 17). С другой стороны, радиоприемник и монета не репродуцируемы, поскольку в пределах этих единств характеризующие их отношения не повторяются К этому классу принадлежит немало систем, например, чашки, люди, авторучки и декларация прав человека. Такая неспособность к репродуцированию – паттерн, часто встречающийся во Вселенной. Интересно, что репродукция как феномен не ограничена ни какой-либо конкретной областью пространства, ни какой-либо конкретной группой систем. Суть репродуктивного процесса (в отличие от репликации или копирования) заключается в том, что все происходит в единстве как части единства и не существует разделения между системой репродуцирующейся и системой репродуцированной. Нельзя сказать также, что единства, образующиеся в результате репродукции, предсуществуют или формируются до того, как происходит репродуктивный разлом. Их просто не существует. Кроме того, хотя единства, возникающие при репродуктивном разломе, обладают такой же организацией, что и исходное единство, и поэтому наделены похожими структурными аспектами, они обладают кроме того, структурными аспектами, отличными как от исходного единства, так и друг друга. Это объясняется не только тем, что новые единства меньше исходного, но и тем, что свои структуры они получают непосредственно от исходного единства во время репродукции, и при этом в процессе формирования им могут достаться различные компоненты исходного единства, которые могут быть распределены неравномерно и в которых, кроме того, отражается индивидуальная история структурных изменений.
Вследствие этих характеристик репродукция с необходимостью порождает исторически взаимосвязанные единства. Если эти единства претерпевают репродуктивный разлом, то, взятые вместе, они образуют историческую систему.
Рис. 17. Репродуцирование разрывом
Репродукция клетки
Какое отношение все это имеет к клеткам? Если взять любую клетку на стадии интерфазы (т. е. не во время репродуктивного процесса) и «разломать» ее, то двух клеток мы не получим. На стадии интерфазы клетка представляет собой компартменталиэованную систему, т. е. существуют компоненты, изолированные от остальных или представленные в единственном числе (что исключает наличие любой плоскости репродуктивного разделения). В частности, это справедливо для молекул дезоксирибонуклеиновой кислоты (ДНК), образующих составную часть хромосом и отделенных на стадии интерфазы ядерной мембраной от цитоплазмы в ядре (рис. 18 а).
При митозе, или клеточном делении, все процессы (рис. 18 b-j) сводятся к декомпартментализации клетки. Это отчетливо видно на рис. 18, где показано растворение ядерной мембраны (сопровождающееся репликацией больших молекул ДНК, имеющих вид двойных спиралей) и смещение хромосом и других клеточных компонентов, что делает возможным появление плоскости раздела. Все это происходит в результате клеточного аутопоэза, который при этом не прерывается. Та ким образом, собственная динамика клетки ведет к структурным изменениям, например, к образованию митотического веретена (рис. 18 d-h). Такие изменения приводят к дроблению, или делению клетки.
С этой точки зрения процесс репродукции клетки достаточно прост и сводится к «разлому» вдоль плоскости деления,
что порождает два новых единства того же класса, что и исходная клетка. В современных эукариотных (имеющих ядро) клетках плоскость деления и механизм деления определяются тонким и изящным механизмом молекулярной хореографии. В древних прокариотных клетках, где компартментализация, изображенная на рис. 18, не наблюдается, процесс репродукции в действительности происходит проще. В любом случае репродукция клетки – это именно репродукция в указанном выше смысле, а не репликация или копирование единств.
Но в отличие от приведенных выше примеров репродукции, деление клетки – явление специфическое: оно обусловлено аутопоэзной динамикой. Никакие внешние агенты или силы для него не требуются. Мы можем лишь предполагать, что в случае первых ау-топоэзных единств дело обстояло иначе и что в действительности репродукция сначала была фрагментацией, возникавшей при столкновениях этих единств с другими внешними объектами. В получавшейся при этом исторической сети некоторые необычные клетки подвергались репродуктивному делению вследствие своей внутренней динамики. Такие клетки обладали механизмом деления, положившим начало наследственному ряду, или устойчивой исторической последовательности. Как именно это произошло, остается неясным. Возможно, мы никогда этого не узнаем. Но это отнюдь не обесценивает тот факт, что клеточное деление представляет собой частный случай репродукции, который мы на вполне законном основании можем назвать саморепродукцией.
Рис 18 Митоз, или репродуцирование разрывом, в клетке животного. На рисунке изображены различные стадии декомпартмен-тализации, делающей возможной репродуцирование разрывом