355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Горобченко » Курс «Инженер по расчету и выбору регулирующей арматуры» » Текст книги (страница 2)
Курс «Инженер по расчету и выбору регулирующей арматуры»
  • Текст добавлен: 8 января 2021, 17:30

Текст книги "Курс «Инженер по расчету и выбору регулирующей арматуры»"


Автор книги: Станислав Горобченко



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

Модуль1. Основные положения по расчету и выбору регулирующей арматуры

1.1. Современные средства расчета регулирующей арматуры и приводов

Эффективность и рентабельность зависят от правильного выбора размеров и установки. Вот как об этом говорят специалисты.

«Сегодня программное обеспечение для регулирующей арматуры от большинства производителей довольно продвинуты, и программы включают в себя все необходимые параметры клапана, что позволяют проводить расчеты всего лишь за один или два шага».

Джон Монсен, доктор философии, президент Валин Корпорейшн.

Определение размеров клапана и применение регулирующей арматуры всегда шли рука об руку. Однако, инструменты, доступные для пользователей клапанов, изменились и значительно улучшились со временем. В прошлом, расчеты размеров клапанов выполнялись со специально разработанными логарифмическими линейками. Некоторые из этих логарифмических линеек все еще актуальны сегодня и датируются концом 1930-х годов, до того, как была представлена концепция Сv. Отрасль постепенно адаптировалась с внедрением новых технологий. Примерно в 1978 году несколько производителей клапанов предлагали программы для программируемых калькуляторов HP97, многие из которых включали в себя вычисления шума.

После того как появился персональный компьютер (ПК) Хьюлетт Паккард, несколько производителей арматуры начали предлагать программы подбора размеров для ПК. Сначала они были рудиментарными, требующими, чтобы пользователь вводил конкретные параметры клапана, такие как FL и xT, и как только была рассчитана Сv пользователь должен был искать значение Сv в таблице производителя для определения того, какой клапан будет работать при допустимых степенях хода клапана. Как только это было определено, значения FL и xT, обычно должны были быть отрегулированы вручную. Кроме того, поправки к Сv и FL или xT для эффекта редуцирующих устройств труб часто отсутствовали или были неправильно реализованы. Так как формула для поправки Сv и FL и xT для эффекта трубных редуцирующих устройств, содержащих Сv, количество расчетов для нахождения решений было большим и трудоемким, поскольку необходимо было делать итеративные расчёты. Это был трудоемкий процесс с тогда еще очень медленными компьютерами.

Сегодня программное обеспечение для регулирующих клапанов от большинства производителей достаточно развито, и программы включают в себя все необходимые параметры клапана. Это сводит процесс определения размера регулирующего клапана только к одному– двум шагам и очень комфортно для конечного пользователя.

Некоторые ПО подбора размеров арматуры даже дают рекомендации насчет того, какой размер клапана будет лучше. Недостатком того, что все параметры находятся в программном обеспечении, является то, что большинство производителей может эффективно рассчитывать только свои собственные клапаны, хотя некоторые производители предоставляют программное обеспечение, содержащее данные для самых распространенных клапанов.

Возможно, самый новый и мощный инструмент, включённый в пакет программного обеспечения по определению размеров регулирующей арматуры – это возможность графического отображения обеих установленных характеристик потока (пропускной и расходной характеристик) и установленного усиления конкретной арматуры в системе, в которую она должна быть установлена.

На рисунке 1.1. показан установленный расход и коэффициент усиления двух размеров сегментного шарового клапана в предлагаемой системе с большим количеством труб и центробежным насосом. Это означает, что, если изменяется ход клапана и расход, падение давления в регулирующей арматуре также меняется.




Рис. 1.1. Установленная характеристика расхода и усиление двух сегментных шаровых кранов в системе со значительным количеством труб и центробежным насосом

Программа изображает две вертикальные линии на графике установленной характеристики для представления указанного минимального и максимального потока совпадет с графиком характеристики арматуры.

Что касается 6-дюймового клапана, есть много потраченной пропускной способности выше максимального потока 550 галлонов в минуту, который дорогостоящ и не нужен. Также не так уж и велик коэффициент безопасности на нижнем участке хода клапана. 3-дюймовый клапан использует более значительную часть своего общего диапазона хода и минимальный и максимальный указанные потоки симметрично размещены на установленной характеристике потока клапана. С 3-дюймовым клапаном, есть примерно такое же количество коэффициента безопасности на каждом конце указанного диапазона управления.

Реальную оценку того, как хорошо клапан будет контролировать процесс, можно найти в установленном графике усиления. Масштабирование оси 'x' находится в единицах q/qm, где q – фактический расход, а 'qm' – максимальный заданный расход. В пределах указанного диапазона расхода от 80 до 550 галлонов в минуту (между двумя вертикальными линиями), коэффициент усиления 6-дюймового клапана сильно меняется. Чем больше меняется усиление, тем труднее будет найти один хороший набор настроек регулятора, которые дадут и надежный контроль и стабильную работу на всем диапазоне расхода. Примерно на 70% от максимального указанного расхода, установленное усиление достигает около 3,5. Ошибочное 1% положение приведет к ошибке потока в 3,5 %, поэтому, в идеале коэффициент усиления должен быть максимально приближен к 1,0, чтобы сделать поток менее чувствительным к ошибкам положения. Установленный коэффициент усиления 3-дюймового клапана гораздо более постоянен, чем 6-дюймового клапана и ближе к идеальному значению 1,0. Это делает более легкой настройку контура для быстрого, но стабильного управления во всем заданном диапазоне расхода. Пиковое значение 2 означает, что ошибочное положение с погрешностью в 1% приведет к погрешности потока в 2%, по сравнению с 3,5% погрешностью 6-дюймового клапана.

Правильный выбор размеров приводов поворотных регулирующих клапанов необходим для обеспечения точного контроля и того, чтобы клапан плотно закрывался, когда это необходимо. Приводы больших размеров могут стоить дорого, добавить ненужный вес для сборки регулирующей арматуры и не реагировать так быстро на изменения в управляющих сигналах, как сделали бы это правильно подобранные приводы. Приводы меньшего размера, в лучшем случае, не смогут точно контролировать арматуру, переместить клапан под высокой нагрузкой процесса или прекратить процесс, когда клапан закрыт.

Существуют четыре наиболее распространенных типа механизмов для преобразования линейного движения во вращательное – это реечно-зубчатый механизм, шарнирный коленчатый вал, треугольный шатун и шарнирно-сочленённый кривошип, изображенные на рис. 1.2.




Рис. 1.2. Механизмы преобразования движения пневматического поворотного привода, их крутящие моменты и требования к крутящим моментам шарового крана и затворного клапана

Хотя пружинно-возвратные приводы наиболее популярны для управления, начиная с приводов двойного действия легче понять относительные преимущества каждого из них и то, как работают их механизмы преобразования. Версии с возвратной пружиной имеют одинаковый крутящий момент по сравнению с характеристикой положения, за исключением их крутящего момента по отношению к положению искажено наличием пружины.

Механизм преобразования движения рейки и зубьев шестерни привода следующий: зубья передаточного механизма, прикрепленные к поршням, поворачивают передаточный механизм (шестерню). Расстояние между плечом момента и зубчатой рейкой с центром шестерни остаётся постоянным, поэтому крутящий момент остается постоянным на всех градусах открытия (см. оранжевую линию на рис. 1.2). В шарнирном кривошипном механизме соединение на поршне зафиксировано и свободно вращается. Это означает, что в начале и в конце вращения, плечо момента короче, чем в середине хода, поэтому кривая крутящего момента на выходе самая низкая в начале и конце вращения и достигает центра хода (см. синюю/зелёную линии на рис. 1.2). Для треугольного шатуна, стержень, прикрепленный к поршню ограничен в движении по прямой, это означает, что плечо момента самое длинное в начале и конце хода, и самый короткий в середине хода, когда поршень движется вниз и соединение с плечом кривошипа скользит в паз в сторону вращающегося вала (см. розовую линию на рис. 1.2). Для сравнения, геометрия шарнирного рычага является сложной и образует сложную кривую вращательного момента (см. голубую линию на рис.1.2).

В каждом случае преобразования механизмов на рисунке 1.2, кривые крутящего момента проецируются на расчетный или номинальный крутящий момент в 1,0 на графике. Требуемый крутящий момент для типичного высокопроизводительного дискового затвора самый большой тогда, когда диск выходит или входит на седло. Требования к крутящему моменту значительно снижаются, когда диск освободит седло. Динамический крутящий момент, вызванный взаимодействием потока с пиками диска, составляет около 800. Максимальный требуемый крутящий момент обычно заявляется на 90% от расчетного крутящего момента привода, так как обычно приводы выбраны с коэффициентом запаса (безопасности) не менее 10%. Расчетные крутящие моменты привода и требования к крутящему моменту арматуры обычно консервативны. Только небольшой фактор безопасности необходим, особенно для запорной арматуры, где основное соображение заключается в том, что клапан входит и выходит из седла. Требования крутящего момента шарового крана такие же, что и дискового затвора. При посадке и выхода из седла, шаровой кран имеет несколько градусов «мертвого угла». Это место, где шар поворачивается, но проточная часть в шаре полностью закрыта седлом, перекрывающим поток, так что полное давление отключения – это вдавливание шара в седло. Также важно обратить внимание, что крутящий момент шарового крана не падает так низко, как у дискового затвора, потому что шар всегда находится в контакте с седлом.

Сравнение кривых крутящего момента четырех механизмов преобразования движения с требованиями к крутящему моменту двух общих поворотных клапанов в приведенном примере показывает факторы, которые должны быть определены, когда проводится выбор и определение размеров подходящего привода. Рейка и шестерня реечно-зубчатого механизма должны быть такого размера, чтобы их постоянный крутящий момент имел удовлетворительный коэффициент запаса (безопасности) (обычно 10%) выше требуемой посадки и сброса, необходимых для клапана. Для получения плавного и точного управления с клапанами, хорошее правило заключается в том, чтобы удостовериться, не использует ли привод более 40-60% его допустимого крутящего момента в диапазоне дросселирования. Это дает шарнирно-рычажному механизму преимущество, так как продольный зазор имеет размер с достаточным крутящим моментом для входа и выхода из седла, при этом у него остается много запасного крутящего момента в диапазоне дросселирования в диапазоне, где это необходимо для хорошего контроля. Хотя кривая крутящего момента треугольного шатунного механизма соответствует требованиям двух клапанов в примере, если он имеет размер, подобранный на основе небольшого коэффициента запаса, обычно необходимого для входа и выхода из седла, он предлагает наименьший запасной крутящий момент для лучшего управления. Шарнирный кривошип интересен тем, что у него есть много факторов безопасности входа и выхода из седла и точно следует требованиям к обеспечению достаточного момента в среднем положении хода клапана.

Большинство пружинных и мембранных поворотных приводов использует шарнирный кривошипный механизм; поэтому у них есть кривая крутящего момента, которая достигает пика в середине хода, как показано на рис. 1.3. Кривые крутящего момента пружинно-поворотных приводов собраны более сложно из-за добавления усилия пружины. Кривые отличаются для пневмоприводов, где воздух создает крутящий момент, но имеет противодействующее усилие пружины, действие которой увеличивается с поворотом привода, и ход пружины, где усилие пружины создает крутящий момент, но усилие уменьшается.

Выбор привода с достаточным крутящим моментом, чтобы вставить и вытащить клапан из седла, решение должно быть основано на нижнем крутящем моменте в конце хода. Например, если клапан должен быть пружинно-закрывающим, то привод выбирается исходя из крутящего момента на конце хода пружины для обеспечения того, чтобы привод мог надёжно закрыть клапан. Для клапана, который должен быть «пружинно-открывающим», конец крутящего момента хода при подаче воздуха – это то, что должно быть использовано при выборе привода.




Рис. 1.3. Кривая вращательного момента пружинно-возвратного привода с механизмом преобразования движения шарнирно– коленчатого вала

В течение многих лет производители арматуры публиковали таблицы размеров клапана, перепада давления в процессе и размер привода, чтобы помочь пользователям выбрать подходящий привод для конкретного применения. В общем, эти таблицы часто приводят к удовлетворительной производительности привода, но теперь производители клапанов стали разрабатывать программное обеспечение для определения размеров приводов, которое включает в себя математический анализ геометрии привода, геометрию клапана и анализ динамических процессов, действующих на клапан, чтобы точно рекомендовать лучший привод для конкретного клапана и процесса.

На рисунке 1.4 показаны результаты компьютерного анализа подбора параметров размера клапана, геометрия привода и динамика процесса, воздействующая на клапан. На основании условий процесса, типа и размера клапана, программа рассчитывает процент хода клапана при каждом заданном состоянии потока, или, как в данном примере, хода клапана в диапазоне от 21,4 до 74,1% (см. ячейки, пронумерованные 1, 2 и 3 на рис. 1.4). На основании условий процесса и конструкции клапана (ячейка 4) программа рассчитывает необходимый вращающий момент посадки и сброса на седло (вставка 6). Также вычисляется вращающий момент, необходимый для малой регулировки открытия и закрытия дроссельной заслонки на каждой из данных точек условий процесса (Вставка 7).




Рис. 1.4. Программа анализа геометрии клапана и привода и силовые процессы, происходящие в клапане

Используя вычисленную кривую выходного крутящего момента для выбранного привода, программа вычисляет коэффициенты нагрузки при посадке и выхода с седла и дросселирующей нагрузке. Коэффициент нагрузки определяется как процент от доступного крутящего момента привода в процентах перемещения, которое требуется для перемещения клапана.

В связи с постоянным развитием промышленных процессов, инструменты для поддержания и регулирования этих процессов продолжают развиваться. Эффективность и прибыльность зависит от правильности определения и установки технологических элементов, таких как регулирующая арматура и приводы. Как и следовало ожидать, инструменты, используемые для подбора правильных размеров, будут продолжать развиваться вместе с этой системой.

1.2. Вариабельность процесса

Как управлять качеством продукции и надежностью работы регулирующих клапанов через обеспечение устойчивости процесса? Вариабельность, которую также называют переменностью или колебательностью процесса, относится к любому нежелательному изменению того, что оператор контролирует – расход, давление, температура, уровень и т.д. Причиной, по которой важно, чтобы эти управляемые переменные существенно не менялись, является то, что они могут повлиять на изменения в свойствах или качестве конечного продукта.

Если есть проблема отклонений и колебательности, есть несколько способов решения этой проблемы. Одна стратегия состоит в том, чтобы продукт превосходил технические требования. Например, мельчайшие просветы на рулоне бумаги создают большие проблемы при продажах. Проблема заключается не в том, чтобы раздавать бесплатный продукт, поскольку на современном конкурентном рынке большинство не может себе этого позволить, а держать процесс в наиболее устойчивом состоянии с минимальной колебательностью процесса.

Если производится некачественный продукт, то его нужно, либо продавать за меньшие деньги, переработать (например, пропустить углеводородное сырье обратно через колонну или реактор, или повторно произвести рулон бумаги из брака), что требует энергии и времени и, следовательно, это дорого, или продать с потерей прибыли. Если клиент обнаруживает, что приобрёл некачественный товар, он начнет покупать у кого-то другого.

Другим потенциальным результатом чрезмерной колебательности процесса является то, что для того, чтобы сделать приемлемый продукт, среднее количество израсходованного сырья должно быть сокращено. Существует также возможность создать дополнительную нагрузку на регулирующую арматуру, другие виды арматуры или другое технологическое оборудование, которое может привести к излишнему техническому обслуживанию и незапланированным простоям. В любом случае, колебательность процесса может стоить денег.

Есть ряд вещей, которые могут вызвать чрезмерную переменность процесса, включая следующие:

– Состав поступающего сырья

– Состав входящих компонентов

– Технологическое оборудование

– Управление процессом проектирования

– Неадекватное смешивание / перемешивание

– Неэффективная настройка контуров управления

– Неправильно выбранные или плохо работающие регулирующие арматуры.

Конечные пользователи обеспокоены всеми пунктами этого списка, но для нашего обсуждения будет рассмотрен последний.

Примерно в половине случаев существует проблема колебательности, это может прослеживаться до регулирующей арматуры. Для хорошего управления требуется арматура, которая:

– Имеет пропускную способность, соответствующую процессу

– Правильного размера

– Имеет хорошие статические и динамические характеристики.

Важно выбрать арматуру с действительными характеристиками, которые соответствует процессу и правильно подобрать размер (номинальный диаметр) арматуры. Неправильно выбранная действительная пропускная характеристика приведет к нелинейной установленной расходной характеристике в трубопроводе. Результатом будет система, которую будет сложно или невозможно настроить для быстрого и стабильного отклика во всем требуемом диапазоне расхода. С другой стороны, правильно выбранная действительная пропускная характеристика даст линейную или почти линейную установленную пропускную характеристику, облегчая настройку системы для быстрого и стабильного отклика во всем требуемом диапазоне расхода.

Кроме того, регулирующие клапаны с большими номинальными диаметрами по сравнению с расчетными, имеют проблемы с точным корректированием потока до желаемой скорости. Предположим, что два клапана имеют одинаковое применение. В этом случае арматура правильного размера сможет регулировать расход с меньшими приращениями (по сравнению с габаритной арматурой) и, следовательно, сможет контролировать расход точнее.

Работа регулирующей арматуры также оказывает значительное влияние на переменность процесса. Самыми важными мерами производительности являются разрешение (или чувствительность), мертвая зона и скорость реакции.

Пример типичного теста мертвой зоны и разрешения показан на рисунке 1.5. «Трущееся» поведение арматуры часто воспринимается как плохая страгиваемость и определяется трением покоя. Это результат взаимодействия между трением в статике и динамическим трением. Статическое трение обычно намного выше, чем динамическое трение.




Рис.1.5. Типичный результат теста статической мертвой зоны и разрешения

В результате арматура держится на месте, пока приводом не будет создано достаточное усилие, чтобы преодолеть статическое трение, затем арматура быстро перемещается в другое положение. Разрешение (шаг) является мерой наименьшего движения, на которое способна арматура, двигаясь в одном направлении. Это называется статическим тестом, потому что всегда нужно ждать достаточно долго после каждого шага для любого возможного движения. Измерения не снимаются во время движения арматуры, но записывается только статическое положение арматуры после того, как она остановилась.

Сигнал управления представлен в виде ступени в одном направлении с очень маленькими ступеньками. После каждого шага есть период ожидания, чтобы убедиться, что у арматуры есть время сделать какое-либо движение, которое она собирается сделать перед началом следующего шага. Наблюдая за количеством шагов управляющего сигнала, которые необходимы, чтобы сделать движение, можно заметить, насколько чувствительна арматура, обычно это называется «разрешением».

После нескольких шагов в одном направлении, направление шагов меняется. Наблюдая за количеством шагов, которое требуется для инициирования, реверсирование движения арматуры определяет, что такое мертвая зона.

В этом примере размер шага составляет ¼%. В том же направлении эта арматура реагирует на каждый ¼% шаг, поэтому он имеет чувствительность или «разрешение» не менее ¼%. Это занимает два шага ¼% после смены направления для того, чтобы арматура начала двигаться в обратном направлении, так что эта арматура имеет мертвую зону не более чем ½%. Мертвая зона обнаруживается в процессе как простой, который дестабилизирует управление. Обратите внимание, что шкалы входа и положения различны, так что два графика будут легче отличаться друг от друга.

На рисунке 1.6. показаны результаты теста для очень «трущейся» регулирующей арматуры.




Рис.1.6. Статическая мертвая зона и разрешение арматуры с чрезмерным статическим трением

Результат чрезмерного трения в замкнутом контуре системы это предельный контур и переменность процесса (см. рис. 1.7.) с примером предельного контура.




Рис.1.7. Предельный цикл

Обратим внимание на контур переменного процесса на рисунке 1.7. и горизонтальную линию, которая была проведена над контуром переменного процесса в левой части графика. Арматура остаётся на одном уровне, а переменная процесса выше заданного значения. Интегральное (или сбросное) действие ПИ (пропорционально– интегрального) регулятора наращивает выход контроллера в попытке исправить ошибку до тех пор, пока в приводе не будет достаточно давления, чтобы преодолеть статическое трение. Это связано с тем, что динамическое трение ниже, чем статическое трение, и арматура быстро перемещается в новое положение. До того, как статическое трение преодолено, в приводе создалось достаточно давления, чтобы арматура перекрыла заданное положение, и новое значение переменной процесса теперь ниже заданного значения. В результате, действие сброса ПИ регулятора начинает линейно изменять выход контроллера в противоположном направлении в попытке исправить новую ошибку, но арматура снова остается в том же положении и не двигается, пока в приводе не будет создано достаточно давления для преодоления статического трения. Результатом является «Предельный цикл».

Характерной чертой предельного цикла является то, что переменная процесса способна колебаться в приближенной «квадратной» форме волны, а выходной сигнал контроллера колеблется в виде волны формы «зубьев пилы». Настройка контура изменит период предельного цикла, но не устранит его. Единственным решением для предельного цикла, вызванного регулирующей арматурой, является ремонт или замена арматуры.

Еще одной важной мерой качества регулирования и совершенства регулирующей арматуры является скорость реакции на шаг изменения в управляющем сигнале. Это «динамический» тест, так как он определяет, что арматура делает, пока она движется, и все движение записывается.

На рисунке 1.8. представлена типичная реакция арматуры на ступенчатое воздействие в заданной точке.




Рис. 1.8. Типичная реакция регулирующей арматуры на ступенчатое воздействие управляющего сигнала

При ступенчатом воздействии будет некоторый «простой» (Td, от англ. dead time), прежде чем будет произведено движение рабочего органа арматуры. При этом может возникать перерегулирование.

В прошлом два параметра обычно использовались для измерения скорости реакции, T63, время, необходимое для арматуры, чтобы среагировать на 63 % от общей реакции, и T98, время, необходимое для арматуры, чтобы достичь 98 % от ее окончательного положения.

T63 был выбран как эквивалент постоянной времени системы первого порядка. Термин «постоянная времени» не использовался, потому что реакция регулирующей арматуры редко бывает первого порядка. Реакция первого порядка с T86 (две постоянные времени) и временем установления, аналогично T86 и времени установления отклика арматуры, нужны для того, чтобы определить, что реакция арматуры не первого порядка.

ISAS75.25.01, «Процедура измерения реакции регулирующей арматуры ступенчатое воздействие» теперь использует один параметр – T86, что соответствует двум постоянным времени системы первого порядка. Обратите внимание, что T86 измеряется от времени изменения шага в управляющем сигнале.

Скорость реакции регулирующей арматуры также является проблемой. На рисунках 1.9. и 1.10 показан отклик системы первого порядка, которая имеет постоянную времени равную 10 секунд, то есть процесс, который реагирует на протяжении 63% полной реакции за 10 секунд.




Рис. 1.9. Реакция процесса с 10-секундной постоянной времени при управлении значением 10-секундной постоянной времени




Рис. 1.10. Реакция процесса с 10-секундной постоянной времени

при управлении значением 1-секундной постоянной времени

Хотя реакция регулирующей арматуры обычно более сложная, чем первого порядка, допустимо, для сравнения эффекта арматуры с различными скоростями, рассматривать их как системы первого порядка. Если бы 10-секундная система контролировалась арматурой с 10-секундной постоянной времени, общий отклик будет выглядеть так, как показано на рисунке 1.9. Объединенный отклик намного медленнее, чем то, на что способен сам процесс. Когда тот же 10-секундный процесс управляется арматурой с постоянной времени в 1 секунду, как показано на рисунке 6, объединенный отклик почти так же быстр, как скорость, с которой бы процесс мог реагировать с бесконечно быстрой арматурой. Как правило, арматура, которая в пять раз быстрее, чем сам процесс, будет иметь небольшой эффект в замедлении процесса реагирования настолько быстро, насколько это возможно.

Ниже приведены некоторые рекомендации для арматуры в процессах, где требуется очень хорошее управление:

1.      Разрешение (Сцепление/ трение покоя): ≤ 0,5%

2.      Мертвая зона: ≤ 0,5%

3.      Скорость реакции:

А) Быстрые контуры:

1. Td арматуры ≤ 20% от требуемой постоянной времени процесса с обратной связью

2. T86 арматуры ≤ 40% от требуемой постоянной времени процесса с обратной связью (это эквивалентно тому, что арматура должна быть в пять раз быстрее желаемого времени реакции процесса с обратной связью.)

3. Время установления арматуры ≤ чем желаемая требуемая постоянная времени процесса с обратной связью

Б) Медленные контуры: не важны

4. Ступенчатое перерегулирование: максимум 20%.

Поскольку арматура достигает 86 % от ее общей реакции за 2 секунды, и желаемая реакция процесса должна достичь 86 % от ее общей реакции за 10 секунд, это равносильно тому, что арматура в пять раз быстрее, чем желаемое время реакции процесса.

20% перерегулирования означает 20% размера шага. Например, перерегулирование на 10% не должно превышать 2% шкалы. Рекомендации для T86 соответствует с предложениями в техническом отчете арматуры ISA – TR75.25.02.

На рисунке 1.11 продемонстрировано, почему критерии скорости реакции имеют смысл.




Рис. 1.11. Реакция арматуры в сравнении с требованиями процесса

Это та же арматура, которая обсуждалась ранее, и она соответствует вышеуказанным рекомендациям для процесса, где желаемая постоянная времени обратной связи составляет 5 секунд.

Простой, который чуть ниже рекомендуемых 20% от желаемой постоянной времени обратной связи, означает, что он закончился вовремя, чтобы иметь небольшое влияние на общую реакцию процесса.

Арматура достигает 86% своего полного хода только после 40% от желаемой постоянной времени обратной связи. Можно увидеть, что арматура намного впереди, когда процесс должен достичь 63% от его окончательного значения, и даже дальше, когда процесс должен достичь значения своих двух постоянных времени (86%). Так как арматура достигает 86% своей полной реакции в течение 2 секунд, и желаемый отклик процесса должен достичь 86% от общей реакции за 10 секунд, это эквивалентно тому, что арматура в пять раз быстрее, чем требуемое время отклика процесса.

На ранней стадии полного отклика небольшое перерегулирование будет способствовать незначительно, если и будет, перерегулированию процесса. Реакция арматуры установилась до своего окончательного значения после чуть меньше одной желаемой постоянной времени процесса, задолго до того, как процесс, как ожидается, достигнет своего окончательного значения.

То, что нужно запомнить:

– арматура большего размера затруднит точное регулирование расхода.

– регулирующая арматура с неправильной действительной пропускной характеристикой приведет к нелинейной установленной пропускной характеристике и затруднит или сделает невозможным подбор настроек ПИД-регулятора, которые дадут быстрое и стабильное управление на протяжении требуемого диапазона расхода.

– предельный цикл, скорее всего, вызван арматурой, которая имеет чрезмерное усилие страгивания из-за статического трения (сцепления и трения покоя) и нуждается в ремонте или замене.


    Ваша оценка произведения:

Популярные книги за неделю