Текст книги "Мир в ореховой скорлупке (илл. книга-журнал)"
Автор книги: Стивен Уильям Хокинг
сообщить о нарушении
Текущая страница: 3 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]
А потом мода неожиданно изменилась. Было объявлено, что нет оснований полагать, будто теории супергравитации не содержат бесконечностей, и это привело к тому, что их стали считать безнадежно дефектными. Зато было провозглашено, что концепция, получившая название суперсимметричной теории струн, – единственное, что способно соединить гравитацию с квантовой теорией. Струны в данной теории, подобно тем, что встречаются обыденной жизни, являются одномерными объектами. У них есть только длина. Струны в теории струн движутся на фоне пространства-времени, а их колебания интерпретируются как частицы (рис. 2.14).
Рис. 2.14. Колебания струн
В теории струн фундаментальные объекты не частицы, занимающие единственную точку в пространстве, а одномерные струны. Эти струны могут иметь концы или замыкаться на себя, образуя петли. В точности как струны скрипки, они могут поддерживать разные режимы колебаний или резонансные частоты, длины волн которых целое число раз укладываются между концами струны.
Но если разные частоты колебаний скрипичных струн порождают разные музыкальные тона, различные режимы колебаний в теории струн соответствуют разным массам и зарядам, что интерпретируется как различные фундаментальные частицы. Грубо говоря, чем короче длина волны колебания струны, тем больше масса частицы.
Если струны обладают грассмановскими измерениями наряду с обычными, их колебания будут соответствовать бозонам и фермионам. В этом случае положительные и отрицательные энергии основных состояний в точности сокращаются, так что не остается никаких бесконечностей, даже малого порядка. Суперструны, как было объявлено, представляют собой Теорию Всею.
Историкам науки в будущем наверняка будет интересно построить график колебания пристрастий физиков-теоретиков. Струны безраздельно властвовали несколько лет, а супергравитация была низведена до статуса приближенной теории, годной при низких энергиях. Ярлык «низких энергий» был просто убийственным, несмотря даже на то, что в данном контексте низкоэнергетическими считались частицы, в миллиард миллиардов раз превосходящие по энергии те, что образуются при взрыве тротила. Будь супергравитация низкоэнергетическим приближением, ее нельзя было бы считать фундаментальной теорией Вселенной. Вместо нее на эту роль претендовали целых пять различных теорий суперструн. Но какая же именно из этих пяти струнных теорий описывает нашу Вселенную? И как можно построить теорию струн за пределами того приближения, в котором струны представляются поверхностями с одним пространственным и одним временным измерением в плоском пространстве-времени? Не могут ли струны искривлять фон пространства-времени?
В следующие за 1985-м годы постепенно становилось ясно, что теория струн не дает законченной картины. Начать с того, что струны, как выяснилось, лишь один из элементов широкого класса объектов, которые могут иметь более одного измерения. Пол Таунсенд, который является, как и я, сотрудником факультета прикладной математики и теоретической физики Кембриджа и по большей части заложил основу для изучения таких объектов, стал называть их «р-бранами». Такая р-брана имеет протяженность в р направлениях. Так, при р = 1 брана является струной, при р = 2 – поверхностью или мембраной и т. д. (рис. 2.15).
Рис. 2.15. Р-браны
Р-браны – это объекты, протяженные в р измерениях. Частными их случаями являются струны, для которых р = 1, и мембраны (р = 2), но в 10– или 11-мерном пространстве-времени возможны и большие значения р. Часто некоторые или все из р измерений свернуты наподобие тора.
По-видимому, нет причин отдавать предпочтение струнам с р = 1 перед струнами с другими значениями р. Напротив, следует принять принцип р-бранной демократии: все р-браны созданы равными[8]8
Хокинг перефразирует Декларацию независимости США – то ее место, где перечисляются неотъемлемые права человека (оно начинается словами: «Мы считаем самоочевидными истины: что все люди созданы равными…»).
[Закрыть].
Все р-браны можно найти как решения уравнений теории супергравитации в 10 или 11 измерениях. Хотя 10 или 11 измерений, кажется, не слишком похожи на знакомое нам пространство-время, идея состоит в том, что дополнительные 6 или 7 измерений свернуты до такой малой величины, что мы их не замечаем; нам видны только остальные 4 больших и почти плоских измерения.
Должен сказать, что я с неохотой принимаю идею дополнительных измерений. Но для меня, как для позитивиста, вопрос «Существуют ли дополнительные измерения на самом деле?» не имеет смысла. Все, о чем можно спросить: действительно ли математическая модель с дополнительными измерениями хорошо описывает Вселенную? У нас пока нет наблюдений, объяснение которых требовало бы дополнительных измерений. Однако есть вероятность, что они могут появиться на Большом адронном коллайдере LHC в Женеве. Но вот что заставляет многих людей, включая меня, всерьез принимать модели с дополнительными измерениями: это наличие между этими моделями целой сети неожиданных соотношений, называемых дуальностями. Данные соотношения показывают, что все модели, по сути, являются эквивалентными, они лишь отражают разные аспекты одной и той же лежащей в основе теории, которую назвали М-теорией. Не воспринимать эту сеть дуальностей как знак того, что мы находимся на верном пути, было бы все равно что верить, будто Бог поместил среди камней ископаемые остатки, чтобы запутать Дарвина в вопросе об эволюции жизни.
Дуальности показывают, что все пять теорий суперструн описывают одну и ту же физическую реальность и что они к тому же эквивалентны супергравитации (рис. 2.16).
Рис. 2.16
Существует сеть взаимосвязей, так называемых дуальностей, которые соединяют все пять теорий струн, а также 11-мерную супергравитацию. Дуальности предполагают, что разные теории струн – это лишь разные выражения одной и той же фундаментальной концепции, которую называют М-теорией.
Нельзя говорить, что суперструны фундаментальнее супергравитации, и наоборот. Скорее, они являются разными представлениями одной и той же фундаментальной теории, и каждый подход удобен для работы со своим классом задач. Поскольку теории струн не содержат бесконечностей, они хорошо подходят для расчета того, что случается, когда несколько высокоэнергетических частиц сталкиваются и рассеиваются друг на друге. Однако они не слишком полезны для описания того, как энергия очень большого числа частиц искривляет Вселенную или образует связанное состояние, подобное черной дыре. В таких ситуациях требуется супергравитация, которая в основе представляет собой эйнштейновскую теорию искривленного пространства с некоторыми дополнительными типами материи. Именно эту картину я буду в основном использовать в дальнейшем.
Чтобы описать, как квантовая теория придает форму времени и пространству, будет полезно ввести концепцию мнимого времени. Термин «мнимое время» звучит так, будто заимствован из научной фантастики, но это вполне определенная математическая концепция: время, измеряемое так называемыми мнимыми числами. Можно представлять себе обычные действительные числа, такие как 1, 2, -3,5 и т. п., как соответствующие точки на оси, прочерченной слева направо: ноль в середине, положительные действительные числа – справа, отрицательные – слева (рис. 2.17).
Мнимые числа правомерно изобразить соответствующими отсчетами на вертикальной оси: ноль опять посередине, положительные мнимые числа – вверху, отрицательные мнимые – внизу. То есть мнимые числа допустимо представлять себе как новый тип чисел, расположеных под прямым углом к вещественным числам. Поскольку это чисто математическая конструкция, они не нуждаются в физической реализации; никто, например, не может иметь мнимое число органов или мнимый счет по кредитной карте (рис. 2.18).
Рис 2.18
Мнимые числа – это математическая конструкция. У вас не может быть мнимого счета по кредитной карте.
Можно подумать, будто мнимые числа – это просто математическая игра, не имеющая никакого отношения к реальному миру. С точки зрения позитивистской философии, однако, невозможно определить, что является реальным. Все, что можно сделать, – это находить математические модели, описывающие Вселенную, в которой мы живем. Оказывается, математические модели, использующие мнимое время, предсказывают не только эффекты, которые мы уже наблюдаем, но также эффекты, которые мы пока не можем измерить, но в которые верим по другим причинам. Так что же все-таки действительно, а что мнимо? Неужели вся разница лишь в нашем сознании?
Классическая (то есть неквантовая) общая теория относительности Эйнштейна объединяет действительное время и три измерения пространства в четырехмерное пространство-время. Но направление действительного времени отличается от трех пространственных измерений: мировая линия, или история наблюдателя, всегда направлена в сторону возрастания действительного времени (это означает, что время всегда течет из прошлого в будущее), но она может пролегать как в направлении увеличения, так и в сторону уменьшения любого из трех пространственных измерений. Иными словами, можно развернуться в обратную сторону в пространстве, но не во времени (рис. 2.19).
Рис. 2.19
В классическом пространстве-времени общей теории относительности действительное время отличается от пространственных направлений тем, что в направлении истории наблюдателя оно только увеличивается, тогда как пространственные координаты могут как увеличиваться, так и уменьшаться по ходу этой истории. С другой стороны, мнимое время квантовой теории подобно дополнительному пространственному измерению, поскольку может как увеличиваться, таки уменьшаться.
С другой стороны, поскольку мнимое время расположено под прямым углом к действительному, оно ведет себя подобно четвертому пространственному измерению. Поэтому оно может обладать гораздо более широким диапазоном возможностей, чем железнодорожная колея обычного действительного времени, которое может лишь иметь начало или конец либо замыкаться в круг. Именно в этом «мнимом» смысле время имеет форму.
Чтобы увидеть подобные возможности, представим пространство-время с мнимым временем как сферу, подобную поверхности Земли. Предположим, что мнимое время соответствует широте (рис. 2.20). Тогда история Вселенной в мнимом времени начинается на южном полюсе. Не имеет смысла вопрос «Что случилось до начала?». Таких моментов времени просто нет, точно так же, как точек южнее южного полюса. Полюс – самая обыкновенная точка на поверхности Земли, и там работают те же самые законы, что и в других точках. Это наводит на мысль, что начало Вселенной в мнимом времени может быть обычной точкой пространства-времени и что в начале должны соблюдаться все законы, которые действуют в остальной Вселенной. (Квантовое происхождение и эволюция Вселенной будут обсуждаться в следующей главе.)
Рис. 2.20 и 2.21. Мнимое время
Рис. 2.20: В мнимом пространстве-времени, которое является сферой, направление мнимого времени может быть представлено расстоянием от южного полюса. При движении на север круги долготы, проходящие на постоянном расстоянии от южного полюса, становятся все больше и больше, что соответствует расширению Вселенной в мнимом времени. У экватора Вселенная достигает максимального размера и затем с увеличением мнимого времени вновь сжимается в точку на северном полюсе. Но хотя размер Вселенной становится на полюсах нулевым, в этих точках не будет сингулярностей просто потому, что Северный и Южный полюсы – совершенно обыкновенные точки на земной поверхности. Это указывает на то, что в мнимом времени рождение Вселенной может быть обычной точкой пространства-времени.
Рис. 2.21: Вместо широты направлению мнимого времени в сферическом пространстве-времени может соответствовать долгота. Поскольку все линии постоянной долготы сходятся в северном и южном полюсах, время там останавливается; увеличение мнимого времени оставляет вас на одном и том же месте, подобно тому как движение на запад на Северном полюсе Земли оставляет вас на Северном полюсе.
Другой вариант поведения можно проиллюстрировать, если считать мнимое время долготой на Земле. Все меридианы сходятся на северном и южном полюсах (рис. 2.21). Так что время здесь останавливается в том смысле, что увеличение мнимого времени (или градуса долготы) оставляет вас на одном и том же месте. Это очень похоже на то, как обычное время кажется остановившимся на горизонте черной дыры. Мы выяснили, что это замирание действительного или мнимого времени (как обоих сразу, так и по одному) означает, что пространство-время имеет температуру, как это было открыто мною для случая черных дыр. Но черные дыры имеют не только температуру, они к тому же ведут себя так, будто обладают энтропией. Энтропия – это мера числа внутренних состояний (различных вариантов внутренней конфигурации), которые может иметь черная дара, не меняя своего вида для внешнего наблюдателя, способного определить только ее массу, вращение и электрический заряд. Энтропия черной дыры выражается очень простой формулой, которую я вывел в 1974 г. Она равна площади горизонта черной дыры: один бит информации о ее внутреннем состоянии приходится на каждую фундаментальную единицу площади горизонта.
Формула для энтропии черной дыры
A площадь горизонта событий черной дыры
ħ постоянная Планка
k постоянная Больцмана
G гравитационная постоянная Ньютона
c скорость света
S энтропия
Это говорит о глубокой связи между квантовой гравитацией и термодинамикой – наукой о теплоте (к сфере которой относится понятие энтропии).
А еще наводит на мысль, что квантовая гравитация может проявлять своего рода голографические свойства (рис. 2.22).
Рис. 2.22.
По сути, голография – это проявление интерференции волн. Голограмма создается, когда свет от одного лазера разделяется на два отдельных пучка а и b. Один из них (b) рассеивается объектом сна светочувствительную пластинку d. Другой (а) проходит через линзу е и взаимодействует с рассеянным светом пучка b, создавая на пластинке интерференционный узор. Когда лазер светит сквозь проявленную пластинку, восстанавливается полное трехмерное изображение исходного объекта. Наблюдатель может обойти голографическое изображение и увидеть скрытые поверхности, которые на обычной фотографии не видны.
Двумерная поверхность пластинки (слева), в отличие от обычной фотографии, обладает замечательным свойством: любой, даже небольшой, фрагмент ее поверхности содержит всю информацию, необходимую для реконструкции целого изображения[9]9
Строго говоря, голограмма содержит только информацию о внешнем виде объектов. Узнать, как выглядят детали, скрытые непрозрачной оболочкой, по голограмме невозможно. – Перев.
[Закрыть].
Голографический принцип
Осознание того, что площадь поверхности горизонта, окружающего черную дыру, является мерой ее энтропии, навело на мысль о том, что максимальная энтропия любой замкнутой области никогда не может превзойти четверть площади охватывающей поверхности. Поскольку энтропия не что иное, как мера полной информации, содержащейся в системе, информация, связанная со всеми явлениями в трехмерном мире, может быть сохранена на его двумерной границе, подобно голографическому изображению. В определенном смысле мир можно было бы считать двумерным.
Информация о квантовых состояниях внутри области пространства-времени может быть неким образом закодирована на ее границе, которая имеет на два измерения меньше. Это похоже на то, как голограмма содержит трехмерное изображение на двумерной поверхности. Если квантовая гравитация включает голографический принцип, это может означать, что у нас есть шанс проследить, что происходит внутри черной дыры. Большое значение имеет возможность предсказывать излучение, исходящее из черной дыры. Если это невозможно, значит, нельзя и предсказывать будущее настолько точно, как мы думаем. (Данный вопрос обсуждается в главе 4. Голографии посвящена глава 7.) Похоже, мы сами можем жить на 3-бране – четырехмерной (три пространственных плюс одно временное измерение) поверхности, которая ограничивает пятимерную область, а остальные размерности свернуты до очень малых размеров. При этом в состоянии мира на бране зашифровано то, что происходит в пятимерной области.
Глава 3
Мир в ореховой скорлупке
О том, что Вселенная имеет множество историй,
каждая из которых
определяется крошечным орешком
Я бы и в ореховой скорлупе считал себя
властелином необъятного пространства.
У Шекспир. Гамлет. Акт 2, сцена 2
Гамлет мог иметь в виду, что хотя мы, люди, существа весьма ограниченные физически, наш разум свободен в своем стремлении познать весь мир и смело отправляется туда, куда не рисковали забираться даже герои «Звездного пути», – позволены самые страшные сны.
Действительно ли Вселенная бесконечна или просто очень велика? Вечна ли она или просто имеет большое время жизни? Как может наш конечный ум познать бесконечную Вселенную? Не слишком ли большая самоуверенность даже предпринимать такую попытку? Не рискуем ли мы повторить судьбу Прометея, который согласно классическому мифу украл у Зевса огонь и научил им пользоваться людей, а в наказание за безрассудную смелость был прикован к скале и стал добычей орла, прилетавшего выклевывать его печень?
Космический телескоп «Хаббл».
Вопреки предостережению, заключенному в легенде, я верю, что мы можем и должны пытаться понять Вселенную. Мы уже достигли замечательных успехов в понимании космоса, особенно в последние годы. У нас еще нет полной картины, но, возможно, она уже не за горами.
Самый очевидный факт относительно космоса состоит в том, что он тянется и тянется все дальше и дальше. Это подтверждают современные инструменты, такие как телескоп «Хаббл», который позволяет нам заглянуть в глубочайший космос. Там мы видим миллиарды и миллиарды галактик различных форм и размеров (рис. 3.1).
Рис 3.1
Когда мы смотрим в глубины Вселенной, то видим миллиарды и миллиарды галактик. Галактики могут иметь разные формы и размеры; они могут быть эллиптическими или спиральными, подобно нашему Млечному Пути.
Рис. 3.2
Наша планета Земля (3) обращается вокруг Солнца в периферийном районе спиральной галактики Млечный Путь. Межзвездная пыль в спиральных рукавах мешает нам вести наблюдения в направлении плоскости Галактики, но по сторонам от нее открывается хороший обзор.
Каждая галактика содержит неисчислимые миллиарды звезд, и у многих из них есть планеты. Мы живем на планете, обращающейся вокруг звезды во внешнем рукаве спиральной галактики Млечный Путь. Пыль в спиральных рукавах мешает нам наблюдать Вселенную вблизи плоскости галактики, но в направлении двух конусов по сторонам от этой плоскости видимость отличная, и мы можем определять положения далеких галактик (рис. 3.2). Мы обнаружили, что галактики распределены в космосе приблизительно однородно с отдельными локальными сгущениями и пустотами. Кажется, что плотность галактик на очень больших расстояниях снижается, но, скорее всего, из-за удаленности их свет становятся настолько слабым, что мы просто их не регистрируем. Насколько мы можем судить, Вселенная тянется в пространстве бесконечно (рис. 3.3).
Рис. 3.3
Мы видим, что, за исключением отдельных локальных сгущений, галактики распределены в пространстве почти однородно.
Хотя Вселенная во всех точках космоса выглядит почти одинаково, она определенно меняется во времени. До начала ХХ века это не осознавалось – считали, что в основном она неизменна. Ей полагалось существовать в течение бесконечного времени, но это приводило к абсурдным выводам. Если ли бы звезды светили бесконечно долго, они должны были бы прогреть Вселенную до своей температуры. Даже в ночное время все небо светилось бы так же ярко, как Солнце, поскольку в любом направлении взгляд в конце концов упирался бы либо в звезду, либо в пылевое облако, разогретое до той же температуры, что и звезды (рис. 3.4).
Рис. 3.4
Если бы Вселенная была статичной и бесконечной во всех направлениях, повсюду на ночном небе взгляд упирался бы в звезды и оно светилось бы так же ярко, как поверхность Солнца.
Все мы наблюдали ночное небо и знаем, что оно темное, и это очень важно. Отсюда следует, что Вселенная не может вечно пребывать в том же состоянии, что и сегодня. В прошлом, конечное время назад, должно было произойти нечто, что заставило звезды зажечься, а это значит, что свет очень далеких звезд еще не успел до нас дойти. Потому-то небо по ночам не ослепляет нас со всех сторон.
Но если звезды вечно находились на своих местах, почему они вдруг зажглись несколько миллиардов лет назад? Какой таймер сообщил им, что пришло время светиться? Как мы знаем, над этим ломали голову многие философы, которые, подобно Иммануилу Канту, верили, что Вселенная существует вечно. Однако большинство людей вполне устраивала мысль о том, что Вселенная была создана всего несколько тысяч лет назад в целом такой, какова она сейчас.
Расхождения с этим представлением стали появляться благодаря наблюдениям Весто Слайфера и Эдвина Хаббла во втором десятилетии ХХ века. А в 1923 г. Хаббл открыл, что многочисленные едва заметные пятнышки на небе, называемые туманностями, на самом деле являются другими галактиками, огромными конгломератами таких же звезд, как наше Солнце, но находящихся на огромном расстоянии. Чтобы они выглядели такими маленькими и бледными, расстояния должны быть столь велики, что свету понадобятся миллионы или даже миллиарды лет, чтобы дойти до нас. Это значит, что Вселенная не могла появиться лишь несколько тысяч лет назад.
Второе открытие Хаббла было еще более замечательным. Астрономы знают, что, анализируя свет других галактик, можно определить, движутся ли они к нам или от нас (рис. 3.5). К их огромному удивлению, оказалось, что почти все галактики удаляются. Более того, чем дальше находятся галактики, тем быстрее движутся прочь. Именно Хаббл осознал драматическое следствие этого открытия: на больших масштабах каждая галактика удаляется от любой другой. Вселенная расширяется
Соседняя с нами галактика, Туманность Андромеды, параметры которой были измерены Хабблом и Слайфером
Хронология открытий, сделанных Слайфером и Хабблом между 1910 и 1930 гг.
1912 – Слайфер получил спектры четырех туманностей и обнаружил в трех из них красное смещение, а в спектре Туманности Андромеды – голубое смещение. Он сделал вывод, что Туманность Андромеды приближается к нам, а остальные туманности от нас удаляются.
1912–1914 – Слайфер измерил спектры еще 12 туманностей. У всех, кроме одной, оказалось красное смещение.
1914 – Слайфер представил свои результаты Американскому астрономическому обществу. Хаббл при этом присутствовал.
1918 – Хаббл начал исследовать туманности.
1923 – Хаббл определил, что спиральные туманности (в том числе Туманность Андромеды) – это другие галактики.
1914–1925 – Слайфер и другие астрономы продолжали измерения доплеровских сдвигов. К 1925 г. было измерено 43 красных смещения и 2 голубых.
1929 – Хаббл и Мильтон Хьюмасон, продолжив измерения доплеровских сдвигов и обнаружив, что на больших масштабах каждая галактика выглядит удаляющейся от других, объявили, что Вселенная расширяется.
Эффект Доплера
Эффект Доплера, обнаруживающий связь между длиной волны и скоростью, мы наблюдаем едва ли не каждый день. Прислушайтесь к самолету, который пролетает над головой. Когда он приближается, звук двигателя кажется высоким, а когда удаляется – низким.
Высокий тон соответствует более коротким звуковым волнам (с малым расстоянием от одного гребня волны до следующего) и более высоким частотам (числу волн, приходящих в секунду).
Эффект Доплера вызван тем, что приближающийся самолет окажется ближе к вам, когда породит следующий гребень волны, а значит, расстояние между гребнями сократится. Аналогично, когда самолет удаляется, длины волн увеличиваются, а тональность воспринимаемого звука понижается.
Открытие расширения Вселенной стало одной из величайших интеллектуальных революций ХХ века. Оно оказалось совершенно неожиданным и полностью изменило ход дискуссии о происхождении Вселенной. Если галактики разлетаются, они должны были в прошлом находиться ближе друг к другу. Исходя из нынешнего темпа расширения мы можем заключить, что где-то между 10 и 15 миллиардами лет назад они находились очень близко друг от друга. Как описано в предыдущей главе, нам с Роджером Пенроузом удалось показать: из общей теории относительности Эйнштейна вытекает, что Вселенная и само время должны иметь начало в форме грандиозного взрыва. Оттого и темно ночное небо: ни одна звезда не могла светить дольше, чем десять – пятнадцать миллиардов лет – время, прошедшее с момента Большого взрыва.
Рис. 3.6
Эффект Доплера также проявляется и для световых волн. Если галактика остается на постоянном расстоянии от Земли, характерные линии в ее спектре будут появляться на обычных стандартных позициях. Однако если она от нас удаляется, волны будут выглядеть более длинными или растянутыми, а характерные спектральные линии сместятся в красную сторону (справа). Если же галактика приближается к нам, тогда волны будут выглядеть сжатыми, а линии испытают голубое смещение.
Эдвин Хаббл у 100-дюймового телескопа обсерватории Маунт-Вилсон. 1930
Анализируя свет других галактик, Эдвин Хаббл открыл в 1920-х гг., что почти все галактики удаляются от нас со скоростью V, которая пропорциональна расстоянию R от Земли: V= Н х R. Эта важная закономерность, названная законом Хаббла, установила, что Вселенная расширяется, а постоянная Хаббла Н задает скорость ее расширения.
Рис. З.6. Закон Хаббла
На графике отражены последние данные наблюдений за красными смещениями галактик, подтверждающие, что закон Хаббла действует на огромных расстояниях от нас. Небольшой изгиб вверх на больших расстояниях говорит о том, что расширение ускоряется, возможно под влиянием энергии вакуума.
Мы привыкли, что одни события вызываются другими, более ранними событиями, которые, в свою очередь, обусловлены еще более ранними. Существует тянущаяся в прошлое цепь причинности. Но, предположим, что эта цепь имеет начало. Предположим, что было первое событие. Что вызвало его? Это не тот вопрос, которым хотело бы заниматься большинство ученых. Они стараются его избежать, либо заявляя, как русские, что у Вселенной не было начала, либо утверждая, что вопрос о ее происхождении лежит вне сферы науки и относится к метафизике и религии. Мое мнение состоит в том, что истинный ученый не должен принимать ни одну из этих позиций. Если действие законов природы приостанавливается у начала Вселенной, почему бы им не нарушаться также и в другие времена? Закон не закон, если он выполняется только иногда. Мы должны попытаться научно объяснить начало Вселенной. Возможно, эта задача окажется нам не по силам, но, по крайней мере, мы должны попробовать.
Хотя доказанные нами с Пенроузом теоремы продемонстрировали, что Вселенная должна иметь начало, они практически ничего не говорят о природе этого начала. Они указывают, что Вселенная началась с Большого взрыва, состояния, в котором вся она и все, что в ней есть, было сжато в одну точку бесконечной плотности. В этой точке общая теория относительности Эйнштейна становится неприменимой и ее нельзя использовать, чтобы предсказать, как именно началась Вселенная. Мы вынуждены признать, что происхождение Вселенной, по-видимому, лежит за пределами науки.
Горячий Большой Взрыв
Если верна общая теория относительности, Вселенная началась с бесконечно высокой температуры и плотности в сингулярности Большого взрыва. По мере расширения Вселенной температура и интенсивность излучения убывали. Примерно через одну сотую долю секунды после Большого взрыва температура составляла около 100 млрд градусов, а Вселенная была наполнена в основном фотонами, электронами, нейтрино (очень легкими частицами) и их античастицами, а также некоторым количеством протонов и нейтронов. В течение следующих трех минут Вселенная охладилась примерно до 1 млрд градусов, а протоны и нейтроны стали образовывать гелий, изотопы водорода и другие легкие элементы.
Сотни тысяч лет спустя, когда температура упала до нескольких тысяч градусов, электроны замедлились до такой степени, что легкие ядра смогли захватывать их, образуя атомы. Однако более тяжелые элементы, из которых мы состоим, такие как углерод и кислород, образовались лишь миллиарды лет спустя в результате горения гелия в ядрах звезд.
Эту картину плотной горячей Вселенной впервые описал физик Георгий Гамов в 1948 г. в статье, написанной совместно с Ральфом Альфером, где было сделано замечательное предсказание, что излучение той очень горячей эпохи и сегодня все еще должно быть вокруг нас. Предсказание ученых подтвердилось в 1965 г., когда физики Арно Пензиас и Роберт Вильсон зарегистрировали космическое фоновое микроволновое излучение[10]10
Открытие отмечено Нобелевской премией по физике за 1978 г. – Перев.
[Закрыть].
Но это не тот вывод, который обрадовал бы ученых. Как отмечалось в главах 1 и 2, причина, по которой общая теория относительности не работает вблизи Большого взрыва, состоит в том, что она не включает принцип неопределенности, который вносит элемент случайности в квантовую теорию и о котором Эйнштейн высказался в том смысле, что Господь Бог не играет в кости. Однако все свидетельствует в пользу того, что Господь Бог завзятый игрок. Можно представлять себе Вселенную как огромное казино, в котором по каждому случаю бросают кости или крутят барабан рулетки (рис. 3.7).
Рис 3.7
Возможно, вы думаете, что держать казино – очень ненадежный бизнес, поскольку каждый бросок кости или спин рулетки несет риск потери денег. Но при большом числе ставок выигрыши и проигрыши усредняются и выходит результат, который можно предсказать (рис. 3.8). Владельцы казино устраивают так, чтобы отклонения усреднялись в их пользу. Вот почему они богаты. Единственный шанс выиграть для вас – поставить все свои деньги на небольшое число бросков костей или спин рулетки.
Рис 3.8
Если игрок много раз ставит на красное, то можно с высокой точностью предсказать его выигрыш или проигрыш, поскольку результаты отдельных розыгрышей усредняются. С другой стороны, невозможно предсказать исход любой отдельной ставки.
Точно так же и со Вселенной. Когда она столь велика, как сегодня, в ней совершается очень большое число бросков костей, результат усредняется и его можно предсказать. Вот почему классические законы работают для больших систем. Но когда Вселенная очень мала, как вблизи момента Большого взрыва, кости бросаются лишь небольшое число раз и принцип неопределенности становится очень важен.
Поскольку Вселенная постоянно бросает кости, чтобы выяснить, что случится дальше, у нее нет единственной истории, как можно было бы подумать. Напротив, Вселенная обладает всеми возможными историями – каждой с определенной вероятностью. Среди них должна быть и такая, в которой сборная Белиза взяла все золотые медали на Олимпийских играх, хотя, возможно, у нее и низкая вероятность. Мысль о том, что Вселенная имеет множество историй, может показаться научной фантастикой, но сегодня она принимается как научный факт. Ее сформулировал Ричард Фейнман, который был великим физиком и большим оригиналом.