355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сторм Данлоп » Азбука звездного неба. Часть 1 » Текст книги (страница 6)
Азбука звездного неба. Часть 1
  • Текст добавлен: 26 сентября 2016, 13:36

Текст книги "Азбука звездного неба. Часть 1"


Автор книги: Сторм Данлоп



сообщить о нарушении

Текущая страница: 6 (всего у книги 7 страниц)

Обсерватории

Хранить телескоп, смонтированный на постоянной установке, можно в небольшом сарае с раздвижной или снимающейся крышей. Однако настоящая обсерватория не только укрывает телескоп от ветра, но и предохраняет его от вибраций, а наблюдателя защищает от холода. Обсерватория позволяет в той или иной мере воспрепятствовать проникновению постороннего света и уменьшить проблемы, связанные с выпадением росы. Поскольку в обсерватории все находится под рукой и нет необходимости переносить оборудование с места на место, вы получите возможность больше времени отдать непосредственно наблюдениям.

Простейшие обсерватории имеют крыши, которые либо поднимаются, либо складываются и сдвигаются в сторону, но куполообразная крыша (не обязательно в форме полусферы) лучше защищает телескоп от ветра и света. Правда, такая крыша должна вращаться по азимуту и поэтому ее конструкция гораздо сложнее: так, ее следует снабдить раздвижными створками, которые защищали бы телескоп от непогоды, но легко раскрывались бы при наблюдениях. Перед началом наблюдений обсерваторию необходимо заблаговременно открыть, чтобы температуры внутри и снаружи успели сравняться. Это ослабляет воздушные потоки вблизи телескопа, которые, как мы уже говорили, могут существенно ухудшать видимость.


Рис. 47. Хотя сферический купол труден в изготовлении, он обеспечивает наилучшую защиту как для телескопа, так и для наблюдателя.

Чтобы вы могли хорошо ориентироваться в темноте, обсерватория не должна быть захламленной внутри, а для этого требуется все четко распределить по своим местам, в частности отвести специальное место для дополнительного оборудования и установить столик для звездных карт, справочников, журналов и других пособий. В каждой обсерватории должны быть часы (показывающие всемирное время) и на случай необходимости предусмотрено тусклое красное освещение.

Звёздные карты

Никакой астроном не может обойтись без подробных звездных карт, особенно при поиске слабых объектов. Необходимый вам набор звездных карт зависит от характера проводимых наблюдений и мощности вашего телескопа или бинокля. Чем слабее звезды, тем больше их число на небе, причем этот рост стремителен. Поэтому, чтобы не возникало путаницы и вы могли различать отдельные звезды, запаситесь подробными картами звездного неба; но чем подробнее эти карты, тем большее число их вам понадобится. Так как построение таких карт – дело довольно трудное и кропотливое, нет полной уверенности, что все слабые звезды нанесены на ту или иную карту. Так что любая карта (или атлас) далеко не совершенна.

Поэтому, планируя наблюдения самых слабых объектов, имейте в виду, что на вашей карте они могут отсутствовать. Звезды на картах и в атласах изображают либо белыми точками на черном фоне неба, либо черными – на белом. Каждый из типов карт имеет свои преимущества. Карты первого типа особенно удобны при поисках в телескоп очень слабых объектов, поскольку при отождествлении звезд на карте и на небе белый фон даже в условиях очень тусклого красного освещения несколько ослабляет адаптацию глаз к темноте. Такие карты иногда особенно полезны для начинающих, так как дают более реальную картину распределения звезд на темном фоне неба, тем самым уменьшая путаницу при отождествлении объектов. Однако на большинстве карт изображены черные звезды на белом фоне; существенное преимущество этих карт заключается в возможности нанесения на них любых других интересующих вас объектов. Многие атласы печатаются в обоих вариантах.

На звездных картах, представленных в нашей книге, показаны все звезды до пятой величины (5m); ими удобно пользоваться при наблюдениях невооруженным глазом, когда предельная звездная величина доступных наблюдению объектов при благоприятных условиях равна 6m. (В средние бинокли можно увидеть почти в 40 раз больше звезд, чем невооруженным глазом.) Звездные карты, используемые при наблюдениях в телескопы и бинокли, значительно богаче деталями; обычно они представляют ограниченные участки неба в окрестностях наиболее интересных объектов. Например, для поиска слабых переменных звезд целесообразно использовать несколько карт, позволяющих последовательными шагами найти искомую переменную.


Рис. 48. Млечный Путь вблизи Денеба (α Лебедя).

Для обозначения звезд и других небесных тел на картах и в каталогах наряду с греческими и латинскими буквами, введенными Байером, используют и другие символы. Так, для обозначения самых слабых звезд, различимых невооруженным глазом, используются числа Флемстида, для обозначений некоторых скоплений звезд, туманностей и галактик – нумерация по каталогу Мессье, а для переменных звезд применяют одиночные и двойные заглавные латинские буквы, начиная с буквы R.


Небесные координаты

О способах нахождения созвездий мы уже говорили (с. 40-57). Самый же простой метод поиска небесного объекта основан на сличении наблюдаемой картины неба со звездной картой участка неба в окрестности данного объекта. Этот метод довольно прост и эффективен; особенно часто к нему прибегают опытные наблюдатели, хорошо знакомые со звездным небом. Для определения точного положения небесного тела среди звезд используют экваториальную систему небесных координат. В ней положение объекта определяется прямым восхождением и склонением (их обычно обозначают α и δ соответственно) – координатами, аналогичными долготе и широте, которые характеризуют местоположение на поверхности Земли.

Прямое восхождение измеряется в восточном направлении вдоль небесного экватора в единицах времени: часах, минутах и секундах. Началом отсчета прямого восхождения служит точка весеннего равноденствия, в которой Солнце (при своем годовом движении по эклиптике) пересекает небесный экватор, переходя из Южного полушария в Северное. Эта точка, обозначаемая знаком созвездия Овен (Y), играет такую же важную роль при составлении звездных карт, как Гринвичский нулевой меридиан при составлении географических карт. Склонение измеряется в угловых единицах; градусах, минутах и секундах дуги. К северу от небесного экватора оно положительно, к югу – отрицательно. Поэтому небесные экваториальные координаты изменяются в пределах 0Ч-24Ч (= ОЧ) по прямому восхождению и от +90 до -90° по склонению.

Координаты небесных тел можно легко установить по звездным картам или выписать из каталога, где они приводятся вместе с названием объекта. Например:

Сириус

α 06Ч 24М

δ -16° 42'

Галактика Андромеда

α 00Ч 43М

δ +41° 16'

Во многих исследованиях можно считать, что прямое восхождение и склонение звезд не изменяются. Однако в действительности из-за гравитационного взаимодействия Земли с Луной и Солнцем земная ось медленно перемещается среди звезд, вследствие чего положение точки весеннего равноденствия медленно изменяется; это явление получило название прецессии. Около двух тысяч лет назад точка весеннего равноденствия находилась в созвездии Овен и поэтому её стали обозначать знаком Овна Y. К настоящему времени эта точка переместилась в созвездие Рыбы. Из-за прецессии медленно меняются экваториальные координаты звезд, и, чтобы избежать связанной с этим путаницы, карты составляют на определенные даты, например на начала 1900, 1950 или 2000 гг. Такая дата называется эпохой календаря или карты и обычно указывается в скобках после координат небесных тел. Например, если написано, что для а Центавра α = 14Ч 39,6М, δ = -60° 50' (2000), то это означает, что приведённые координаты звезды относятся к эпохе 2000 г. Для визуальных наблюдений различия в координатах звезд в эпохи 1950 и 2000 гг. незначительны, поэтому вполне можно пользоваться более старыми картами и атласами. Однако вследствие прецессии изменяется положение полюса мира, и при фотографировании с длительной экспозицией эти изменения следует учитывать при установке телескопа.

Таблица №6

Обозначения небесных тел в каталогах

Прямое восхождение светила, находящегося в определенный момент времени на меридиане места наблюдения, равно местному звездному времени. Часто требуется знать часовой угол светила, который равен разности между звездным временем и его прямым восхождением. По определению часовой угол измеряется в единицах времени от небесного меридиана вдоль экватора в западном направлении. Часовой угол светила возрастает со временем в тех случаях, когда при расчетах этот угол оказывается отрицательным; чтобы получить его правильное значение, следует к полученному результату прибавить 24 ч. В литературе встречаются обозначения, когда часовой угол отсчитывается либо к западу, либо к востоку от меридиана.


Рис. 49. Прямое восхождение а отсчитывается в восточном направлении вдоль небесного экватора от точки весеннего равноденствия Т. Склонение δ отсчитывается к северу или к югу от экватора.
Поиск объектов при наблюдениях в бинокли и телескопы

При сравнении звездных карт с реально наблюдаемым небом иногда возникают трудности при поисках того или иного небесного тела. Это в значительной степени обусловлено отличием масштабов наблюдаемой картины неба от изображений на картах, а также тем, что в бинокли и телескопы видно несравненно больше звезд, чем показано на картах. В зависимости от инструмента, используемого для наблюдений, следует заранее подобрать соответствующую карту звездного неба. Так, при наблюдениях в бинокль нужна карта, ориентированная севером вверх, а при исследованиях с помощью телескопа – карта, на которой вверху расположен юг. Вообще говоря, работа с перевернутым изображением не вызывает особых трудностей. Значительные сложности возникают при наблюдениях через зенитную призму, так как она строит перевернутое зеркальное изображение. В этом случае вид неба приходится сравнивать с картой, рассматриваемой на просвет с обратной стороны. Старайтесь не пользоваться зенитным окуляром, особенно в искателях, пока не привыкнете к масштабам поля зрения телескопа и искателя.


Рис. 50. В методе «звездных скачков» (вверху) расположение ярких звезд служит ориентиром для поиска более слабых звезд и в конечном счете для обнаружения искомого объекта. Если известен размер поля зрения телескопа, то его можно использовать для обнаружения слабого объекта, перемещая поле зрения соответствующее число раз в направлении искомого объекта (в центре). Другой полезный способ поиска объектов – перемещение по прямому восхождению от яркого объекта А или по склонению от В, либо по обеим координатам от объекта С (внизу). Учитывая, что изображение в телескопе перевернуто, шаровое скопление, показанное на рисунке, находится к востоку от звезды А, прямо к югу от В и к северу перед звездой С. Координаты звезд А, В и С известны.

При наблюдениях в телескоп довольно часто удается обнаружить вблизи искомого объекта характерную группу ярких звезд, отождествление которой с изображением на карте существенно облегчает поиск. Если возникли трудности при наблюдениях в телескоп, например в областях с высокой плотностью звезд вблизи Млечного Пути, то полезно сначала отождествить яркие звезды, лежащие по соседству с искомым объектом, с помощью бинокля, а затем уже найти их в искатель телескопа. Отождествлению звезд весьма помогают зарисовки картины, видимой в телескоп.

Если в окрестностях искомого слабого объекта нет заметных ярких звезд, которые могли бы служить ориентиром, то объект следует искать по его координатам. Эта задача значительно упрощается, если телескоп снабжен разделенными координатными кругами (о них речь пойдет ниже), с помощью которых осуществляется наведение на объект по координатам. Иногда для поиска светила удобнее воспользоваться разностью между его координатами и координатами яркой звезды. Эту разность нетрудно заранее рассчитать по координатам интересующих нас объектов, которые приводятся в каталогах и на картах; при этом не забывайте разность прямых восхождений переводить в угловые единицы. Наведя телескоп на яркую звезду, переместите его затем в нужном направлении на величину разности координат, используя для отсчета угловой диаметр поля зрения телескопа. Такой метод поиска и наведения на небесное тело годится при любых установках телескопов, но наиболее удобен при экваториальной установке. Выберите яркую звезду с тем же прямым Восхождением или склонением, что и искомый объект. Если у них одинаковы прямые восхождения, то наведите телескоп на яркую звезду, закрепите ось прямого восхождения, а затем перемещайте его в нужном направлении по склонению на угол, равный разности склонений. При совпадении склонений закрепите ось склонении и далее перемещайте телескоп по прямому восхождению на величину, равную разности прямых восхождений искомого объекта и звезды-ориентира. Если все же остаются сомнения в правильности наведения телескопа, попытайтесь сделать следующее. Найдите какую-нибудь звезду с тем же склонением, что и искомый объект, но расположенную несколько впереди него. Закрепив затем обе оси телескопа, ждите, когда вследствие суточного вращения Земли искомый объект попадет в поле зрения телескопа. (Такую операцию можно осуществить и при азимутальной монтировке телескопа, но только в том случае, если искомый объект находится на меридиане.)


Разделенные круги

Если установка должным образом сориентирована на Полюс мира, то для наведения телескопа на любой объект можно использовать проградуированные разделенные круги. Эти круги должны быть по возможности больших размеров и тщательно изготовлены. Круг склонения диаметром 150 мм должен иметь шкалу градусов, причем желательно, чтобы каждый градус был разделен на 30'. Аналогичный круг прямого восхождения должен быть проградуирован в часах, а каждый час разделен на интервалы в 2 мин. Круг необходимо снабдить указателем для отсчета. Градусное разбиение круга склонения позволяет определять склонение искомого светила либо непосредственно, либо с помощью разности склонений яркого и искомого объектов. По известной разности прямых восхождений яркого светила и искомого объекта нетрудно наводить телескоп по прямому восхождению. В этом случае разделенный круг используется как обычный угломерный инструмент.

Непосредственное наведение телескопа по прямому восхождению связано с определенными трудностями, так как требует знания звездного времени и зависит от того, закреплен ли круг прямого восхождения. Если круг прямого восхождения фиксирован, отсчету 0Ч соответствует направление телескопа на юг. В этом случае, рассчитав часовой угол искомого светила, поверните телескоп на величину этого угла по кругу прямого восхождения. Если круг прямого восхождения не закреплен, то вначале наведите телескоп на яркую звезду с известными координатами, после чего поворачивайте круг прямого восхождения до тех пор, пока указатель не покажет значение прямого восхождения звезды-ориентира; тогда, закрепив его, поворачивайте телескоп, пока указатель не покажет прямое восхождение искомого объекта. Такой способ наведения по прямому восхождению удобен для небольших телескопов. В некоторых более сложных установках телескопов предусматривается перемещение круга прямого восхождения вслед за звездой, т. е. указатель все время показывает ее прямое восхождение.

Время

Время, которым мы пользуемся в повседневной жизни, называется средним солнечным временем. Оно основано на средней продолжительности солнечных суток. Истинная продолжительность солнечных суток меняется на протяжении года; это обусловлено неравномерностью движения Земли вокруг Солнца и тем, что длина солнечных суток определяется изменением прямого восхождения Солнца, отсчитываемого вдоль экватора, а Солнце движется по эклиптике. Поправку, которую нужно прибавить к среднему солнечному времени, чтобы получить истинное солнечное время, называют уравнением времени.

Среднее солнечное время в данном пункте называют местным временем; оно меняется в зависимости от долготы. Во избежание трудностей с использованием местного времени весь земной шар был разделен на 24 часовых пояса, и в пределах каждого часового пояса установлено единое поясное время, соответствующее положению центрального меридиана данного пояса [2]2
  В СССР границы часовых поясов проходят не строго по меридианам, а по границам союзных и автономных республик, а также областей. – Прим. ред.


[Закрыть]
. Во многих странах вводится летнее время (в СССР наряду с декретным временем, которое на 1 ч опережает поясное, летом используют летнее время, на 1 ч опережающее декретное. – Перев.).


Рис. 51. Часовые пояса, на которые разбита поверхность Земли, могут использоваться для расчетов всемирного времени (UT) по местному (зимнему) времени (Тλ) наблюдателя.

В астрономических справочниках и календарях, а также при проведении наблюдений используют всемирное время (Universal Time, UT) или, как его еще называют, среднее гринвичское время-среднее солнечное время нулевого меридиана, за который принят меридиан, проходящий через Гринвичскую обсерваторию в Англии. Оно из меняется от 0 ч до 24 ч и отсчитывается от полночи. Так как всемирное время одинаково для всех точек Земли, его использование исключает всякую путаницу во времени. Каждая настоящая обсерватория (и каждый уважающий себя наблюдатель) имеет часы, показывающие всемирное время. Существуют таблицы, позволяющие перейти от обычного местного времени к всемирному.

Звездное, или сидерическое, время представляет собой другую систему отсчета времени, основанную на продолжительности звездных суток – времени между двумя последовательными прохождениями звезды через одну и ту же точку меридиана. Звездные сутки примерно на 3 мин 56 с короче средних солнечных. Звездные сутки, начинающиеся в момент верхней кульминации точки весеннего равноденствия, как и солнечные сутки, разделены на 24 звездных часа. Местное звездное время определяется прямым, восхождением небесного меридиана (часовым углом точки весеннего равноденствия. – Перев.). Если мысленно представить себе окружность с центром в Полюсе мира в виде циферблата часов, разделенного на 24 ч в соответствии с прямым восхождением, то небесный меридиан, являясь «стрелкой» этих часов, укажет с достаточной точностью значение звездного времени в момент наблюдений. Но, разумеется, лучше измерить звездное время точно. Для этого необходимо пронаблюдать кульминации звезды с известным прямым восхождением – тогда звездное время будет равно прямому восхождению этой звезды в момент ее верхней кульминации. Точность такого способа определения звездного времени вполне достаточна для поиска и наведения телескопа на небесные тела в течение ночи.

Для определения местного звездного времени можно использовать часы, которые «спешат» примерно на 4 мин каждые сутки. В отличие от электрических обычные механические часы нетрудно отрегулировать для этих целей. В большинстве ежегодников указано звездное гринвичское время, т.е. время полночи по Гринвичу (0Ч UT).

Разность между местным и всемирным временем равна долготе данного места наблюдений, выраженной в часовой мере (см. таблицу на с. 27); долгота определяет также с достаточной точностью разность между звездным временем и звездным временем по Гринвичу.


Даты

Во избежание путаницы в астрономии принят единый способ записи даты наблюдения или наступления того или иного явления: принято записывать год, месяц (название месяца, а не его числовое обозначение), день, час, минуты и секунды по всемирному времени. Например, дата наступления середины лунного затмения записывается так: 1985, май 4, 19Ч 57М UT (в данном примере отсутствуют секунды). Часто вместо часов, минут и секунд пишут долю суток в виде десятичной дроби с соответствующей точностью. Так, вышеприведенную дату можно записать следующим образом: 1985, май 4,8315. Подобный способ записи даты наблюдений особенно удобен при вычислениях.

Нередко возникает необходимость проследить за тем или иным явлением, имевшим место много лет назад, например за появлением кометы или наступлением максимума блеска переменной звезды. Использование для этих целей обычного гражданского календаря с его високосными годами и месяцами, имеющими разное число дней, не удобно. По этой причине астрономы для регистрации явлений часто используют юлианские дни (JD), т.е. дни по Юлианскому календарю. Особенно часто выражают время в юлианских днях наблюдатели переменных звезд, так как это весьма облегчает построение кривой изменения блеска переменной звезды. За начало отсчета в Юлианском календаре принято 1 января 4713 г. до н.э.; это столь давняя дата, что мы не располагаем никакими сведениями о наблюдениях, проводившихся ранее. Юлианские сутки в отличие от обычных начинаются в 12Ч 00М UT. Например, юлианский день 2 446 067,0 начался 1 января 1985 г. в 12Ч 00М UT, а полное лунное затмение, наступившее в 10Ч 57М 4 мая 1985 г., соответствует 2446190,33125 JD. Таблицы юлианских дней часто начинаются с 0-го дня месяца [3]3
  Т.е. с 31-го или 30-го числа предыдущего месяца. Юлианские дни введены в 1583 г. французским ученым Ж. Скалигером (1540-1609). Подробнее см.: Климишин П. А. Календарь и хронология. – М.: Наука, 1985. – Прим. ред.


[Закрыть]
, что на первый взгляд кажется довольно странным; тем не менее это существенно облегчает расчеты, поскольку для указания времени наблюдений, начатых после 12Ч 00М UT, следует просто прибавить дату месяца. Иногда достаточно ограничиться несколькими последними значащими цифрами в числе юлианских дней, чтобы избежать путаницы.


    Ваша оценка произведения:

Популярные книги за неделю