
Текст книги "Секретное оружие третьего рейха"
Автор книги: Станислав Славин
Жанры:
История
,сообщить о нарушении
Текущая страница: 14 (всего у книги 34 страниц)
Не менее важен эксперимент профессора Боте из Гейдельберга, проведенный в июне 1940 года. Он показывает, что абсолютно чистый углерод тоже можно использовать в качестве замедлителя, а ведь получить это вещество куда проще, чем тяжелую воду.
В Берлине, в Институте физики, Вейзцзеккер и его помощники начали конструировать будущий реактор. В конце февраля его решили строить «по схеме профессора Хартека»: две тонны оксида урана и полтонны тяжелой воды расположатся вперемешку, в пять или шесть слоев. Высота реактора – 70—90 сантиметров.
Можно было построить и сферический реактор, хотя это намного труднее. Зато топлива и тяжелой воды для него требуется меньше: 1,2 тонны и 320 литров. Кстати, расчеты показали, что, если покрыть любой реактор отражательной оболочкой из углерода, нейтроны не будут его покидать и размеры еще можно уменьшить.
Впрочем, в феврале 1940 года Гейзенберг, вернувшись к докладной записке, поданной два месяца назад, дополнил ее подробным математическим расчетом. К сожалению для немецкой науки, он пришел к выводу, что использовать чистый графит в качестве замедлителя вовсе не так эффективно, как показалось поначалу. Гелий тоже не годится, ибо реактор окажется слишком громоздким. Остается тяжелая вода.
Дибнер провел совещание, на котором обсуждались все проблемы, связанные с тяжелой водой. Участвовавшие в нем Гейзенберг, физик Карл Вирц и специалист по физической химии Карл Фридрих Бонхеффер, пришли к заключению, что трудностей впереди еще очень много. Гейзенберг предложил взять вначале пару литров тяжелой воды и проверить, насколько она проницаема для нейтронов. Дибнер пообещал закупить у норвежцев ведро тяжелой воды. Только убедившись на практике, что она годится для работы реактора, стоило приступать к строительству собственной установки для ее выпуска.
Неделю спустя Хартек послал письмо своим военным шефам: судя по расчетам Гейзенберга, уран и тяжелая вода понадобятся нам для реактора в одинаковых пропорциях, то есть надо раздобыть примерно две тонны тяжелой воды. И тут уж на норвежцев нет никакой надежды. Надо самим налаживать ее производство.
Однако для получения всего одной тонны тяжелой воды с помощью электролиза, как это делают норвежцы, придется израсходовать на выработку электроэнергии сотни тысяч тонн угля. Военных такая картина ужаснула.
Тогда Хартек вспомнил, что несколько лет тому назад вместе с Зюссом они разработали новый метод производства тяжелой воды с помощью каталитического обмена. Однако тогда никого он не заинтересовал, поскольку проще было покупать тяжелую воду для лабораторных опытов у норвежцев. Теперь же иное дело. Похоже, что так добывать тяжелую воду будет дешевле, чем электролитическим способом.
Вскоре, с согласия военных, решили построить опытную установку. Хартек писал Бонхефферу, что установку для каталитического обмена ему хотелось бы разместить при каком-нибудь уже действующем предприятии, где занимаются гидрогенизацией. В конце февраля он получил ответное письмо. В нем говорилось, что на знаменитом заводе «Лейнаверке» «очень заинтересовались этой идеей». С технической точки зрения проблем не предвиделось, «дело лишь за катализатором».
Тем временем в Норвегию приехал представитель концерна «ИГ Фарбениндустри», который своими денежными вливаниями содействовал работе фабрики в Рьюкене. Но не текущие дела интересовали его и не финансовая отчетность – представитель всемогущего концерна явился, чтобы затребовать у норвежцев все хранящиеся у них запасы тяжелой воды: 185 килограммов чистотой 99,6 и 99,9 процентов. «Далее же, – обольщал он руководителей фирмы, – последует новый обширный заказ. Единственное, в чем трудность, далее нам потребуется не 10 килограммов воды в месяц, а целых 100».
Удивленные собеседники робко поинтересовались, зачем нужны столь огромные по тем временам запасы тяжелой воды. Однако немец ловко уклонился от прямого ответа. Норвежцам все это не понравилось, и в феврале 1940 года руководители фирмы «Norsк-Hydro» официально известили своих немецких партнеров, что, к сожалению, не смогут выполнить такой большой заказ.
Видимо, они стали подозревать, для чего немцам нужно столько тяжелой воды. Ведь еще летом 1939 года Ф. Жолио-Кюри окончательно убедился, что цепная реакция деления ядер урана возможна. Более того, он создал модель уранового реактора, состоящую из блоков оксида урана, погруженных в обычную воду, которая должна служить «замедлителем» нейтронов. Однако вода в основном абсорбировала электроны, а не тормозила их. В феврале 1940 года Жолио-Кюри узнает, что на складе норвежской фирмы «Norsк-Hydro» хранится 185 килограммов тяжелой воды, и обращается к министру вооружений Франции Раулю Дотри с просьбой закупить эти запасы воды для проведения важнейшего эксперимента. И она была отправлена к французам.
Так что, когда весной 1940 года немецкие войска вторглись в Норвегию и после тяжелых боев 3 мая захватили фабрику, склады ее оказались пусты.
Ни льда, ни урана…
В начале апреля 1940 года – в то время как французские физики начали, наконец, эксперименты с тяжелой водой, добытой ими с таким трудом, – Пауль Хартек посетил завод «Лейнаверке». Он загорелся новой идеей и спешил побеседовать с доктором Херольдом, директором завода по научной части и ярым национал-социалистом.
– В моем реакторе урановый оксид будет помещен в сухой лед, – рассуждал Хартек. – Сухой лед или твердая углекислота легко подвергается обработке и сравнительно долго хранится при температуре минус 78 градусов, медленно испаряясь. Таким образом уран при делении не будет особо нагреваться…
Хартек слыл блестящим экспериментатором. В начале тридцатых годов он работал некоторое время в лаборатории Резерфорда. В 1934 году вместе с Э. Резерфордом и М. Олифантом он открыл тритий – радиоактивный изотоп водорода с массовым числом 3. Вернувшись домой, он ужаснулся, поняв, как плохо поставлена экспериментальная работа в немецких лабораториях.
– Мы по всем статьям уступаем британцам, и, если хотим, чтобы немецкая наука удержала свои ведущие позиции, обязаны наверстать упущенное, – заявил он без обиняков коллегам.
Этот вывод оскорбил многих немцев, полагавших, что «Германия превыше всего», и они, при случае, готовы были сунуть палки в колеса критикану.
Но тут Хартеку повезло. Доктор Херольд, презрев интриги, предложил исследователю, выглядевшему как правоверный нацист (ученый носил такие же усики, как сам фюрер), целый вагон углекислоты, да еще и бесплатно.
Итак, с сухим льдом проблем не было. Хартек уже выбрал подвал, в котором хотел проводить эксперимент, но следовало позаботиться и об уране. Он попросил Дибнера прислать от ста до трехсот килограммов.
При этом обольщенный открывшимися перспективами ученый не учел одного: не он один мечтал построить первый в стране урановый реактор. Весной 1940 года заявки слетались к Дибнеру «как коршуны». Гейзенберг домогался целой тонны уранового оксида. Дибнер, словно нерадивый школьник, отчитывался перед маститым профессором: «Сейчас у нас всего 150 килограммов, к концу мая будет 600 килограммов, и только к концу июня получим тонну».
В целях экономии осторожный Дибнер намекнул Гейзенбергу, что неплохо было ему провести эксперимент вместе с Хартеком. Однако нобелевский лауреат, не желая расставаться со своими планами, снисходительно отметил ту спешку, с коей его юный коллега порывался проверить собственную гипотезу:
«Ваши опыты нужно предварить необходимыми на то измерениями, и я сам хотел бы заняться оными, – писал Гейзенберг. – Я прошу Вас удовлетвориться пока лишь ста килограммами». Сам Гейзенберг тоже готов был идти на жертвы ради успеха коллеги и, отказавшись от тонны оксида урана, добивался от Дибнера всего нескольких сот килограммов.
Хартек мрачнел, скользя от одной строчки письма к другой. В ближайшие недели он получит бесплатно десять тонн сухого льда. Великолепный подарок от добродушного инженера! Позже, в середине лета, сухого льда так просто уже не достать. С июня все его запасы поступают лишь на продовольственные склады, и тогда мечта о реакторе «расколется о грубую прозу жизни». О каких предварительных измерениях, доступных лишь ему одному, говорит Гейзенберг?
Профессор Кнауэр, мой помощник, уже подготовился к ним, отвечал Хартек оппоненту. «Не хватает лишь 38-го препарата [4]4
то есть оксида урана – прим. авт.
[Закрыть], чтобы поставить решающий опыт. Мы спешили изо всех сил, мы сделали все нужные приготовления, ведь сухой лед пролежит у нас не больше недели. Поэтому нам крайне важно получить оксид урана в период с 20 мая по 10 июня». И его нужно как можно больше! «Я потому, – раскрывал карты Хартек, – просил у Дибнера всего от 100 до 300 килограммов, что не подозревал, что у него может найтись еще больше оксида урана».«Вы же понимаете, – убеждал он своего собрата и соперника, – что результаты опыта тем убедительнее, чем больше препарата мы используем, и потому я буду Вам очень благодарен, если… удастся получить как можно больше оксида».
В начале мая 1940 года место для будущего реактора уже было приготовлено. Несмотря на происки Гейзенберга, все складывалось удачно. Дибнер обещал-таки «несколько сот килограммов» оксида урана. Все же, страхуя себя от «неразберихи», Хартек просил верного Херольда задержать отгрузку сухого льда, «пока этого возможно». Шестого мая он позвонил Дибнеру и сказал, что для нормального эксперимента нужно не менее шестисот килограммов оксида. Девятого мая, изнывая от ожидания, он написал письмо Дибнеру, надеясь узнать, сколько ему еще ждать. Лишь в последние дни мая в Гамбург привезли вожделенный оксид, но его оказалось ничтожно мало. Слова напутственной записки, присланной профессором Позе, отдавали издевкой: «По поручению отдела вооружений сухопутных войск пересылаем Вам сегодня 50 килограммов оксида 38-го препарата. Хайль, Гитлер!»
Мечтайте, Хартек, мечтайте!
Впрочем, через несколько дней сердобольный петербуржец Риль прислал «гамбургскому мечтателю» еще 135 килограммов «от себя лично». Но на том «урановый ручеек» иссяк.
Таким образом в начале июня лаборатория Хартека располагала 185 килограммами оксида урана и 15 тоннами сухого льда. Профессор изготовил изо льда блок размером 180 х 180 х 200 сантиметров, просверлил в нем пять шахт и заполнил их ураном. В середине блока поместил радиево-бериллиевый источник нейтронов. Третьего июня он извещает своих военных шефов, мастеров «профессорской уравниловки», что в течение недели эксперимент будет завершен.
При этом он умолчал, что проводить задуманный опыт с таким малым количеством урана вообще-то бессмысленно – цепная реакция не пойдет. Вся эта неделя «тщательных измерений» была только демонстрацией амбиций. Хартеку удалось измерить лишь уровень абсорбции нейтронов в уране, да еще их диффузионную длину в твердой углекислоте.
В конце августа 1940 года он было заикнулся о том, что надо повторить эксперимент, взяв на этот раз две тонны оксида урана и огромный пятиметровый куб сухого льда. Однако коллеги так злословили по поводу его планов, что «настырный критикан» дрогнул и зарекся проводить новый эксперимент.
Так важное начинание было погублено простой оппозицией «истинных ученых».
* * *
Тем временем за океаном дела обстояли так. 17 марта 1939 года в Вашингтоне Э. Ферми встречается с сотрудниками морского министерства и объясняет им, что немцы могут создать оружие нового типа – атомную бомбу. Его вежливо выслушали, да и только. Тогда он обращается к коллегам и после ряда консультаций 2 августа 1939 года Эйнштейн, Ферми, Силард и Вигнер направляют коллективное письмо президенту США Ф. Рузвельту, в котором сообщают о возможности изготовления бомбы нового типа, способной уничтожать целые города. И снова – ни ответа, ни привета…
7 марта 1940 года подзуживаемый коллегами Эйнштейн направляет второе письмо Рузвельту.
Но дело тронулось с мертвой точки лишь в конце апреля 1940 года, когда в США приехал Петер Дебай и рассказал об обстоятельствах своего скандального увольнения. Через несколько дней в «Нью-Йорк таймс» появилась пространная статья, посвященная «урановому проекту» в Германии. Она была выдержана в самых мрачных тонах.
В мае 1940 года в Лондоне стало известно, что немцы намерены увеличить производство тяжелой воды на фабрике в норвежском городе Рьюкан до полутора тонн ежегодно. Специалисты пытались подсчитать возможный ущерб в случае взрыва немецкой «сверхбомбы» в одном из крупных английских городов.
В июне 1940 года немецкие войска заняли Париж. Немедленно туда приехали Дибнер и Шуман. Вот уже они стоят перед дверями лаборатории Кюри. Что их ждет там? Дверь распахнулась. Перед ними был циклотрон, воплощение немецкой научной мечты. Американский циклотрон, смонтированный, правда, наполовину. Как его не хватало в Берлине!
Что касается его бывших хозяев, то все они, «наперегонки с немецкими передовыми частями», поспешили покинуть Париж и теперь уже обретались в Англии. В Париже остался лишь Жолио. Дибнер встретился с этим наследником клана Кюри, и тот, в мрачном бессилии, выслушал «свежие научные новости»: немецкие ученые собираются отладить циклотрон и проводить на нем эксперименты. Сам он отказывается принимать в них участие. Однако в июле «парижская группа» физиков под руководством профессора Вольфганга Гентнера все же принимается за работу.
По горячим следам немцы пытались восстановить ход работ в лаборатории Кюри. Некоторые находки могли стать важными аргументами в немецких научных спорах. Например, французы, как и Хартек, считали, что «урановое топливо и тяжелую воду следует размещать в реакторе не вперемешку, а отдельными слоями». По их мнению, вещество-замедлитель нужно вводить в урановую массу в виде «кубиков или шаров», а не наоборот. Так, они получили весьма обнадеживающие результаты, когда внедрили в шар из оксида урана кубики парафина (парафин тоже служит хорошим замедлителем). Планировались и другие опыты: с замедлителями из графита и тяжелой воды.
Итак, минуло полтора года с тех пор, как Ган и Штрассман открыли цепную реакцию. За это время немецкие физики-ядерщики добились немалых успехов в работе над атомным проектом. Они располагали уже тысячами тонн урановых соединений; в их владении оказалась фабрика по выпуску тяжелой воды, хотя склады ее были пусты; у них появился циклотрон, пусть и недостроенный; химическая промышленность Германии была ведущей в мире; наконец, к работе были привлечены лучшие физики, химики и инженеры страны.
Пятнадцатого июня 1940 года американский журнал «Physical Review» опубликовал статью, в которой сообщалось об открытии нового трансуранового элемента (позднее его назовут плутонием). Статья вызвала возмущение видных британских ученых, считавших, что в военное время публикация подобных материалов должна быть запрещена. И они в какой-то мере были правы – опубликованная статья попалась на глаза Вейцзеккеру.
Барон Карл Фридрих фон Вейцзеккер, выезжая из дома, любил прихватить с собой свежий номер «Физикл ревю». Расположившись на сиденье в метро, он разворачивал журнал к вящему ужасу своих бдительных соседей, взиравших на то, как в военном Берлине некий подозрительный иностранец, обличьем напоминающий шпиона, ничего не страшась, спокойно почитывает вражескую прессу.
Так, в один из июльских дней в его руках оказался полученный только что, месячной давности журнал, в котором его внимание привлекла статья об открытии плутония. Он вновь и вновь пробегал ее взглядом, чувствуя, как созвучны выводы его заокеанских коллег его собственным недавним догадкам. Новый трансурановый элемент можно получить из изотопа урана U-238.
«Значит, мы можем превратить этот изотоп в новый „трансуран“, а затем с помощью простейших химических методов отделить его от U-235… „Новый элемент, как пояснил он в записке, поданной в отдел вооружений сухопутных войск, может быть использован трояким образом, в том числе «в качестве взрывчатого вещества“.
В мае 1940 года профессор Хартек не только бомбардировал Берлин просьбами прислать немножко урана, но еще и готовился провести опыт по разделению изотопов U-235 и U-238. Напомним, что для этого ему нужен был гексафторид урана – газ необычайно агрессивный. Он разъедал часть материалов, из которых был изготовлен «диффузор». Предстояло выяснить, какие металлы выдерживают соприкосновение с ним, а какие разрушаются.
Во время опытов образцы из стали, никеля и других металлов подвергали действию этого газа в течение 14 часов при температуре 100 градусов Цельсия. По окончании опытов образцы еще раз взвесили. Вес никеля ничуть не изменился, значит, он не корродировал. Опыт повторили уже при 350 градусах, но и это испытание металл выдержал.
Огорчало одно: в то время никель в Германии было не достать. Его добывали в Канаде, Австралии, во французских колониях, но не в странах-союзниках. Еще одна гримаса фортуны! Что же делать?
Десятого июня руководители атомного проекта обратились к мюнхенскому профессору Карлу Клузиусу (он-то и разработал метод «термодиффузии», о котором мы говорили). Итак, его вопрошали, можно ли заменить гексафторид урана – газ, никак не подходящий ни для промышленного его использования, ни даже для проведения опытов, – каким-либо другим летучим соединением урана? Через восемь дней пришел ответ. Профессор мог порекомендовать лишь пентахлорид урана – к чьим недостаткам, однако, можно отнести свойства, еще более нетерпимые, чем свойства гексафторида урана.
Похоже, что этот вредоносный газ ничем не заменить. На заводе концерна «ИГ Фарбениндустри» в Леверкузене взялись сооружать установку по изготовлению гексафторида.
Безжалостно развеяв прежние мечты, Карл Клузиус поспешил вновь обнадежить военных. «При нынешнем уровне наших знаний о летучих урановых соединениях следует рассчитывать на серьезный успех лишь в том случае, если мы откажемся от газообразных соединений, заменив их жидкими». Профессор сам вызвался разработать новый метод диффузии изотопов.
Примерно в то же время «жидкостной» метод предложил и физик из Гейдельберга Р. Фляйшман. Водный раствор нитрата урана смешивается с раствором этого же нитрата в эфире. Как показывает теория, легкие изотопы урана (U-235) останутся в основном в эфире. Теперь с помощью нехитрых физических методов можно их изолировать.
В октябре 1940 года в Лейпциге пришлось проводить специальную конференцию, чтобы обсудить многочисленные трудности, возникшие при разделении изотопов урана. В. Валхер описал электромагнитный метод: крохотные количества изотопов можно выделить с помощью масс-спектроскопа. Х. Мартин говорил об «ультрацентрифуге», которую хотел использовать у себя в Киле. Постепенно, из докладов участников, стало ясно, что немецкие ученые пока не могут предложить надежный метод получения изотопа U-235 в промышленных количествах.
Во многом мешало и отношение властей к науке. Оно, как это случалось не раз, в разные эпохи и разных странах, было настороженным и пренебрежительным. На европейском театре войны вермахт одерживал одну победу за другой. Для этих блестящих побед ему не нужны были ни «супероружие», ни «сверхбомба», ни «чудо-реактор». Простое, проверенное опытом оружие приносило успех. Зачем же было тратить деньги на какие-то загадочные эксперименты? «Все для фронта, все для победы» – этот знакомый нам лозунг витал и в умах немецких вождей.
Для ученых же этот парадный девиз оборачивался иной стороной – мрачной резолюцией «Ничего для науки!» Какое оборудование имели научные лаборатории в канун войны, тем и довольствовались. Ученым оставалось лишь радоваться, что их не выпроваживают штурмовать какой-нибудь норвежский город Рьюкан.
Впрочем, с их научным арсеналом штурмовать тайны атома было ничуть не легче. В Германии не было готового циклотрона – главного оружия физиков-ядерщиков. Те же американцы получили плутоний лишь с помощью циклотрона. Еще в 1938 года Институт физики в Гейдельберге, коим руководил Боте, подал заказ на циклотрон, но обзавелся им (забежим вперед) лишь в 1943 году. Как же тут было не отстать от американцев? Нищая наука проиграет любую битву!
В начале 1940 года барон Манфред фон Арденне, блестящий техник, обратился к профессору Филиппу, одному из помощников Отто Гана, ведавшему его приборами, и предложил встретиться с Герингом и уговорить его хоть чем-то помочь при строительстве «установки по преобразованию атомов». Что вы! Это же бестактно обращаться к нему, минуя руководителей Общества имени императора Вильгельма. В каждом деле нужна своя субординация, хотя что поделаешь, если сам министр образования Бернард Руст совершенно не понимает, насколько важны ядерные исследования? Так, начав с соблюдения приличий, профессор Филипп закончил свой монолог совсем уж неприличным возмущением.
Тогда барон фон Арденне, не отличавшийся особой щепетильностью, нагрянул к министру почт Онезорге (он узнал, что при министерстве есть большой и изобильно финансируемый научно-исследовательский отдел). В самых общих, но многозначительных выражениях он объяснил министру, что благодаря недавним открытиям физиков можно изготавливать особые бомбы и особые реакторы и что американцы уже собираются устанавливать эти реакторы на своих кораблях вместо привычных паровых машин.
Взволнованный министр, отставший было от своего просвещенного века, настолько увлекся речами барона-корреспондента, что при первом удобном случае явился с докладом к Гитлеру и рассказал ему все, что узнал об урановой бомбе.
Однако в конце 1940 года, когда случилось это памятное событие, фюрер был настолько увлечен радостями недавних блицкригов и планами будущих войн, что этот – на его взгляд, эксцентрический – доклад министра лишь раздосадовал его. Фюрер насмешливо бросил:
– Вот как! Пока мои генералы думают, как выиграть войну, мой почтовой министр уже все решил?
Онезорге пришлось ретироваться. Однако он все же не оставил мыслей о чудо-бомбе и решил на свой страх и риск поддержать Арденне – благо, мог выделить на это средства, предназначенные для развития рейхспочты.
Итак, теперь уже три группы немецких ученых работали над атомным проектом. Одной руководил Дибнер, другая бездействовала в Геттингене, третья возникла в Лихтерфельде, в лаборатории, где всем заправлял блестящий изобретатель Арденне.
Ученые из академических институтов встретили «явление Арденне науке» с явным неудовольствием. Образование, полученное им, равно как и методы, им используемые, претили большинству ученых.
В течение четырех семестров он изучал в Берлине физику, математику и химию, но так и не получил ценимый научным цехом диплом. Далек он был и от «дуайена» немецкой физики, Гейзенберга… В общем, он слыл белой вороной, самоучкой, незваным гостем, затесавшимся на праздник научной мысли.
Десятого октября встретились два ученых дворянина. Карл Фридрих фон Вейцзеккер, – возможно, по совету Гейзенберга – посетил «мятежного барона». «В весьма определенных выражениях» Вейцзеккер втолковал ему, что, как и Гейзенберг, считает невозможным создание атомной бомбы. Причина в следующем: эффективное поперечное сечение урана с ростом температуры уменьшается, поэтому цепная реакция постепенно затухает.
Возможно, фон Арденне поверил этим вкрадчивым речам. Во всяком случае вплоть до конца 1940 года он занимается лишь тем, что втолковывает «своему министру», что означает «конструировать установки по превращению атомов». Министр оказался способным учеником. К концу года он выделил Арденне деньги на строительство в Лихтерфельде «ленточного генератора Ван-де-Граафа напряжением в один миллион вольт». Вскоре «просвещенный министр» распорядился оборудовать в Мирсдорфе еще один «почтовый» центр ядерных исследований и оснастить его каскадным генератором. В обеих лабораториях начали строить 60-тонные циклотроны. До тех пор, пока они не были готовы, немецким ученым пришлось довольствоваться циклотроном, найденным в Париже.
В сентябре 1940 года в Париж переселился профессор Вольфганг Гентнер, ведущий специалист по ускорителям, работавший в свое время в Америке, в лаборатории Лоуренса [5]5
в 1930 году Эрнест Лоуренс выдвинул идею циклотрона; позднее в его лаборатории был построен первый в мире циклотрон – прим. ред.
[Закрыть].
В Бельгии, покоренной вермахтом, были найдены большие запасы ураната натрия. Две тонны доставили в Берлин, в лабораторию фон Дросте. Уранат содержал много примесей; вдобавок был очень влажным. Несмотря ни на что, Дросте начал эксперимент. Уранат расфасовали в две тысячи бумажных пакетов. Из них составили солидный куб высотой в метр. Схема опыта напоминала ту, что четыре месяца назад использовал Хартек, вот только Дросте верил, что бумага и вода могут служить замедлителем нейтронов, и потому обошелся без сухого льда. И этот эксперимент завершился ничем – разве что ученым стало ясно, что в уране не должно быть никаких примесей.
Это был последний «промежуточный опыт». В начале октябре 1940 года в Далеме построили лабораторию, или «Дом вирусов». Он находился в стороне от Института физики. Сделано это было не только ради вящей секретности, но и чтобы обезопасить институт. Если случится авария, пострадает лишь этот скромный деревянный барак.
Признаем, что ученые мужи были самонадеянны и опрометчивы, рассчитывая, что дощатые стены спасут от потока радиоактивных частиц. Впрочем, американцы от них недалеко ушли, поскольку воздвигли свой первый реактор на университетском стадионе хоть и под бетонными трибунами, но в центре Чикаго. Лишь наши физики, работавшие, как известно, под руководством Курчатова, постарались убрать свой реактор с глаз подальше. Но кто же знал, что Москва в будущем так разрастется, что и курчатовский ядерный центр окажется ныне в густонаселенном районе столицы?
В общем, так или иначе рейхсфизики строили свою «адскую машину» в центре Берлина. Между тем они ведь знали, как опасно иметь дело с оксидом урана. Хотя он и относится к слаборадиоактивным материалам, зато чрезвычайно ядовит. Прежде чем войти в «Дом вирусов», сами исследователи облачались в респираторы, защитные комбинезоны, обувь, очки.
Первый урановый реактор в «Доме вирусов» представлял собой сводчатый алюминиевый цилиндр. Диаметр и высота его были одинаковы – 1,4 метра. Его до краев заполнили оксидом урана. Слои оксида перемежались тонкими парафиновыми вставками – замедлителем. Цилиндр погрузили в воду, служившую отражателем нейтронов. Никто не знал, как поведет себя реактор.
Последние расчеты, сделанные К. Х. Хеккером, показали, что реактор будет работать, даже если замедлителем послужит парафин. Источник нейтронов (радий/бериллий) помещался в трубке, которую опустили в центр реактора. Однако цепная реакция не наблюдалась. Реактор абсорбировал нейтроны. Через несколько недель опыт повторили. На этот раз проверили две другие схемы реактора, потратив на это 6800 килограммов оксида урана. Замедлителем снова служил парафин. Опять никакого результата! Так Гейзенберг доказал, что невозможно построить реактор на оксиде урана, если в качестве замедлителя брать парафин или обычную воду. Требовалась тяжелая вода, а ее-то как раз все еще и недоставало.
Гейзенберг метался между Лейпцигом и Берлином. В Лейпциге профессор Депель повторил эксперимент с оксидом урана и парафином. Правда, все четыре слоя урана в его реакторе были отделены друг от друга еще и алюминиевыми сферами, в которые их заключили. Опять безуспешно!
Самые интересные результаты были получены в Гейдельберге, где профессор Вальтер Боте и доктор Фламмерсфельд смешали в огромном чане почти 4,5 тонны оксида урана с 435 килограммами воды, а затем с большой точностью измерили размножение нейтронов и их «резонансную абсорбцию» в упомянутых веществах. Оба ученых тоже констатировали, что без тяжелой воды реактор на оксиде урана не будет работать.
После этой череды неудач инициативу захватили военные. Не советуясь с учеными, они решили использовать в последних, важнейших опытах не оксид урана, а металлический уран. Однако фирма «Aуэр», столь выручавшая прежде, не располагала оборудованием для переработки оксида урана в чистый уран. Поэтому доктор Риль обратился за помощью во Франкфурт, к директору фирмы «Degussa» доктору Бервинду. Ведь в 1938—1940 годах тот проделал для Риля схожую работу – превратил оксид тория в двести с лишним килограммов металлического тория.
Оказалось, процессы восстановления что урана, что тория очень похожи. Даже оборудование можно было не менять. Очищенный оксид урана помещали в инертную аргоновую атмосферу, нагревали до 1100 градусов Цельсия и восстанавливали с помощью металлического кальция и хлорида кальция (флюса). Как видите, здесь предпочитали термическое восстановление, а в других странах использовали традиционные электрометаллургические методы. Дело в том, что руководители фирмы были уверены, что получаемый ими уран будет необычайно чист. Однако он содержал даже больше примесей, чем исходный продукт – оксид. Уран оказался безнадежно загрязнен кальцием.
Позднее доктор Хорст Коршинг из Берлина попробовал получить немного чистого урана с помощью электролиза, но Риль посчитал «его возню» делом невыгодным. До конца войны металлический уран поставляла только фирма «Дегусса». К концу 1940 года здесь изготовили уже 280,6 кг этого опасного порошка.
Для сравнения скажем, что в США порошковый уран удалось получить лишь в конце 1942 года. Таким образом, выискивая истоки неудач, мы не вправе упрекать немецкую промышленность, ее рабочих и инженеров. Источник просчетов, ошибок и поражений коренился в умах ученых, их склоках, их поступках, их неверных шагах, их слабостях. Провал немецкого «атомного проекта» стал прежде всего поражением немецкой науки.
Вопрос лишь в том, насколько стремились ученые к успеху и интересовала ли их вообще бомба? Пока что они, хоть и осознавали, что могут заполучить невиданное прежде оружие, сосредоточивали все свои силы лишь на строительстве уранового реактора – то есть их интересовала цель скорее мирная и сугубо научная, чем военная.
В конце 1940 года многим немецким ученым казалось, что по прошествии каких-то нескольких месяцев люди научатся использовать ядерную энергию как в мирных, так и в военных целях. Однако, когда минул намеченный срок, стало ясно, что они находились лишь в самом начале длинного пути, и было уже не понять, мелькает ли свет в том конце длиннейшего туннеля, в которой они вошли… Победа все отдалялась. Генералы Гитлера проиграли в 1941 году блицкриг. Блицкриг в 1941 году проиграли и физики фюрера.
Но мы забежали чуточку вперед…
В середине 1940 года из лаборатории профессора Боте радостно доложили, что замедлителем может служить и графит – материал, чрезвычайно дешевый и имевшийся в изобилии. Как показал опыт, ловко поставленный профессором, диффузионная длина тепловых нейтронов в углероде (а графит и есть кристаллическая модификация углерода) равнялась 61 сантиметру. Если же идеально очистить графит, радовался профессор, этот показатель возрастет до 70 см. Прекрасно! Военные уже обратились к фирме «Сименс» с просьбой о поставках чистейшего графита.