355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Петрунин » Советско-французское сотрудничество в космосе » Текст книги (страница 2)
Советско-французское сотрудничество в космосе
  • Текст добавлен: 6 октября 2016, 19:35

Текст книги "Советско-французское сотрудничество в космосе"


Автор книги: Станислав Петрунин



сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ СОВМЕСТНЫХ СОВЕТСКО-ФРАНЦУЗСКИХ ЭКСПЕРИМЕНТОВ

Программа советско-французских космических исследований обширна и разнообразна и для своей реализации требует использования широкого спектра аэрокосмических средств – от баллонов-аэростатов до автоматических межпланетных станций.

Если не принимать во внимание наземные научные комплексы, то самый низкий «этаж» аэрокосмических исследований (ближе всего к Земле) занимают воздушные баллоны, или аэростаты. Эти средства использовались при осуществлении многих совместных советско-французских экспериментов, таких, как «Омега», «Самбо» (по программе изучения полярной ионосферы и магнитосферы), «Коскол» (по программе метеорологических исследований) и других. В зависимости от поставленных научных задач применялись различные виды баллонов (обычно французского производства):

герметичные, изготовленные из майлара, объемом 20–45 м3, способные дрейфовать на постоянной высоте в течение нескольких недель;

привязные, объемом 20–65 м3, которые могут оставаться на заданной высоте на протяжении нескольких дней;

стратосферные, изготовленные из полиэтилена (в форме тетраэдра), объемом от 1350 до 87000 м3, с помощью которых можно поднять полезную нагрузку в 200 кг на высоту 25–30 км и способные дрейфовать в течение 6 – 10 ч;

стратосферные, также полиэтиленовые (естественной формы), объемом до 350 000 м3, поднимающие полезную нагрузку в 360 кг на высоту 42 км (характеристики этих баллонов лучше, чем у «тетраэдных», но стоимость их намного больше).

Средний «этаж» – между областью действия баллонов (высота 40–45 км) и высотой орбиты спутника (выше 200 км) – отводится метеорологическим и другим исследовательским ракетам. С помощью этих средств проводят различные метеорологические и геофизические исследования. В частности, в советско-французских экспериментах используются советские метеорологические ракеты М-100, МР-12 и французские «Драгон», «Вероника» и «Эридан».

Советская ракета М-100 является двухступенчатой, твердотопливной, способна поднять полезную нагрузку около 15 кг на высоту до 100 км. Примерно после 60 км на восходящей ветви полета головная часть с научной аппаратурой отделяется от ракеты и начинает самостоятельное движение. После прохождения максимальной высоты головной частью ракеты (60–65 км) применяется парашютная система, снижающая скорость движения с 600–700 до 6–8 м/с. Использование парашютной системы позволяет намного увеличить время работы научной аппаратуры.

Другая твердотопливная советская метеорологическая ракета – МР-12 способна поднять полезную нагрузку в 50 кг на высоту 170–180 км.

Большая надежность этих ракет, их относительная конструктивная простота, удобство в эксплуатации, стабильность характеристик (в большом температурном диапазоне) позволяют использовать их в различных районах земного шара – и вблизи полюсов, и в тропическом поясе. Более того, запуск ракет возможен и с научно-исследовательских судов.

Французская ракета «Драгон» имеет две твердотопливные ступени и способна, поднять полезную нагрузку в 50 кг на высоту 600 км или 110 кг – на 400 км. Одноступенчатая ракета «Вероника» является жидкостной. Максимальная высота ее подъема варьируется от 185 до 290 км, при этом вес научной аппаратуры составляет соответственно от 300 до 130 кг. Самая мощная французская ракета, применявшаяся в советско-французских экспериментах, геофизическая ракета «Эридан» имеет две твердотопливные ступени. Она может поднимать полезную нагрузку в 140 кг или 360 кг соответственно на высоты 400 или 210 км. Именно с помощью двух ракет «Эридан» в 1975 г. была осуществлена программа комплексных исследовании «Аракс».

Верхний «этаж» – орбита искусственного спутника Земли – обслуживается ракетно-космической техникой ракетами-носителями и собственно спутниками. В частности, в советско-французских экспериментах для этих целей, как уже говорилось ранее, используются советские ракеты-носители. Выбор же конструкции и различных характеристик спутников в первую очередь определяется требованиями данного эксперимента, его научными целями.

Так, например, низкая, почти круговая орбита спутника «Снег-3» была выбрана как компромисс между двумя противоречивыми требованиями. Как и при всяких проводимых исследованиях, желательно, чтобы их продолжительность была бы достаточно долгой, а для этого требуется более высокая орбита искусственного спутника Земли. Однако в данном эксперименте также требовалось устранить возникновение гамма– и рентгеновского излучений, образующихся в результате взаимодействия заряженных частиц с материалом спутника или научной аппаратуры. Поскольку же данный эффект особенно часто происходит при пересечении спутником радиационных поясов, то при его неэкваториальной орбите желательна как можно более низкая ее высота, чтобы избежать пересечений спутником радиационных поясов. После тщательного анализа сложившейся ситуации была принята оптимальная орбита высотой 500 км и наклонением 51°.

«Снег-3» является самым низкоапогейным из всех спутников, с помощью которых проводились совместные космические исследования ученых СССР и Франции. Он представляет собой одну из модификаций французского спутника «Д-2» (первоначально он так и назывался во Франции – «Д-2Б-гамма»). Спутник представляет собой цилиндр высотой 800 мм, диаметром 700 мм и снабжен четырьмя панелями солнечных батарей. Масса спутника 102 кг, суммарная масса научной аппаратуры 28 кг. «Снег-3» может ориентироваться на Солнце, стабилизируется вращением (с угловой скоростью –1,5 град/с).

Использовавшиеся в советско-французских экспериментах спутники «Ореол», предназначенные для ионосферных и магнитосферных исследований, представляют собой одну из модификаций советских спутников серии «Космос». Цилиндрический корпус этого спутника выполнен из алюминиевого сплава и закрыт сверху и снизу полусферическими днищами. Диаметр цилиндрической части ~ 800 мм, ее длина ~ 660 мм. Общая масса спутника около 300 кг, научной аппаратуры – 72 кг. Последняя размещена в верхней полусфере, в нижней же находятся системы энергопитания. Внутренний цилиндрический отсек предназначен для служебной аппаратуры. К цилиндрической части крепятся панели солнечных батарей и антенно-фидерные устройства. Орбиты спутников имеют апогей 2000–2500 км, перигей 400 км, наклонение 74°.

Французские малые автономные спутники «МАС-1 и -2» для технологических исследований выводились на орбиту вместе с советскими спутниками «Молния». Конструкции обоих спутников «MAC» схожи: они представляют собой многогранники, на гранях которых расположены солнечные батареи. Масса спутника «МАС-1» – 15 кг, «МАС-2» – 29,6 кг. Спутники могут ориентироваться на Солнце, стабилизируются вращением (с угловой скоростью вращения не более 1 град/с). Орбиты близки к орбите советских спутников «Молния»: апогей около 40 000 км, перигей около 450 км, наклонение ~ 65°.

Для изучения солнечной активности и ее влияния на межпланетную среду и магнитосферу Земли в Советском Союзе осуществляются запуски автоматических станций «Прогноз», также использующихся в советско-французских экспериментах. Исследования, проводимые на этих станциях, направлены на комплексное определение различных физических параметров межпланетной среды, а также на выяснение взаимодействия солнечной плазмы с магнитным полем Земли. Станции этой серии пересекают зоны радиационных поясов, границы магнитосферы, переходной области, фронт ударной волны.

Находясь в течение 94 % всего времени полета вне радиационных поясов и до 80 % – вне магнитосферы Земли, автоматические станции «Прогноз» позволяют проводить почти непрерывные астрофизические наблюдения и исследования невозмущенной солнечной плазмы. Вывод станций на требуемую орбиту осуществлялся в два этапа: вначале их выводили на промежуточную орбиту: апогеем 500 км и перигеем 240 км, а затем с помощью двигателя разгонного блока переводили на окончательную орбиту: апогеем 200 000 км, перигеем 500 км, наклонением 65° и периодом обращения 97 ч.

Станция «Прогноз» выполнена в виде герметичного контейнера цилиндрической формы диаметром 1500 мм и длиной 1200 мм, сверху и снизу закрытого сферическими днищами. В верхней и нижней частях станции располагаются научная аппаратура, элементы системы ориентации, антенны радиокомплекса. Общая масса станции «Прогноз» составляет 800–900 кг.

Некоторые советско-французские эксперименты осуществлялись на борту советской орбитальной станции: «Салют-6» и с помощью некоторых спутников серии «Космос».

Особую область космических исследований составляет изучение Луны и планет. Советско-французская научная аппаратура устанавливалась на ряде автоматических лунных и межпланетных станций. Так, на самоходных лунных станциях «Луноход» и «Луноход-2» использовались французские лазерные отражатели. На автоматических межпланетных станциях, стартовавших к Марсу («Марс-3, -4, -5, -6 и -7») и к Венере («Венера-9, -10, -11 и -12»), стояли совместно разработанные приборы для изучения состава и свойств межпланетной среды и окрестностей планет.

СОВЕТСКО-ФРАНЦУЗСКИЕ ПРОЕКТЫ И ЭКСПЕРИМЕНТЫ

К середине 1979 г. в рамках советско-французского сотрудничества было осуществлено уже свыше 30 экспериментов с использованием 9 спутников и 11 автоматических лунных и межпланетных станций. Подготовка и осуществление этих экспериментов проводится четырьмя совместными рабочими группами по космической физике, метеорологии, спутниковой связи, космической биологии и медицине. Круг вопросов, решаемых первой из этих групп, значительно шире ее официального названия («космическая физика»), он включает в себя такие дисциплины, как радиоастрономия, внеатмосферная астрономия (в ультрафиолетовом, гамма– и рентгеновском диапазонах), геофизика и космические лучи, исследования Луны, планет и межпланетного пространства, наблюдения искусственных спутников Земли в целях геодезии, эксперименты по отработке космической техники, космическое материаловедение.

Радиоастрономия. Советско-французские космические исследования по радиоастрономии начались 28 мая 1971 г. после успешного запуска автоматической межпланетной станции «Марс-3», на которой наряду с другими приборами была установлена аппаратура советско-французского эксперимента «Стерео-1» по исследованию радиоизлучения Солнца.

Солнечные радиоволны метрового и декаметрового диапазонов свободно проходят через земную атмосферу и относительно легко могут быть зарегистрированы наземными средствами. В связи с этим может показаться, что для их изучения нет необходимости в использовании космических аппаратов. Действительно, наземные наблюдения радиоизлучения Солнца проводятся достаточно широко и довольно детально как в Советском Союзе, так и во Франции, США, Австралии, Японии и других странах. Благодаря этим исследованиям удалось определить энергетический спектр солнечного радиоизлучения, его поляризацию и другие характеристики.

Однако в отличие от таких известных оптических явлений на Солнце, как солнечные пятна или протуберанцы, имеющих достаточно большую продолжительность существования, позволяющую надежно проследить их эволюцию и динамику, солнечные радиовсплески чрезвычайно кратковременны, и поэтому весьма трудно получить данные об изменении их интенсивности и перемещении по диску Солнца. Кроме того, интенсивность этого вида солнечного радиоизлучения различна в зависимости от направления. Существуют, например, направления, где интенсивность такого излучения максимальна. Но именно эта фокусировка излучения не наблюдается с Земли, так как наличие только одной точки наблюдения (с Земли) не позволяет получить пространственную структуру рассматриваемого явления.

С целью избежать этого недостатка наземных наблюдений при проведении эксперимента по программе «Стерео» использовался космический аппарат – автоматическая межпланетная станция «Марс-3». Наличие далеко разнесенных в пространстве двух точек наблюдения (с Земли и с борта станции) позволило получить пространственную (стереоскопическую) картину излучения солнечных радиовсплесков (отсюда и название экспериментов – «Стерео»).

Аппаратура «Стерео-1», установленная на борту автоматической межпланетной станции «Марс-3» (рис. 1), состояла из антенны, предусилителя, приемника, блока памяти и системы сжатия данных. Антенна массой около 600 г, аналогичная телевизионной, была смонтирована на одной из солнечных панелей станции. Принимаемый антенной– сигнал на частоте 169 МГц поступал через предусилитель в приемник. Программа работы автоматической межпланетной станции была составлена таким образом, чтобы аппаратура «Стерео-1» могла функционировать 1 ч в сутки. Одновременно с работой бортовой аппаратуры осуществлялись наземные наблюдения радиоизлучения Солнца на частоте 169 МГц в Нанси (Франция) и в обсерватории Института земного магнетизма, ионосферы и распространения радиоволн АН-СССР.


Рис. 1. Советская автоматическая межпланетная станция «Марс-3». Слева, на солнечной панели, видна антенна прибора «Стерео-1».

В связи с тем что информация передавалась на Землю один раз в неделю, научная аппаратура была дополнена блоком памяти французского производства и системой сжатия данных, разработанной советскими учеными. Система сжатия позволила передавать на Землю всю информацию, регистрируемую аппаратурой «Стерео-1», и сыграла существенную роль в конечном успехе эксперимента «Стерео». Так, например, солнечная активность, проявляемая в радиоизлучении на частоте 169 МГц, имеет довольно длительные периоды «спокойствия», и получаемая в это время информация не представляет особого интереса. Использование же системы сжатия позволяло исключать информацию о периодах «спокойствия», и на Землю передавались только данные, касающиеся радиовсплесков.

Занимаясь обработкой и интерпретацией данных эксперимента «Стерео-1», полученных с помощью станции «Марс-3», специалисты обеих стран одновременно подготавливали новую космическую программу радиоастрономических экспериментов – проект «Стерео-5». Может возникнуть вопрос: почему «Стерео-5», ведь он был только вторым в серии экспериментов «Стерео»? Дело в том, что из проектов «Стерео-2, -3, -4 и -5», предложенных учеными, именно последнему было отдано предпочтение.

В окончательном варианте программа эксперимента «Стерео-5» должна была решить следующие задачи:

1) измерение на Земле и на борту межпланетной станции временных сдвигов радиовсплесков Солнца на частотах 30 и 60 МГц с целью изучить направление движения пучков солнечных частиц;

2) исследование направленности радиоизлучения Солнца на частотах 30 и 60 МГц. Вторая задача аналогична той, которая решалась в ходе эксперимента «Стерео-1», но для нового диапазона частот.

В комплект аппаратуры «Стерео-5», входили две антенны (для приема радиоизлучения на частотах 30 и 60 МГц), предусилители и приемник. Так же как и в «Стерео-1», использовались блоки памяти и система сжатия данных. Аппаратура «Стерео-5» была установлена на советских автоматических межпланетных станциях «Марс-6 и -7», стартовавших 5 и 9 августа 1973 г.

Эксперименты «Стерео-1 и -5» позволили получить ценные результаты, касающиеся свойств солнечных радиовсплесков. В частности, измерение направленности дало возможность построить модель нижней короны Солнца, причем эта модель значительно отличается от предложенных ранее моделей со сферической симметрией.

Таким образом, была реализована качественно новая методика изучения структуры солнечной нижней короны – области, исследование которой с помощью наземных методов пока недостаточно эффективно. Причем анализ распространения радиоволн от радиовсплесков основывался на измерениях, выполняемых одновременно с двух точек наблюдения. Как будет видно из дальнейшего, метод стереоскопических наблюдений широко используется советскими и французскими учеными для исследования излучения Солнца и звезд не только в радио-, но и в других диапазонах (гамма-, рентгеновском и т. д.).

Внеатмосферная астрономия. Из рис. 2 с очевидностью следует, что атмосфера Земли пропускает к своей поверхности только малую часть из всего спектра космического электромагнитного излучения. Появление воздушных (баллоны, самолеты), а затем и космических средств дало в руки исследователей мощное орудие для изучения электромагнитного космического излучения во всем спектральном диапазоне, что представляет огромные возможности для решения фундаментальных проблем астрономии. Особенно важно это для ультрафиолетового, гамма– и рентгеновского диапазонов.

Совместные советско-французские эксперименты в этих новейших областях исследований дали интересные результаты, позволившие понять природу многих физических процессов, протекающих во Вселенной.

Ультрафиолетовая астрономия. Советско-французский эксперимент «Галактика», проведенный с помощью аппаратуры, установленной на автоматических станциях «Прогноз-6 и -7», предназначался для изучения галактических источников ультрафиолетового излучения. В состав прибора «Галактика» входит спектрометр с вогнутой дифракционной решеткой (R = 25 см, 600 штрих/мм, покрытие Al + MgF2). Спектр в интервале длин волн 100–190 нм получался путем сканирования с шагом 5,3 нм, и за один ход сканирования проводились 14 измерений интенсивности в различных участках спектра. Во время работы приборов на спутниках «Прогноз-6 и -7» было получено около 6000 спектров, в основном излучения области Млечного пути.


Рис. 2. Непрозрачность атмосферы Земли (заштрихованная область) для различных диапазонов длин волн и высоты

Первые результаты показали, что интенсивность излучения атомарного водорода в линии Lα (с длиной волны 121,6 нм) меняется от 170 Рл (в апогее) до 430 Рл (в перигее).[5]5
  1 релей (Рл) = 10 фотонов/(с см2 • 4π• ср).


[Закрыть]
Однако в области радиационных поясов Земли (между апогеем и перигеем) эта величина может достигать 1200 Рл. Причем было обнаружено, что средняя величина интенсивности излучения для длины волны 150 нм составляет 1,55 10–8 эрг • с–1 • см–2 • ср–2. А в области созвездия Рыбы (вне Галактики). Для Млечного пути интенсивность фона почти в 3 раза больше.

Кроме своих основных научных целей, эксперимент «Галактика» одновременно предназначался для отработки новой методики космических исследований, являлся как бы начальным этапом подготовки следующих, более сложных советско-французских экспериментов в области ультрафиолетовой астрономии. В нем проверялись правомочность многих технических решений и возможность применения выбранных электронных элементов и светоприемных приборов.

Гамма– и рентгеновская астрономия. Первым совместным экспериментом по изучению солнечного гамма– и рентгеновского излучения стал эксперимент, проведенный в 1972 г. с помощью прибора «Снег-1», установленного на станции «Прогноз-2». Этот прибор представляет собой спектрометр энергии нейтронов и гамма-квантов, в нем регистрировались нейтроны в области энергий 0,981 – 16 МэВ и гамма-кванты в области энергий 0,35–11,8 МэВ. Особо интересная информация в эксперименте была получена во время солнечных вспышек в августе 1972 г.

В середине июля 1972 г. на Солнце отмечалось несколько небольших вспышек, сопровождавшихся возрастанием градиента магнитного поля. В конце июля – начале августа в этой области произошли мощные хромосферные вспышки. Наиболее интенсивные из них наблюдались 2, 4 и 7 августа. Анализ данных, полученных с помощью приборов «Прогноза-2», в частности прибора «Снег-1», позволил советским и французским ученым показать, что наблюдаемые явления связаны с генерацией линейчатого гамма-излучения, указывающего на протекание ядерных реакций на Солнце во время солнечных вспышек. По характеристикам всплесков гамма-излучения удалось определить химический состав и плотность солнечной атмосферы в области вспышки. На основании полученных данных ученые рассчитали качественную модель развития вспышечного события.

Если первый советско-французский эксперимент по гамма– и рентгеновской астрономии посвящался Солнцу, то следующие подобные эксперименты предназначались для обнаружения и локализации дискретных космических источников гамма-излучения. Эти эксперименты получили названия «Снег-2МП», «Снег-2МЗ», «Снег-3». Общее, если можно так сказать, «родовое», название «Снег» происходит от наименования первого прибора, которое является сокращением полного названия: «Спектрометр НЕйтронов и Гамма-излучения». Интересно отметить, что французское название этого же прибора SIGNE не является переводом русского слова «Снег», и также представляет собой аббревиатуру полного французского наименования прибора.

Решение о проведении спутниковых экспериментов по исследованию космического гамма-излучения несолнечного происхождения было принято осенью 1974 г. на очередном ежегодном совещании по советско-французскому сотрудничеству в изучении космоса. Назначение экспериментов «Снег-2МП», «Снег-2МЗ» и «Снег-3» состояло в решении трех основных задач:

поиск гамма– и рентгеновских всплесков и их локализация, определение временной структуры и энергетического спектра;

поиск дискретных гамма– и рентгеновских источников и их классификация;

измерение диффузного гамма– и рентгеновского фона в области энергий более 20 кэВ.

Для проведения такого комплексного эксперимента предполагались наблюдения гамма-излучения на нескольких космических аппаратах, что связано с решением очень сложных организационных задач. Необходимо было осуществить в течение нескольких месяцев запуски трех совершенно различных космических аппаратов – искусственный спутник Земли «Снег-3» на низкую околоземную орбиту, спутник «Прогноз» (рис. 3) на высокоапогейную орбиту и, наконец, межпланетную станцию к Венере. (Конечно, для двух последних исследование космического гамма-излучения не являлось единственной, а тем более основной задачей). Но все трудности были преодолены, и комплексный эксперимент, который иногда называют «ВГС» («Всплеск-Гамма-Стерео»), успешно осуществился.

Первой начала работать научная аппаратура на французском спутнике «Снег-3», выведенном на орбиту с помощью советской ракеты-носителя 17 июня 1977 г. Однако прежде чем запустить французский спутник на требуемую орбиту, необходимо было срочно решить ряд сложных проблем конструктивного характера, в частности, уменьшить вибрационные перегрузки и тепловые потоки, направленные к спутнику после сброса головного обтекателя. С этой целью в Тулузском центре КНЕС для гашения вибраций был изготовлен специальный переходник, через который спутник крепился к последней ступени ракеты-носителя. Переходник имел амортизаторы, предохраняющие спутник от разрушающего действия вибраций. Проблема уменьшения теплового потока к спутнику была также успешно решена: специалисты предложили сбросить головной обтекатель на больших высотах, где меньше плотность атмосферы и, следовательно, меньше тепловой поток.


Рис. 3. Общий вид советского спутника «Прогноз-3»

Значительную часть аппаратуры спутника составляла система направленного детектирования, которая состояла из нескольких сцинтилляторов, снабженных фотоэлектронными умножителями (ФЭУ).

Основной детектор из кристалла иодистого натрия размещается в полом цилиндре из кристаллов иодистого цезия.

Детектор обладает хорошим энергетическим (10 %) и угловым (около 2°) разрешением. Для расширения полосы наблюдений ось детектора составляет с осью вращения спутника 10°, и при поле зрения прибора в 20° за каждый оборот спутника просматривается полоса в 40°. Таким образом, за год можно наблюдать достаточную протяженную область центра Галактики, в котором, как полагают, находятся многочисленные дискретные источники гамма-излучения (рис. 4), а также область галактического антицентра, относительно бедную этими источниками.

Уже предварительная обработка данных эксперимента «Снег-3» позволила получить новые данные об источниках гамма– и рентгеновского излучений. Так, например, были зарегистрированы источники рентгеновского излучения в области центра Галактики (июль 1977 г.) и области Крабовидной туманности (ноябрь, декабрь 1977 г. – январь 1978 г.). Причем в области центра Галактики наряду с большим числом рентгеновских источников низких энергий наблюдали достаточно интенсивные источники (GX3 + 1, GX5 – 1).

В результате эксперимента «Снег-3» получено много данных о всплесках гамма-излучения различной интенсивности. Особое внимание привлек всплеск гамма-излучения 10 ноября 1977 г., который также был зарегистрирован прибором «Снег-2МП» на «Прогнозе-6» и аппаратурой западноевропейской станции «Гелиос». Длительность всплеска гамма-излучения составила около 1 с. Методом триангуляции достигнута локализация источника.

Прибор «Снег-2МП» был установлен на спутниках «Прогноз-6 и -7», выведенных на орбиты соответственно в сентябре 1977 г. и в октябре 1978 г. В состав этого прибора входят три детектора, один из них установлен на верхней плите, а два других – на боковой стороне спутника.

Верхний всенаправленный детектор предназначен для изучения гамма– и рентгеновских всплесков. В качестве чувствительного элемента используется кристалл иодистого натрия диаметром 90 мм и толщиной 37 мм, окруженный пластическим сцинтиллятором. Обе части оптически изолированы и снабжены отдельными ФЭУ. Этот детектор позволяет получить временное и амплитудное распределения гамма-квантов в области энергий 80 кэВ – 3 МэВ.

С помощью двух боковых узконаправленных детекторов регистрировали гамма-излучение в области энергий 20 кэВ – 1 МэВ вблизи плоскости эклиптики (как в солнечном, так и в антисолнечном направлениях). Детекторы содержат анализирующий кристалл иодистого натрия диаметром 38 мм и толщиной 14 мм, окруженный цилиндром из активной защиты (кристаллом йодистого цезия).


Рис. 4. Область неба с зоной, просматриваемой приборами спутника «Снег-3» за год. Указаны некоторые объекты исследований

Три детектора прибора «Снег-2МП», установленного на спутнике «Прогноз-6», зарегистрировали около десятка всплесков гамма-излучения, в том числе всплеск 20 октября 1977 г. (который также наблюдался на космических аппаратах «Гелиос», «Вела-5», «ХЕАО-А»), всплеск 29 октября 1977 г. («Вела-5», «Гелиос») и всплеск 10 ноября 1977 г. («Снег-3», «Гелиос»). В эксперименте «Снег-2МП» наблюдали также большое количество всплесков гамма-излучения солнечного происхождения.

Прибор «Снег-2МЗ», установленный на автоматических межпланетных станциях «Венера-11 и -12», состоит из двух всенаправленных детекторов, по конструкции подобных верхнему детектору «Снега-2МП», но предназначенных для исследований в более узкой области энергий (80 кэВ – 1 МэВ). Они расположены на верхней и нижней плоскостях автоматической станции, с тем чтобы можно было наблюдать всплески гамма-излучения из любой точки небесной сферы. Только за три месяца работы приборов «Снег-2МП» и «Снег-2МЗ» удалось зарегистрировать 50 всплесков гамма-излучения (за предыдущие 10 лет таких наблюдений обнаружено менее 100 всплесков).

Геофизика, космические лучи. Исследованию корпускулярного излучения Солнца и взаимодействию этого излучения с магнитным полем Земли отводилось значительное место в совместных экспериментах советских и французских ученых. Изучению солнечной плазмы с различных расстояний от Солнца были посвящены эксперименты «Калипсо», «Жемо-Т», «Жемо-С», «Жемо-С2».

Прибор, установленный на борту спутника «Прогноз-2» для осуществления эксперимента «Калипсо», представляет собой спектрометр для измерения потоков электронов и протонов в области энергий 0,4 – 17 кэВ в 16 участках энергетического спектра. Измерения ионных и электронных спектров, проводимые прибором «Калипсо» непрерывно, в течение более пяти месяцев позволили получить обширный материал о солнечном ветре, потоках плазмы в переходном слое, положений фронта околоземной ударной волны и о потоках плазмы внутри магнитосферы. Кроме того, в данном эксперименте получена чрезвычайно интересная информация о вспышках на Солнце в августе 1972 г. В частности, впервые наблюдались некоторые необычайно интенсивные явления в межпланетной среде и в околоземном космическом пространстве.

На советских автоматических межпланетных станциях «Марс-6 и -7» была установлена аппаратура для проведения совместных советско-французских экспериментов «Жемо-С и – Т». «Жемо» в переводе с французского означает «близнецы». И это название не случайно. Во-первых, оба проекта близки по задачам и в известной степени дополняют друг друга. Во-вторых, приборы для проведения того и другого эксперимента установлены на двух одинаковых по конструкции космических станциях.

Однако каждый из двух экспериментов имеет свое, пусть и очень короткое, собственное имя – «С» и «Т», «С» – сокращенное обозначение французского города Сакле, где находится Лаборатория электронной физики Центра ядерных исследований, специалисты которой разработали и изготовили приборы для эксперимента «Жемо-С». Первая буква названия французского города Тулуза стала шифром для наименования другого эксперимента. Именно в Центре изучения космических лучей, расположенном в этом городе, подготавливалась аппаратура «Жемо-Т».


Рис. 5. Скорость солнечного ветра и температура, измеренные во время эксперимента «Жемо-Т» (13 августа 1973 г.)

Осуществляя программу «Жемо», ученые СССР и Франции получили данные о свойствах солнечного ветра спокойного Солнца и об изменении этих свойств на расстояниях от 1,0 до 1,52 а. е. от Солнца, т. е. практически за все время движения межпланетных станций. Результаты этих экспериментов дали ценную информацию о распространении межпланетных ударных волн и их связи с солнечными вспышками, а также о соотношениях между характеристиками межпланетной среды, Солнца и магнитосферными явлениями.

Научная аппаратура «Жемо-Т» состоит из двух спектрометров (ионов гелия и протонов), работающих в области энергий 100 эВ – 10 кэВ. Типичный пример полученных в эксперименте «Жемо-Т» характеристик невозмущенного солнечного ветра приведен на рис. 5.

Прибор «Жемо-С», предназначенный для регистрации протонов и электронов в области энергий 3 – 150 МэВ, а также альфа-частиц в области 180–500 МэВ, позволил подробно изучить движение солнечных частиц между Землей и Марсом.

Исследования корпускулярных потоков Солнца были продолжены на спутниках «Прогноз-6 и -7», на которых стояли приборы «Жемо-С2», являющиеся модернизацией прибора «Жемо-С».

В ходе экспериментов «Калипсо» и «Жемо» наряду с исследованием состава и движения солнечной плазмы также изучалось ее взаимодействие с магнитосферой Земли. Кроме этих экспериментов, ученые СССР и Франции осуществили еще ряд совместных экспериментов по изучению земной магнитосферы. Один из них, «Аркад», предназначался для исследования физических процессов в магнитосфере и верхней атмосфере Земли. При этом, в частности, изучался процесс вторжения частиц высоких энергий в атмосферу Земли в области высоких широт (данный процесс вызывает удивительное явление природы – полярные сияния).


    Ваша оценка произведения:

Популярные книги за неделю