355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Светлана Фирсова » Нормальная физиология: конспект лекций » Текст книги (страница 5)
Нормальная физиология: конспект лекций
  • Текст добавлен: 10 октября 2016, 00:04

Текст книги "Нормальная физиология: конспект лекций"


Автор книги: Светлана Фирсова


Соавторы: С. Кузина

Жанр:

   

Медицина


сообщить о нарушении

Текущая страница: 5 (всего у книги 13 страниц) [доступный отрывок для чтения: 5 страниц]

3. Синтез, секреция и выделение гормонов из организма

Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический контроль осуществляется либо на уровне образования мРНК (матричной РНК) самого гормона или его предшественников (если гормон – полипептид), либо на уровне образования мРНК белков ферментов, которые контролируют различные этапы образования гормона (если он – микромолекула).

В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:

1) прямой (синтез в полисомах предшественников большинства белково-пептидных гормонов), схема биосинтеза: «гены – мРНК – прогормоны – гормоны»;

2) опосредованный (внерибосомальный синтез стероидов, производных аминокислот и небольших пептидов), схема:

«гены – (мРНК) – ферменты – гормон».

На стадии превращения прогормона в гормон прямого синтеза часто подключается второй тип контроля.

Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона.

Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:

1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);

2) освобождение из белоксвязанной формы (секреция тропных гормонов);

3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).

Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.

Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация.

В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.

4. Регуляция деятельности эндокринных желез

Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимические реакции, процессы деятельности эндокринных желез в той или иной степени саморегулируются по принципу обратной связи. Согласно этому принципу предыдущая стадия цепи реакций либо тормозит, либо усиливает последующие. Этот механизм регуляции имеет узкие пределы и в состоянии обеспечить мало изменяющийся начальный уровень деятельности желез.

Первостепенную роль в механизме регуляции имеет межклеточный системный механизм контроля, который ставит функциональную активность желез в зависимость от состояния всего организма. Системный механизм регуляции обусловливает главную физиологическую роль желез внутренней секреции – приведение в соответствие уровня и соотношения обменных процессов с потребностями всего организма.

Нарушение процессов регуляции приводит к патологии функций желез и всего организма в целом.

Регуляторные механизмы могут быть стимулирующими (облегчающими) и тормозящими.

Ведущее место в регуляции эндокринных желез принадлежит центральной нервной системе. Существует несколько механизмов регуляции:

1) нервный. Прямые нервные влияния играют определяющую роль в работе иннервируемых органов (мозгового слоя надпочечников, нейроэндокринных зон гипоталамуса и эпифиза);

2) нейроэндокринный, связанный с деятельностью гипофиза и гипоталамуса.

В гипоталамусе происходит трансформация нервного импульса в специфический эндокринный процесс, приводящий к синтезу гормона и его выделению в особых зонах нервно-сосудистого контакта. Выделяют два типа нейроэндокринных реакций:

а) образование и секрецию релизинг-факторов – главных регуляторов секреции гормонов гипофиза (гормоны образуются в мелкоклеточных ядрах подбугровой области, поступают в область срединного возвышения, где накапливаются и проникают в систему портальной циркуляции аденогипофиза и регулируют их функции);

б) образование нейрогипофизарных гормонов (гормоны сами образуются в крупноклеточных ядрах переднего гипоталамуса, спускаются в заднюю долю, где депонируются, оттуда поступают в общую систему циркуляции и действуют на периферические органы);

3) эндокринный (непосредственное влияние одних гормонов на биосинтез и секрецию других (тропные гормоны передней доли гипофиза, инсулин, соматостатин));

4) нейроэндокринный гуморальный. Осуществляется негормональными метаболитами, оказывающие регулирующее действие на железы (глюкозой, аминокислотами, ионами калия, натрия, простагландинами).

ЛЕКЦИЯ № 10. Характеристика отдельных гормонов

1. Гормоны передней доли гипофиза

Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – сложный орган, он состоит из аденогипофиза (передней и средней долей) и нейрогипофиза (задней доли). Гормоны передней доли гипофиза делятся на две группы: гормон роста и пролактин и тропные гормоны (тиреотропин, кортикотропин, гонадотропин).

К первой группе относят соматотропин и пролактин.

Гормон роста (соматотропин) принимает участие в регуляции роста, усиливая образование белка. Наиболее выражено его влияние на рост эпифизарных хрящей конечностей, рост костей идет в длину. Нарушение соматотропной функции гипофиза приводит к различным изменениям в росте и развитии организма человека: если имеется гиперфункция в детском возрасте, то развивается гигантизм; при гипофункции – карликовость. Гиперфункция у взрослого человека не влияет на рост в целом, но увеличиваются размеры тех частей тела, которые еще способны расти (акромегалия).

Пролактин способствует образованию молока в альвеолах, но после предварительного воздействия на них женских половых гормонов (прогестерона и эстрогена). После родов увеличивается синтез пролактина и наступает лактация. Акт сосания через нервно-рефлекторный механизм стимулирует выброс пролактина. Пролактин обладает лютеотропным действием, способствует продолжительному функционированию желтого тела и выработке им прогестерона. Ко второй группе гормонов относят:

1) тиреотропный гормон (тиреотропин). Избирательно действует на щитовидную железу, повышает ее функцию. При сниженной выработке тиреотропина происходит атрофия щитовидной железы, при гиперпродукции – разрастание, наступают гистологические изменения, которые указывают на повышение ее активности;

2) адренокортикотропный гормон (кортикотропин). Стимулирует выработку глюкокортикоидов надпочечниками. Кортикотропин вызывает распад и тормозит синтез белка, является антагонистом гормона роста. Он тормозит развитие основного вещества соединительной ткани, уменьшает количество тучных клеток, подавляет фермент гиалуронидазу, снижая проницаемость капилляров. Этим определяется его противовоспалительное действие. Под влиянием кортикотропина уменьшаются размер и масса лимфоидных органов. Секреция кортикотропина подвержена суточным колебаниям: в вечерние часы его содержание выше, чем утром;

3) гонадотропные гормоны (гонадотропины – фоллитропин и лютропин). Присутствуют как у женщин, так и у мужчин;

а) фоллитропин (фолликулостимулирующий гормон), стимулирующий рост и развитие фолликула в яичнике. Он незначительно влияет на выработку эстрагенов у женщин, у мужчин под его влиянием происходит образование сперматозоидов;

б) лютеинизирующий гормон (лютропин), стимулирующий рост и овуляцию фолликула с образованием желтого тела. Он стимулирует образование женских половых гормонов – эстрагенов. Лютропин способствует выработке андрогенов у мужчин.

2. Гормоны средней и задней долей гипофиза

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин, в нейронах супраоптического ядра – вазопрессин.

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

3. Гормоны эпифиза, тимуса, паращитовидных желез

Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения:

1) мелатонин (принимает участие в регуляции пигментного обмена, тормозит развитие половых функций у молодых и действие гонадотропных гормонов у взрослых). Это обусловлено прямым действием мелатонина на гипоталамус, где идет блокада освобождения люлиберина, и на переднюю долю гипофиза, где он уменьшает действие люлиберина на освобождение лютропина;

2) гломерулотропин (стимулирует секрецию альдостерона корковым слоем надпочечников).

Тимус (вилочковая железа) – парный дольчатый орган, расположенный в верхнем отделе переднего средостения. Тимус образует несколько гормонов: тимозин, гомеостатический тимусный гормон, тимопоэтин I, II, тимусный гуморальный фактор. Они играют важную роль в развитии иммунологических защитных реакций организма, стимулируя образование антител. Тимус контролирует развитие и распределение лимфоцитов. Секреция гормонов тимуса регулируется передней долей гипофиза.

Вилочковая железа достигает максимального развития в детском возрасте. После полового созревания она начинает атрофироваться (железа стимулирует рост организма и тормозит развитие половой системы). Есть предположение, что тимус влияет на обмен ионов Ca и нуклеиновых кислот.

При увеличении вилочковой железы у детей возникает тимико-лимфатический статус. При этом состоянии, кроме увеличения тимуса, происходят разрастание лимфатической ткани, увеличение вилочковой железы является проявлением надпочечниковой недостаточности.

Паращитовидные железы – парный орган, они расположены на поверхности щитовидной железы. Гормон паращитовидной железы – паратгормон (паратирин). Паратгормон находится в клетках железы в виде прогормона, превращение прогормона в паратгормон происходит в комплексе Гольджи. Из паращитовидных желез гормон непосредственно поступает в кровь.

Паратгормон регулирует обмен Ca в организме и поддерживает его постоянный уровень в крови. В норме содержания Ca в крови составляет 2,25—2,75 ммоль/л (9—11 мг%). Костная ткань скелета – главное депо Ca в организме. Имеется определенная зависимость между уровнем Ca в крови и содержанием его в костной ткани. Паратгормон усиливает рассасывание кости, что приводит к увеличению освобождения ионов Ca, регулирует процессы отложения и выхода солей Ca в костях. Влияя на обмен Са, паратгормон параллельно воздействует на обмен фосфора: уменьшает обратное всасывание фосфатов в дистальных канальцах почек, что приводит к понижению их концентрации в крови.

Удаление паращитовидных желез приводит к вялости, рвоте, потере аппетита, к разрозненным сокращениям отдельных групп мышц, которые могут переходить в длительное тетаническое сокращение. Регуляция деятельности паращитовидных желез определяется уровнем Са в крови. Если в крови нарастает концентрация Са, это приводит к снижению функциональной активности паращитовидных желез. При уменьшении уровня Са повышается гормонообразовательная функция желез.

4. Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы

Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий белок – тиреоглобулин.

Гормоны щитовидной железы делятся на две группы:

1) йодированные – тироксин, трийодтиронин;

2) тиреокальцитонин (кальцитонин).

Йодированные гормоны образуются в фолликулах железистой ткани, его образование происходит в три этапа:

1) образование коллоида, синтез тиреоглобулина;

2) йодирование коллоида, поступление йода в организм, всасывание в виде йодидов. Йодиды поглощаются щитовидной железой, окисляются в элементарный йод и включаются в состав тиреоглобулина, процесс стимулируется ферментом – тиреоидпероксиказой;

3) выделение в кровоток происходит после гидролиза тиреоглобулина под действием катепсина, при этом освобождаются активные гормоны – тироксин, трийодтиронин.

Основной активный гормон щитовидной железы – тироксин, соотношение тироксина и трийодтиронина составляет 4: 1. Оба гормона находятся в крови в неактивном состоянии, они связаны с белками глобулиновой фракции и альбумином плазмы крови. Тироксин легче связывается с белками крови, поэтому быстрее проникает в клетку и имеет большую биологическую активность. Клетки печени захватывают гормоны, в печени гормоны образуют соединения с глюкуроновой кислотой, которые не обладают гормональной активностью и выводятся с желчью в ЖКТ. Этот процесс называется дезинтоксикацией, он предотвращает чрезмерное насыщение крови гормонами.

Роль йодированных гормонов:

1) влияние на функции ЦНС. Гипофункция ведет к резкому снижению двигательной возбудимости, ослаблению активных и оборонительных реакций;

2) влияние на высшую нервную деятельность. Включаются в процесс выработки условных рефлексов, дифференцировки процессов торможения;

3) влияние на рост и развитие. Стимулируют рост и развитие скелета, половых желез;

4) влияние на обмен веществ. Происходит воздействие на обмен белков, жиров, углеводов, минеральный обмен. Усиление энергетических процессов и увеличение окислительных процессов приводят к повышению потребления тканями глюкозы, что заметно снижает запасы жира и гликогена в печени;

5) влияние на вегетативную систему. Увеличивается число сердечных сокращений, дыхательных движений, повышается потоотделение;

6) влияние на свертывающую систему крови. Снижают способность крови к свертыванию (уменьшают образование факторов свертывания крови), повышают ее фибринолитическую активность (увеличивают синтез антикоагулянтов). Тироксин угнетает функциональные свойства тромбоцитов – адгезию и агрегацию.

Регуляция образования йодсодержащих гормонов осуществляется:

1) тиреотропином передней доли гипофиза. Влияет на все стадии йодирования, связь между гормонами осуществляется по типу прямых и обратных связей;

2) йодом. Малые дозы стимулируют образование гормона за счет усиления секреции фолликулов, большие – тормозят;

3) вегетативной нервной системой: симпатическая – повышает активность продукции гормона, парасимпатическая – снижает;

4) гипоталамусом. Тиреолиберин гипоталамуса стимулирует тиреотропин гипофиза, который стимулирует продукцию гормонов, связь осуществляется по типу обратных связей;

5) ретикулярной формацией (возбуждение ее структур повышает выработку гормонов);

6) корой головного мозга. Декортикация активизирует функцию железы первоначально, значительно снижает с течением времени.

Тиреокальцитоцин образуется парафолликулярными клетками щитовидной железы, которые расположены вне железистых фолликул. Он принимает участие в регуляции кальциевого обмена, под его влиянием уровень Ca снижается. Тиреокальцитоцин понижает содержание фосфатов в периферической крови.

Тиреокальцитоцин тормозит выделение ионов Ca из костной ткани и увеличивает его отложение в ней. Он блокирует функцию остеокластов, которые разрушают костную ткань, и запускают механизм активации остеобластов, участвующих в образовании костной ткани.

Уменьшение содержания ионов Ca и фосфатов в крови обусловлено влиянием гормона на выделительную функцию почек, уменьшая канальцевую реабсорбцию этих ионов. Гормон стимулирует поглощение ионов Ca митохондриями.

Регуляция секреции тиреокальцитонина зависит от уровня ионов Ca в крови: повышение его концентрации приводит к дегрануляции парафолликулов. Активная секреция в ответ на гиперкальциемию поддерживает концентрацию ионов Ca на определенном физиологическом уровне.

Секреции тиреокальцитонина способствуют некоторые биологически активные вещества: гастрин, глюкагон, холецистокинин.

При возбуждении бета-адренорецепторов повышается секреция гормона, и наоборот.

Нарушение функции щитовидной железы сопровождается повышением или понижением ее гормонообразующей функции.

Недостаточность выработки гормона (гипотериоз), появляющаяся в детском возрасте, ведет к развитию кретинизма (задерживаются рост, половое развитие, развитие психики, наблюдается нарушение пропорций тела).

Недостаточность выработки гормона ведет к развитию микседемы, которая характеризуется резким расстройством процессов возбуждения и торможения в ЦНС, психической заторможенностью, снижением интеллекта, вялостью, сонливостью, нарушением половых функций, угнетением всех видов обмена веществ.

При повышении активности щитовидной железы (гипертиреозе) возникает заболевание тиреотоксикоз. Характерные признаки: увеличение размеров щитовидной железы, числа сердечных сокращений, повышение обмена веществ, температуры тела, увеличение потребления пищи, пучеглазие. Наблюдаются повышенная возбудимость и раздражительность, изменяется соотношение тонуса отделов вегетативной нервной системы: преобладает возбуждение симпатического отдела. Отмечаются мышечное дрожание и мышечная слабость.

Недостаток в воде йода приводит к снижению функции щитовидной железы со значительным разрастанием ее ткани и образованием зоба. Разрастание ткани – компенсаторный механизм в ответ на снижение содержания йодированных гормонов в крови.


    Ваша оценка произведения:

Популярные книги за неделю