355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стивен Уильям Хокинг » Кратчайшая история времени » Текст книги (страница 4)
Кратчайшая история времени
  • Текст добавлен: 14 сентября 2016, 22:27

Текст книги "Кратчайшая история времени"


Автор книги: Стивен Уильям Хокинг


Соавторы: Леонард Млодинов

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 4 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]

Позже Эйнштейн отверг идею космологической постоянной, признав её своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог всё же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьёз. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 г., за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Предположение, что Вселенная выглядит одинаково в любом направлении, не совсем соответствует действительности. Например, как мы уже знаем, звёзды нашей Галактики формируют на ночном небе отчётливую светлую полосу – Млечный Путь. Но если мы посмотрим на отдалённые галактики, похоже, их число будет более или менее равным во всех частях неба. Так что Вселенная выглядит примерно одинаково в любом направлении, если наблюдать её в крупном масштабе по сравнению с расстояниями между галактиками и игнорировать различия в малых масштабах.

Представьте себе, что вы в лесу, где деревья растут беспорядочно. Посмотрев в одном направлении, вы увидите ближайшее дерево в метре от себя. В другом направлении самое близкое дерево обнаружится на расстоянии трёх метров. В третьем вы увидите сразу несколько деревьев в одном, двух и трёх метрах от себя. Непохоже, будто лес выглядит одинаково в любом направлении. Но если принять во внимание все деревья в радиусе километра, такого рода различия усреднятся и вы увидите, что лес одинаков по всем направлениям (рис. 18).


Рис. 18. Изотропный лес.

Даже если распределение деревьев в лесу в целом равномерно, при ближайшем рассмотрении может оказаться, что они местами растут гуще. Так же и Вселенная не выглядит одинаковой в ближайшем к нам космическом пространстве, тогда как при увеличении масштаба мы наблюдаем одинаковую картину, в каком бы направлении ни вели наблюдение.

Долгое время однородное распределение звёзд служило достаточным основанием для принятия фридмановской модели в качестве первого приближения к реальной картине Вселенной. Но позднее счастливый случай обнаружил ещё одно подтверждение того, что предположение Фридмана удивительно точно описывает Вселенную. В 1965 г. два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью-Джерси, отлаживали очень чувствительный микроволновый приёмник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приёмник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помёт и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и её обращения вокруг Солнца. Так как движение Земли направляло приёмник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из-за пределов Солнечной системы и даже из-за пределов Галактики. Казалось, он шёл в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приёмник, этот шум остаётся постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример, подкрепляющий первую гипотезу Фридмана о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приёмнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова (в прошлом студента Александра Фридмана) о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскалённой. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далёких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещён в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 г. удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое-то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики. Если помните, именно в этом и состояло второе предположение Фридмана.

Мы не располагаем никакими научными аргументами за или против второй гипотезы Фридмана. Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Во фридмановской модели Вселенной все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растёт, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделённые первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду (рис. 19). Точно так же в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым модель предсказывает, что красное смещение галактики должно быть прямо пропорционально её удалённости от нас – это та самая зависимость, которую позднее обнаружил Хаббл. Хотя Фридману удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 г. аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.


Рис. 19. Расширяющаяся Вселенная воздушного шара.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далёкими звёздными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Фридман предложил только одну модель Вселенной. Но при сделанных им предположениях уравнения Эйнштейна допускают три класса решений, то есть существует три разных типа фридмановских моделей и три различных сценария развития Вселенной.

Первый класс решений (тот, который нашёл Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счёте останавливает его. После этого галактики начинают сближаться, а Вселенная – сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлёта галактик становится всё меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана – то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свёрнуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определённом направлении, то никогда не натолкнёшься на непреодолимый барьер или край света, но в конце концов вернёшься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трёх измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмётся в точку прежде, чем путешественник вернётся в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности. – Перев.). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось учёным. Его решение зависит главным образом от двух вещей – наблюдаемой ныне скорости расширения Вселенной и её сегодняшней средней плотности (количества материи, приходящегося на единицу объёма пространства). Чем выше текущая скорость расширения, тем большая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить её сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно – как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, всё ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10 % за миллиард лет. Ещё более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звёзд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не всё. Наша и другие галактики должны содержать большое количество некой «тёмной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря её гравитационному воздействию на орбиты звёзд в галактиках. Возможно, лучшим свидетельством существования тёмной материи являются орбиты звёзд на периферии спиральных галактик, подобных Млечному Пути. Эти звёзды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звёзд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии тёмной материи между галактиками в этих скоплениях по её влиянию на движение галактик. Фактически количество тёмной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю тёмную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, ещё не известных нам форм материи, распределённых почти равномерно повсюду во Вселенной, что могло бы повысить её среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

(В одном из новых нейтринных экспериментов используется подземный резервуар, заполненный 50 тысячами тонн воды.) Считается, что нейтрино невесомы и поэтому не вызывают гравитационного притяжения[10]10
  Даже если нейтрино не имеют массы покоя и движутся со скоростью света, они всё равно, подобно фотонам, обладают энергией, а значит, эквивалентной массой и участвуют в гравитационном взаимодействии. Суммарная энергия таких нейтрино слишком мала, чтобы повлиять на судьбу Вселенной, но формально утверждение о том, что безмассовые частицы не вызывают гравитационного притяжения, не совсем точно. В самые последние годы в нейтринной обсерватории Сэдбери в Канаде и на японском нейтринном детекторе KamLAND получены надёжные данные о том, что нейтрино имеют хотя и очень небольшую, но отличную от нуля массу покоя.


[Закрыть]
.

Однако исследования нескольких последних лет свидетельствуют, что нейтрино всё же обладает ничтожно малой массой, которую ранее не удавалось зафиксировать. Если нейтрино имеют массу, они могли бы быть одной из форм тёмной материи. Тем не менее, даже с учётом такой тёмной материи, во Вселенной, похоже, гораздо меньше вещества, чем необходимо для остановки её расширения. До недавнего времени большинство физиков сходилось на том, что ближе всего к реальности вторая модель Фридмана.

Но затем появились новые наблюдения. За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Её характер, похоже, указывает, что Вселенная всё-таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и тёмной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции – тёмной энергии.

И словно для того, чтобы ещё больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, а ускоряется. Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества – высокой или низкой плотности – может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения – это всё равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надёжного ответа на этот вопрос. Однако, возможно, Эйнштейн всё-таки был прав, когда ввёл в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

С развитием новых технологий и появлением превосходных космических телескопов мы стали то и дело узнавать о Вселенной удивительные вещи. И вот хорошая новость: теперь нам известно, что Вселенная продолжит в ближайшее время расширяться с постоянно возрастающей скоростью, а время обещает длиться вечно, по крайней мере для тех, кому хватит благоразумия не угодить в чёрную дыру. Но что же было в самые первые мгновения? Как начиналась Вселенная, и что заставило её расширяться?

Глава восьмая. БОЛЬШОЙ ВЗРЫВ, ЧЁРНЫЕ ДЫРЫ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

В модели Фридмана четвёртое измерение Вселенной – время, – как и пространство, имеет ограниченную протяжённость. Оно подобно отрезку, имеющему два конца или две границы. Так что у времени есть конец и есть начало. Фактически все решения уравнений Эйнштейна, полученные для того количества материи, которое мы наблюдаем во Вселенной, имеют одну очень важную общую характеристику: некогда в прошлом (приблизительно 13,7 миллиарда лет назад) расстояние между соседними галактиками должно было равняться нулю. Другими словами, вся Вселенная была сжата в точку нулевого размера, сферу с нулевым радиусом. Плотность Вселенной и кривизна пространства-времени должны были тогда быть бесконечными. Этот момент мы называем Большим Взрывом.

Все наши космологические теории основаны на предположении, что пространство-время гладкое и почти плоское. Это означает, что все данные теории нарушаются в момент Большого Взрыва, ведь пространство-время бесконечной кривизны трудно назвать почти плоским! Таким образом, если что-то и предшествовало Большому Взрыву, оно не даст ключа к пониманию того, что случилось позже, потому что предсказуемость нарушается в момент Большого Взрыва. Аналогично, зная только то, что случилось после него, мы не можем определить, что было раньше. События, предшествовавшие Большому Взрыву, не могут иметь никаких последствий для нас и поэтому не должны приниматься в расчёт при научном описании Вселенной. Мы должны исключить их из своей модели и считать, что Большой Взрыв был началом времени. Вопрос о том, кто создал условия для Большого Взрыва, и другие подобные вопросы не являются научными.

Ещё одной бесконечной величиной во Вселенной нулевых размеров должна быть температура. Считается, что в момент Большого Взрыва Вселенная была бесконечно горячей. В процессе её расширения температура излучения понижалась. И поскольку температура является мерой средней энергии – или скорости – частиц, охлаждение Вселенной должно было иметь серьёзные последствия для материи. При очень высоких температурах стремительное движение частиц препятствовало их взаимному притяжению под действием ядерных или электромагнитных сил, но с понижением температуры частицы стали притягиваться и соединяться друг с другом. Даже типы существующих во Вселенной частиц зависят от её температуры, а значит, и от возраста.

Аристотель не верил, что вещество состоит из частиц. Он полагал, что материя является непрерывной. По Аристотелю её можно бесконечно делить на всё меньшие и меньшие части и никогда не натолкнуться на неделимую «крупицу». Однако некоторые древнегреческие мыслители, например Демокрит, думали, что материи присуща «зернистость» и что всё в природе состоит из огромного числа атомов различного вида. (Слово «атом» означает в переводе с греческого «неделимый».) Мы теперь знаем, что это верное представление – по крайней мере, в окружающей нас среде и при нынешнем состоянии Вселенной. Но атомы нашей Вселенной существовали не всегда, они не являются неделимыми и представляют собой лишь небольшую часть всего разнообразия частиц во Вселенной.

Атомы состоят из частиц меньшего размера: электронов, протонов и нейтронов. Протоны и нейтроны, в свою очередь, построены из ещё более миниатюрных частиц, называемых кварками. Кроме того, каждому типу субатомных частиц соответствуют античастицы. Они имеют такую же массу, но противоположный электрический заряд и другие характеристики. Например, античастица электрона, называемая позитроном, имеет положительный заряд, противоположный отрицательному заряду электрона. Возможно, существуют целые антимиры и антилюди, состоящие из античастиц. Однако же, если частица и античастица встретятся, они взаимно уничтожаются. Так что, если вам доведётся встретить своё анти-я, не обменивайтесь с ним рукопожатием! Вы оба исчезнете в ослепительной вспышке света.

Световую энергию переносят частицы другого типа – безмассовые фотоны. Для Земли ближайшим и крупнейшим поставщиком фотонов служит ядерное пекло Солнца. Оно в изобилии поставляет и другие частицы – упоминавшиеся выше нейтрино (и антинейтрино). Но эти последние, будучи чрезвычайно лёгкими, почти не взаимодействуют с веществом и потому проходят сквозь нас миллиардами каждую секунду, не производя никакого эффекта. Хорошо известно, что физики обнаружили десятки типов элементарных частиц. Во Вселенной, претерпевающей сложные эволюционные изменения, набор этих частиц тоже эволюционировал. Именно эта эволюция сделала возможным возникновение планет, подобных нашей, и живых существ, подобных нам.

Через секунду после Большого Взрыва Вселенная расширилась достаточно, чтобы её температура упала приблизительно до десяти миллиардов градусов Цельсия. Это в тысячу раз больше, чем в центре Солнца, но подобные температуры отмечались при взрывах водородных бомб. В то время во Вселенной присутствовали главным образом фотоны, электроны, нейтрино и их античастицы, а также гораздо меньшее число протонов и нейтронов. Тогда частицы обладали настолько высокой энергией, что, сталкиваясь, порождали множество различных пар частица-античастица. Например, столкновение фотонов могло породить электрон и его античастицу, позитрон. Некоторые из таких вновь возникших частиц, сталкиваясь со своими близнецами-античастицами, аннигилировали. Всякий раз, когда электрон встречается с позитроном, они уничтожаются{1}, но обратный процесс не так прост. Для того чтобы две безмассовые частицы, такие как фотоны, могли породить пару частица – античастица, например электрон и позитрон, безмассовым частицам надо обладать некоторой минимальной энергией. Электрон и позитрон имеют массу, и эта вновь создаваемая масса должна порождаться энергией сталкивающихся частиц. Поскольку Вселенная продолжала расширяться и температура понижалась, столкновения частиц, обладающих достаточной энергией для рождения электрон-позитронных пар, случались всё реже. Гораздо чаще происходило взаимоуничтожение пар (рис. 20). В конечном счёте большая часть электронов и позитронов аннигилировали друг с другом, произведя большое количество фотонов и оставив относительно мало электронов. Нейтрино и антинейтрино, которые взаимодействуют между собой и с другими частицами очень слабо, уничтожали друг друга не так быстро. Они и сегодня должны ещё присутствовать вокруг нас. Если бы мы могли наблюдать их, это послужило бы хорошим подтверждением для описанной выше картины горячей молодой Вселенной. К сожалению, энергия этих частиц в настоящее время слишком низка, чтобы наблюдать их непосредственно (хотя, возможно, их удастся обнаружить косвенно).

Приблизительно через сто секунд после Большого Взрыва Вселенная остыла до одного миллиарда градусов – температуры недр самых горячих звёзд. В этих условиях энергии протонов и нейтронов уже недостаточно для преодоления сильного ядерного взаимодействия. Они начинают сливаться, образуя ядра дейтерия (тяжёлого водорода), которые содержат один протон и один нейтрон.

Ядра дейтерия могут затем, присоединяя протоны и нейтроны, превратиться в ядра гелия, состоящие из пары протонов и пары нейтронов, а также породить некоторое количество ядер двух более тяжёлых элементов – лития и бериллия. Можно подсчитать, что согласно теории горячей Вселенной около четверти протонов и нейтронов объединяются в ядра гелия при сохранении небольшого количества тяжёлого водорода и других элементов. Остальные нейтроны в результате распада превращаются в протоны – ядра обычных атомов водорода.

Эта картина горячей Вселенной была впервые предложена Джорджем Гамовым в известной работе, написанной в 1948 г. в соавторстве с его учеником Ральфом Альфером. Гамова отличало недюжинное чувство юмора: он добавил к списку авторов имя учёного-ядерщика Ханса Бете, чтобы получилось: Альфер, Бете, Гамов, наподобие первых трёх букв греческого алфавита (альфа, бета, гамма), – очень уместно для статьи о зарождении Вселенной. В упомянутой работе авторы сделали замечательное предсказание, что излучение (в форме фотонов), возникшее на начальных, горячих стадиях развития Вселенной, должно сохраниться до наших дней, но его температура должна быть всего на несколько градусов выше абсолютного нуля. (Абсолютным нулём считается температура −273.15 °C, при которой вещество не обладает никакой тепловой энергией. Таким образом, это самая низкая из возможных температур.)

Именно это микроволновое излучение обнаружили Пензиас и Вильсон в 1965 г. Когда Альфер и Гамов опубликовали свою статью, о ядерных реакциях между протонами и нейтронами было известно довольно мало. Поэтому предсказания соотношений различных элементов в ранней Вселенной оказались довольно приблизительными. Впоследствии, когда вычисления были повторены с учётом новых, более точных, данных, оказалось, что результаты очень хорошо согласуются с наблюдениями. Остаётся добавить, что весьма трудно найти другое объяснение тому, почему именно четверть массы Вселенной приходится на долю гелия.


Рис. 20. Равновесие фотонов и электрон-позитронных пар.

В ранней Вселенной наблюдалось равновесие между образованием фотонов при столкновении электронов и позитронов и обратным процессом. По мере того как Вселенная остывала, баланс был нарушен в пользу образования фотонов. Постепенно большая часть электронов и позитронов аннигилировали друг с другом, и электронов осталось относительно мало.

И всё же описанная картина порождает ряд проблем. Продолжительность ранних этапов эволюции в модели Большого Взрыва недостаточна для того, чтобы тепло успело распространиться из одной области горячей Вселенной в другую. Это означает, что в начальном состоянии Вселенная должна была во всех местах иметь строго одинаковую температуру, – иначе никак не объяснить одинаковую температуру микроволнового фона во всех направлениях. Кроме того, начальная скорость взрыва должна была оказаться очень точно подобранной, чтобы расширение шло на самой грани критического режима, ещё позволяющего избежать схлопывания. Очень трудно объяснить, почему Вселенная зародилась именно в таком состоянии, если не предполагать вмешательства Бога, который намеревался создать существ вроде нас.

Пытаясь найти модель Вселенной, в которой множество различных начальных состояний могло развиться во что-то подобное существующему мирозданию, учёный из Массачусетского технологического института Алан Гут предположил, что ранняя Вселенная могла пройти через период очень быстрого расширения. Это расширение называют «инфляцией», подразумевая, что Вселенная в тот период расширялась с нарастающей скоростью. Согласно Гуту радиус Вселенной за ничтожно малую долю секунды увеличился в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз. Любые неоднородности во Вселенной просто разгладились вследствие этого расширения, как морщины на раздувающемся воздушном шаре. Таким образом, инфляционная теория объясняет, как нынешнее, гладкое и однородное, состояние Вселенной могло развиться из самых разных неоднородных изначальных состояний. Так что мы теперь до известной степени уверены в том, что имеем правильную картину событий вплоть до одной миллиардной триллионной триллионной доли (10−33) секунды от Большого Взрыва.

Вся эта первоначальная суматоха Большого Взрыва завершилась спустя всего несколько часов формированием ядер гелия и некоторых других элементов, таких как литий. Затем около миллиона лет Вселенная просто продолжала расширяться и ничего существенного не происходило. Наконец температура понизилась до нескольких тысяч градусов. Кинетическая энергия электронов и ядер стала недостаточной для того, чтобы преодолевать силу электромагнитного притяжения, и они начали объединяться в атомы.

Вселенная в целом продолжала бы расширяться и остывать, но в областях, где плотность была чуть выше средней, расширение дополнительно тормозилось гравитационным притяжением избыточного вещества. Под действием этого притяжения расширение в этих областях Вселенной остановилось, уступив место сжатию (коллапсу). По ходу коллапса тяготение окружающего вещества могло придать этим областям едва заметное вращение. При стягивании коллапсирующей области её вращение ускоряется, подобно тому как фигурист начинает быстрее кружиться на льду, когда прижимает к себе руки. Наконец, когда размеры такой области становились достаточно малыми, её вращение ускорялось настолько, что могло сбалансировать гравитацию. Так образовались вращающиеся спиральные галактики. Другие области Вселенной, избежавшие вращения, стали овальными объектами, которые называют эллиптическими галактиками. В таких областях коллапс приостанавливается устойчивым обращением отдельных частей галактики вокруг её центра, в то время как вся звёздная система в целом не вращается.

Со временем водородно-гелиевый газ в галактиках должен был распадаться на небольшие облака, которые коллапсировали под действием собственного тяготения. При сжатии атомы в них сталкивались и температура газа росла, пока не достигала величины, необходимой для начала реакций ядерного синтеза. Эти реакции преобразуют водород в гелий и похожи на управляемый взрыв водородной бомбы. Выделяемое при этом тепло заставляет звёзды светиться. Это тепло также увеличивает давление газа, пока это последнее не приходит в равновесие с силами тяготения. В результате газ перестаёт сжиматься. Примерно так газовые облака становятся звёздами, подобными нашему Солнцу, которые сжигают водород, превращая его в гелий, и излучают высвободившуюся энергию в форме тепла и света. Они обнаруживают отдалённое сходство с воздушным шаром, в котором внутреннее давление воздуха на стенки, заставляющее шар расширяться, уравновешивается упругостью резиновой оболочки, стремящейся уменьшить размер шара.

Сформировавшись из облаков горячего газа, звёзды в течение долгого времени сохраняют устойчивость благодаря балансу между выделением тепла в ядерных реакциях и гравитационным притяжением. Однако рано или поздно звезда обречена исчерпать свой запас водорода и другого ядерного топлива. Парадоксально, но чем больше запасы топлива в звезде, тем быстрее они заканчиваются. Дело в том, что чем массивнее звезда, тем горячее она должна быть, чтобы сбалансировать своё тяготение. А чем горячее звезда, тем быстрее протекает реакция ядерного синтеза и быстрее расходуется топливо. Нашему Солнцу, вероятно, хватит топлива ещё на пять миллиардов лет или около того, но более массивные звёзды способны израсходовать свои ресурсы всего за сто миллионов лет, что значительно меньше возраста Вселенной.


    Ваша оценка произведения:

Популярные книги за неделю