355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Корниенко » Ремонт японского автомобиля » Текст книги (страница 4)
Ремонт японского автомобиля
  • Текст добавлен: 26 сентября 2016, 14:00

Текст книги "Ремонт японского автомобиля"


Автор книги: Сергей Корниенко



сообщить о нарушении

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 6 страниц]

Однако встречались и другие случаи. Приходит в ремонт «Toyota Surf» с двигателем 2L-T. Двигатель заводится и уверенно работает на холостом ходу. Тахометр при этом показывает около 650 об/мин. Если включить передачу и резко надавить на газ – все без проблем. Машина трогается с места и в любой подъем едет как положено. Но если на педаль газа давить плавно, то при показаниях тахометра около 800 об/мин двигатель глохнет. Причем глохнет не медленно, тихо «умирая», а резко, словно ему выключили зажигание. Поскольку был конец рабочего дня, клиенту объявили, особенно не разбираясь, что у него проблемы с ТНВД. Однако когда на следующий день стали проверять машину, сами засомневались: не может так проявляться дефект ТНВД. Если топливный насос на холостом ходу недодает топлива потому, что засорен, это проявляется в снижении мощности и на других режимах работы двигателя. К тому же дефекты в ТНВД приводят к постепенному «умиранию» двигателя, а не к резкому его выключению.

И в самом деле, все оказалось не так уж страшно. Вакуумный серводвигатель при 800 об/мин от блока управления получал ошибочную команду закрыть собственную маленькую дроссельную заслонку, в то время когда основная дроссельная заслонка (да, на последних модификациях дизельных двигателей 2L-T, 2L-TE есть дроссельные заслонки) как следует еще не открылась. Сначала мелькнула мысль просто отключить этот серводвигатель, поместив обычную заклепку в его трубку управления, но потом решили повернуть датчик положения дроссельной заслонки (TPS), с которого и берет указания блок управления (компьютер) для управления ТНВД. В двигателе, который мы ремонтировали, собственно TPS, «в чистом виде», отсутствовал, а стоял датчик положения рычага подачи топлива на ТНВД, что по смыслу одно и то же: если TPS отслеживает угол открытия дроссельной заслонки, то этот датчик – угол поворота рычага подачи топлива. Во многих двигателях от положения TPS зависит правильное переключение коробки-автомата, но в данном случае на машине стояла механическая коробка передач, поэтому TPS управлял только разными «экологическими» штучками, в частности вакуумным серводвигателем. Ослабив винты, мы повернули TPS на ТНВД сначала в одну сторону до упора (двигатель заводился, но тут же, при 650 об/мин, глох), а потом – в другую. После этого вакуумный серводвигатель срабатывал уже при 1400 об/мин, когда основная дроссельная заслонка достаточно приоткрыта, поэтому двигатель не глох, а продолжал работать.

Еще в дизельных машинах (2L-T, 2L-TE) серводигатель на дроссельной заслонке вызывал следующую проблему. Как известно, в таких машинах вакуумный серводвигатель управления дроссельной заслонкой имеет 2 диафрагмы. При холостом ходе основная диафрагма (1-я) втянута до ее упора в шток от вспомогательной диафрагмы (2-й), что обеспечивает мягкую работу двигателя. Если на вспомогательную диафрагму ошибочно подать разрежение, то она втянется и уберет свой шток, тем самым дав основной диафрагме возможность втянуться еще глубже. При этом шток серводвигателя полностью закроет дроссельную заслонку, и двигатель заглохнет. Этот режим должен включиться только при движении автомобиля, когда происходит торможение двигателем. Ошибочное поступление разрежения на вспомогательную диафрагму может произойти просто из-за выхода из строя управляющего электромагнитного вакуумного клапана, что не такая уж и редкость для всех машин.

Рассмотрим еще один случай отсутствия холостого хода у дизельного двигателя. У всех дизелей есть линия перелива, или, как принято говорить, «обратка». В пустотелом болте крепления «обратки» есть маленькое калиброванное отверстие, через которое и поступает топливо в линию перелива. Для того чтобы это отверстие не засорялось, там же, внутри болта, впрессована фильтрующая сеточка. На одном из двигателей это отверстие забилось ржавчиной. В результате в «обратку» ничего не поступало, воздуху (а какое-то маленькое количество его всегда присутствует в насосе) некуда было деваться, в насосе образовывалась пена, и двигатель глох. При этом он легко заводился, но стоило бросить педаль газа – снова глох. Конечно, этот случай можно отнести к неисправности «нет холостого хода», но двигатель ненормально работал и на других оборотах, поэтому просто примите к сведению, что может быть и такое.

Еще один случай, вызывавший периодическую остановку дизельного двигателя, связан с износом плунжерной пары. Дело в том, что изношенная плунжерная пара не может подать на форсунку требуемый объем топлива при маленьких скоростях перемещения плунжера. Выглядит это все так. Утром, когда солярка густая, двигатель заводится и работает как положено. Но по мере его прогрева выхлопные газы на холостом ходу приобретают синий оттенок, что, как известно, может говорить о нехватке топлива. Если в это время заглушить двигатель, то он уже не заведется или заведется только с буксира. И все потому, что дизельное топливо, нагревшись, стало очень «жидким». Если же износ плунжерной пары очень велик, то двигатель из-за нехватки топлива заглохнет даже на ходу и не заведется до полного остывания. Проверить, так это или нет, т. е. изношена ли плунжерная пара, можно следующим образом. Когда двигатель заглохнет и не будет заводиться, надо охладить ТНВД. Дизельное топливо в нем остынет и станет более вязким, тогда даже изношенная плунжерная пара подаст на форсунку требуемый объем топлива. Охладить ТНВД можно с помощью комка снега или ведра холодной воды. Только нужно следить за тем, чтобы вода не попала на другие раскаленные детали двигателя, что вызовет их деформацию и приведет к появлению в них трещин. В этой ситуации можно поступить проще. Раз ТНВД не в состоянии подать в цилиндры столько топлива, сколько нужно, надо подать его вручную и посмотреть, как двигатель заведется после этого. В качестве добавочного топлива можно использовать любой горючий состав из аэрозольного баллончика, но возможно сделать и еще проще. Вот случай из практики. Приезжает автобус «Codacter», дизельный двигатель которого на холостом ходу периодически глохнет и после этого уже заводится только с буксира. Подать во впускной коллектор что-нибудь горючее невозможно, нет там резиновых трубок, которые легко снимаются. Поэтому мы открутили от впускного коллектора воздуховод, вернее, чуть приотдали его, а в образовавшуюся щель залили примерно столовую ложку обычной солярки. Что-то попало в воздуховод, что-то во впускной коллектор, а что-то просто пролилось, но 6-цилиндровый дизельный двигатель после этого мгновенно завелся. Водителю мы объяснили, что он должен заменить ТНВД или использовать летнюю солярку (дело было поздней осенью), или после каждой остановки двигателя ему придется отодвигать воздуховод и лить в эту щель солярку, для чего вручили ему в руки пластиковую бутылку, заполненную дизельным топливом, с трубочкой на горлышке. Кстати, зимнее дизельное топливо по вязкости можно приблизить к летнему, если добавить в него любое моторное масло. После этого даже изношенная плунжерная пара при заводке двигателя и на холостом ходу сможет подавать на форсунки достаточный объем топлива.

Тряска двигателя

Любой двигатель начинает трясти, если топливная смесь сгорает неодинаково в каждом отдельном цилиндре. Причина чаще всего одна из трех: нет сжатия, нет воспламенения или плохое качество смеси. В этом разделе будут рассмотрены случаи, когда все цилиндры пусть не очень хорошо, но работают. Когда по какой-либо причине (например, плохая свеча зажигания или прогорел клапан) не работает один или несколько цилиндров, двигатель троит, тогда также наблюдается тряска, но эти случаи мы рассмотрим в разделе «Двигатель троит». Работает цилиндр или нет, можно определить по снижению оборотов холостого хода, сняв наконечник со свечи зажигания. Способ очень варварский, так как есть вероятность выхода из строя коммутатора, пробоя «бегунка» или крышки трамблера. Чтобы уменьшить негативное воздействие этой проверки на двигатель, нужно как можно скорее надеть снятый наконечник на какой-нибудь болт, чтобы искра снова начала щелкать. Снимая наконечник, помните о правилах безопасности: если вы снимаете наконечник, держась за высоковольтный провод, вероятность удара током больше, чем когда вы держитесь за сам наконечник, так как у них разный слой изоляции. При этом свободной рукой не следует касаться корпуса автомобиля, незачем вам «заземляться». Перед снятием наконечников желательно заглушить двигатель, снять их, а затем снова надеть, так как часто эти наконечники прилипают к свечам. Теперь, когда наконечники «расхожены», можно заводить двигатель.

Вероятность удара током снижается, если вместо снятия наконечника из крышки трамблера вынуть высоковольтный провод (за колпачок!). При любом состоянии высоковольтных проводов удар током исключается, если снимать наконечники с помощью пассатижей с изолированными ручками. Железные губки этих пассатижей желательно заземлить куском провода на корпус автомобиля.

Вообще-то если вы взялись за наконечник, а вас тряхнуло, значит, надо менять или свечу этого наконечника, или весь высоковольтный провод. У всех автомобилей, если у них свечи исправные, при касании высоковольтных проводов удара током не происходит.

У дизельных двигателей можно принудительно отключить цилиндр, если приотдать рожковым ключом на 17 накидную гайку топливопровода высокого давления на форсунке. При этом топливо будет брызгать во все стороны, в том числе и вам в лицо, но цилиндр работать не будет. Если обороты не снизились, значит, цилиндр не работает. Сейчас мы поговорим о тех случаях, когда работают все цилиндры, а двигатель трясется.

Первая причина тряски двигателя – нет компрессии. Тряска, вызванная низкой компрессией, исчезает при увеличении оборотов двигателя. Если в снижении компрессии виновата поршневая группа, то будет наблюдаться повышенный прорыв выхлопных газов в картер двигателя. Это легко определить по потеющим стыкам всех прокладок, по выхлопным газам, вылетающим из шахты масляного щупа, и по текущим сальникам. У дизельных двигателей признаком дефекта поршневой группы является плохой запуск двигателя по утрам, запуск как бы «вдогонку». И все потому, что из-за низкой компрессии не все цилиндры полноценно участвуют в заводке.

Если цилиндр дизельного двигателя как следует не работает, значит, топливо в нем до конца не сгорает, оно нагревается и вылетает в выхлопную трубу в виде белого дыма. Впрочем, причиной появления белого дыма может быть и плохо приготовленная топливная смесь, но об этом далее.

Какие же дефекты поршневой группы приводят к снижению компрессии? Во-первых, естественный износ. Наиболее вероятно, что у дизельных двигателей это будет износ стенки цилиндра, а у бензиновых – износ поршневых колец и канавок в поршне. С этим ничего не поделаешь, и, чтобы отсрочить эти события, следует чаще менять моторное масло и фильтры и стараться не использовать (для дизелей) дизельное топливо с высоким содержанием серы.

Кроме естественного износа, к снижению компрессии может привести плохая работа поршневой группы, обусловленная ошибками в эксплуатации двигателя. Здесь следует отметить три момента. Если вы на несколько месяцев оставите без движения автомобиль, в двигателе которого находится плохое моторное масло (сильно изношенное или низкого качества), то очень вероятно, что кольца в поршнях полностью или частично «западут». Это приведет к снижению или к полному исчезновению компрессии.

Неправильная эксплуатация двигателя может привести к разрушению поршня. У дизельных двигателей это оплавление (или прогорание) огневого пояска на головке поршня, возникающее в результате неисправностей топливной системы. Вероятность возникновения этих неисправностей резко повышается при езде с высокими оборотами двигателя.

Прогорание поршня у бензинового двигателя – явление достаточно редкое. При неправильном сгорании в них чаще разрушаются перемычки на поршнях и появляются трещины на «юбке». Обычно этим явлениям предшествует эксплуатация двигателя на низкооктановом топливе и неисправности в системе зажигания.

И наконец, если дизельному двигателю случится «хватануть» воду, может произойти искривление шатуна, которое также приведет к снижению компрессии. Обычное дело: переезжаешь какую-нибудь лужу, несколько чайных ложек воды попадает в воздушный фильтр, и возникает «гидроклин». Шатун обычно гнется, а степень сжатия уменьшается на некоторую величину. У бензиновых двигателей эта проблема тоже существует, но в связи с тем, что степень сжатия у них меньше, воды для создания «гидроклина» требуется больше.

Существует распространенное мнение, что, залив через свечное отверстие в цилиндр любое (хотя бы подсолнечное) масло, можно увеличить компрессию, если ее снижение вызвано плохим поршневым уплотнением. Если же причина кроется в слабом уплотнении в клапанах, увеличения компрессии не произойдет. Пожалуй, так оно и есть, если уплотнение в клапанах отсутствует вообще. Если же клапаны хоть как-то уплотняются, то добавление масла в цилиндр улучшит не только поршневое уплотнение, но и уплотнение в клапанах. Потому, если величина снижения компрессии всего около 5 кг/см (а именно такое снижение вызывает тряску двигателя), нельзя однозначно сказать, из-за чего снизилась компрессия – из-за кривых клапанов или из-за плохих поршневых колец.

Теперь конкретный случай из практики. Он интересен тем, что, по нашему мнению, был достаточно сложным для диагностики. Ездила себе по России японская машина с двигателем 3S-FE. В ремонт попала из-за банальной смены маслосъемных колпачков, видно, перегрели ей двигатель, после чего колпачки и «задубели». Смена колпачков у 4-цилиндрового двигателя, как известно, осуществляется в два этапа, без снятия головки блока. Сначала по меткам на блоке шкивов выставляем ВМТ (верхняя мертвая точка) первого цилиндра, после чего заменяем колпачки 1-го и 4-го цилиндров. Затем двигатель проворачиваем точно на 180°, и заменяем колпачки на 2-м и 3-м цилиндрах.

И вот мастер, менявший в этом двигателе (который, следует заметить, работал как часы, т. е. все в нем было исправно) колпачки, чтобы облегчить вращение коленвала и точно выставить ВМТ 2-го цилиндра, вывернул все свечи зажигания. Повернул двигатель. При помощи отвертки убедился, что поршни 2-го и 3-го цилиндров точно стоят в ВМТ, и, не завернув свечи, стал менять колпачки. Вообще-то выкручивать свечи зажигания при этой операции вовсе не обязательно: зная порядок работы цилиндров, можно выставить ВМТ любого поршня, руководствуясь усилием, с которым проворачивается коленвал. В нашем случае в процессе замены колпачков один «сухарик» «выстрелил» и улетел. Обычное дело. Немного поискали его и успокоились. Нет так нет, у мастера в коробке этих «сухариков» – на два двигателя хватит. Двигатель собрали и запустили. И тут же по характерному стуку нашли пропавший «сухарик» – он попал в цилиндр. Выругавшись, мастер попытался достать «сухарик» через свечное отверстие с помощью проволочек и магнитов. Ничего не вышло. Сняв головку блока, увидели, что стальной «сухарик» крепко «впечатан» в головку поршня 3-го цилиндра. С помощью шила злополучный «сухарик» выковырнули, убедились, что стенки цилиндра, к счастью, не поцарапаны, заменили прокладку головки блока и снова собрали двигатель. Работает почти как часы, т. е. иногда вздрагивает, как будто барахлит одна свеча зажигания, но в общем-то работает нормально. Владелец получает свой автомобиль и уезжает на нем. Но наутро – снова у ворот мастерской. «Тряска», – говорит. «Ну, где же тряска?» – удивляется мастер. «А вы попробуйте на ней проехать». За руль сел автор этих строк, поэтому далее следует подробное описание всех ощущений. Сидишь в машине – тишина. Включаешь «D» – тишина, только обороты чуть снизились. Потихоньку отпускаешь тормоз, машина начинает движение – и тут же двигатель начинает дергаться. Даже в салоне сидеть неприятно. Чуть надавишь на газ, все неприятности исчезают, к двигателю никаких претензий. Начнешь понемногу тормозить – снова какое-то дерганье. Машина остановилась – все нормально. С включенной передачей на тормозах никакой вибрации двигателя не наблюдается. Проверили систему подачи топлива, всю систему зажигания – все отлично, только компрессия у 3-го цилиндра была чуть меньше остальных. У всех за три удара по 14 кг/см2, а у 3-го за те же три удара – только 10 кг/см2. Сразу же появилась мысль: вероятно, «сухарик» ударил по клапану и слегка помял ему шляпку. Тем более что клапаны у этого двигателя (как и у всех твинкамовских) тонкие и «хилые». Сняли головку, вынули клапаны. Действительно, два из них – кривые. Мы заменили их новыми, все притерли, еще раз полюбовались на отпечаток «сухарика» на головке поршня, установили новую прокладку головки блока и снова собрали двигатель. Компрессия повысилась до 12 кг/см2. Но у остальных-то цилиндров по 14. Тем не менее отдали машину хозяину, вдруг «пролезет». Не «пролезло», спустя несколько дней приехал снова. За это время он побывал в нескольких мастерских, там все перепроверили, но причину тряски на маленькой скорости так и не выяснили. Владелец, справедливо упирая на то, что до замены колпачков все было нормально, снова оставил машину. Положение осложняло еще то обстоятельство, что водителем машины была женщина, а эти существа к каждому поскрипыванию и постукиванию любимого члена семьи (автомобиля) относятся с легкой паникой (им бы на «Запорожце» пару раз проехаться). Сняли мы головку еще раз, убедились, что все клапаны исправны, тем не менее снова вынули их и притерли. После этого сняли поддон и вынули поршень 3-го цилиндра. И обнаружили вот что. От верха поршня до канавки первого компрессионного кольца около 2 см. «Сухарик», впечатавшись в край головки блока, сделал углубление в форме полумесяца, глубиной всего около 2 мм. Но этой деформации металла хватило для того, чтобы канавка под верхнее компрессионное кольцо уменьшилась и зажала небольшой участок этого компрессионного кольца. Обнаруженный дефект было нетрудно исправить с помощью «шабера» и надфилей. Собрали все как положено, установили на место головку блока, поменяв (уже третий раз) прокладку головки блока цилиндров, и тряска исчезла. Таким образом, мы на собственном опыте убедились в справедливости всех руководств по ремонту двигателей, указывающих на недопустимость разницы в компрессии цилиндров бензиновых двигателей более чем 1 кг/см2. У большинства японских дизельных двигателей, согласно тем же руководствам, разница в компрессии не должна превышать 5 кг/см2.

Несколько слов о замере компрессии. Вы, наверное, уже сталкивались с тем, что в одной мастерской, измеряя величину компрессии, получают, например, значение 12,5 кг/см2, в другой, проделывая ту же операцию на том же двигателе буквально 10 минут спустя, – уже 13,5 кг/см2. Много лет занимаясь авторемонтом, мы пришли к следующему выводу. Во время диагностики измерение компрессии необходимо лишь для выяснения разницы величины компрессии по цилиндрам. Максимальное же значение давлений особой роли не играет (речь идет о сравнительно исправных двигателях), это скорее качественный показатель, а не количественный. Посудите сами: все компрессометры разные, погрешность самого манометра составляет около 20 %, к тому же имеют определенное значение четкость работы обратного клапана компрессометра, длина шланга (трубки), вязкость моторного масла. Все это влияет на конечный результат, поэтому одинаковых показаний вы не получите. Но, работая с одним и тем же компрессометром много лет, мастер может уже более объективно оценить состояние поршневой группы, измеряя компрессию за один удар, за два удара, за три, за четыре, за пять; наблюдая, как нарастает давление, как «отыгрывает» стрелка и т. д. Все это похоже на снятие кардиограммы в поликлинике, когда саму распечатку кривой, отображающей работу сердца, надо еще расшифровать, а для этого нужны не только знания, но и некоторый опыт. И чем опыт больше, тем точнее и полнее будет проведена диагностика состояния поршневой группы.

Причиной снижения компрессии могут быть и неплотно закрытые клапаны. Со временем все клапаны проваливаются в своих седлах, и ширина их рабочей фаски увеличивается. А при широкой рабочей фаске трудно добиться удовлетворительного уплотнения. Как выяснилось, этот дефект достаточно широко распространен, но, впервые столкнувшись с ним, мы были озадачены. Дело было так. Хозяйка автомобиля с 4-цилиндровым бензиновым двигателем (впрочем, тип двигателя и марка автомобиля в данном случае роли не играют, так как эта неисправность встречалась потом на самых разных японских машинах) на нейтральной передаче газанула до красной черты на тахометре. Ну, так уж случилось. После чего двигатель заглох, и при повторной заводке стартер «весело» крутил уже «мертвый» агрегат. Типичная картина порванного зубчатого ремня. Притащили машину к нам. Замерили ей компрессию – везде около 1–2 кг/см2. Как известно, подобное значение соответствует неплотному закрытию клапанов, что может произойти, когда рвется зубчатый ремень и шляпки клапанов чуть-чуть касаются головки поршня. Головку блока нужно снимать и менять (или ремонтировать) клапаны, так и сказали хозяйке. Через пару часов, давая указания мастеру по снятию головки блока и зубчатого ремня, я еще раз крутанул двигатель стартером. И вдруг один цилиндр начал «хватать». Двигатель по-прежнему не заводился, но раньше-то все цилиндры у него были «мертвые»! Снова замерили компрессию и выяснили, что в одном цилиндре она вдруг появилась. Не бог весть какая, всего около 8 кг/см2, но раньше и ее не было. Чтобы разобраться, в чем же дело, мастер приступил к разборке. Через час он всех удивил заявлением, что зубчатый ремень в отличном состоянии и все метки на месте. Через некоторое время он удивил нас еще больше, сообщив, что все клапаны целые и нет следов касания их «тарелок» о головку поршня. Другими словами, причин для снижения компрессии у двигателя как будто бы нет. При более тщательном обследовании выяснилось, что у клапанов очень широкие рабочие фаски (около 3 мм) и плохие маслосъемные колпачки. Последнее было видно из того, что штоки клапанов были в «шубе» из нагара, а после рассухаривания клапаны буквально вываливались из своих направляющих. При нормальных колпачках, как известно, шток клапана удерживается на месте за счет упругости уплотнения маслосъемного колпачка. Кроме того, рабочая фаска почти всех клапанов была в черных точках. По-видимому, это частички нагара, срываясь со штока, впрессовывались в седло клапана. Приняв такую версию возникновения неисправности, мы привели все клапаны в порядок, притерли их, заменили колпачки и сальники. Существует правило, что если хотя бы один сальник в двигателе потек из-за старения его резинки, то нужно менять все резинотехнические изделия, так как все они работают рядом, в одних и тех же условиях. Затем поставили новую прокладку и собрали двигатель. Для порядка замерили компрессию – везде было по 13,5 кг/см2с трех ударов.

Свою версию случившегося мы сформулировали так. Потекли колпачки. На штоках клапанов стала нарастать «шуба» из нагара. По мере увеличения этой «шубы» что-то от нее отваливалось и раздавливалось на рабочей фаске клапанов, приводя к их неплотной посадке. В результате двигатель на холостом ходу слегка потряхивало, но в спокойном режиме (владелец-то женщина) машина продолжала работать. Когда же двигатель раскрутили до максимальных оборотов, масса нагара одновременно оторвалась от клапанов, и они из-за этого не смогли плотно закрыться. После того как машина постояла несколько часов, один клапан, вероятно, раздавил крупинки нагара, и компрессия в его цилиндре появилась.

Буквально через неделю нам представился случай проверить эту версию. Во время диагностики двигателя «Toyota 4A-F» после раскрутки его до 6000 об/мин двигатель заглох. При последующей заводке у него «хватал» только один или два цилиндра. Замерив компрессию и убедившись, что она почти полностью отсутствует, мы вывернули свечи зажигания и отсоединили разъем с трамблера (впрочем, это было сделано еще при замере компрессии). Сняли крышку воздушного фильтра, убрали сам воздушный фильтр, а головку блока накрыли листом фанеры. После этого один человек сел за руль и по команде, полностью надавив на педаль газа, начал вращать двигатель стартером, а второй человек в это время из ведра заливал дизельное топливо прямо в диффузор карбюратора. Вся эта солярка тут же мощными струями стала вылетать из свечных отверстий, но, ударяясь о лист фанеры, почти не попадала на человека с ведром. Ведра соляра хватило примерно на 20 секунд такой промывки. Двигатель потом покрутили еще секунд 10 и, соединив снятый ранее разъем, ввернули на место свечи зажигания. Двигатель тут же завелся, – как положено, все четыре цилиндра. Весь процесс происходил во дворе автомастерской, и неприлично большое количество дыма, вылетавшего из выхлопной трубы, собрало зевак со всей округи. Минут через 10 количество дыма снизилось, мы заглушили двигатель, помыли все в моторном отсеке. На эту операцию ушло всего около 30 минут, тогда как в первый раз мы по незнанию снимали головку блока. Владельцу объявили, что, прежде чем выяснять причины тряски его автомобиля (именно с этой бедой пришла к нам машина), нужно отремонтировать клапаны и сменить маслосъемные колпачки. Но ездить на этой машине можно. Нужно только хотя бы один раз в день раскручивать двигатель до максимальных оборотов, так, чтобы на штоках не успевал скапливаться нагар. Подобную чистку при необходимости мы проводили потом не однажды. Но каждый раз это были автомобили с твинкамовскими двигателями. По-видимому, это связано с тем, что клапаны у этих двигателей очень «нежные» и легкие, имеют слабые пружины, что снижает усилие, с которым клапан прижимается к седлу. Поэтому крупинки нагара, попадающие под рабочую фаску клапана, не сразу раздавливаются и препятствуют его плотному закрытию.

Существует еще три причины неплотного прижатия клапанов. Первая – исчез тепловой клапанный зазор: после нагревания клапан слегка удлинился и уже не садится, как положено, в свое седло. В этом случае стука клапанов по утрам не слышно, мощность у двигателя снижена, после прогрева его слегка потряхивает на холостом ходу. У неплотно закрытого клапана замедляется отвод тепла от «тарелки» клапана, что повышает вероятность его прогорания. Обычно клапанный тепловой зазор исчезает, потому что «тарелка» клапана проваливается в седле из-за обычного износа. К тому же, как упоминалось ранее, при этом увеличивается и ширина рабочей фаски, что также не способствует увеличению компрессии. Поэтому руководства по обслуживанию автомобилей и рекомендуют периодически проверять величину зазора в клапанах. На наш взгляд, не важно, как это делать, на горячем двигателе или на холодном. Что такое 60 °C (примерно такой будет разница между горячим и холодным двигателем при регулировке клапанов) по сравнению с тем, что температура шляпки клапана работающего двигателя может достигать 1000 °C? А ведь на эту 1000 °C и рассчитан тепловой зазор, который мы регулируем.

Вторая причина – разрушение клапанов, или, как обычно говорят, их прогорание. Этому способствуют позднее (для данного бензина) зажигание, подтекающие маслосъемные колпачки, которые снижают теплоотдачу клапана и приводят к его перегреву и, естественно, отсутствие теплового зазора.

Ситуация с поздним зажиганием может быть не совсем простой. Допустим, вы, используя специальные приборы, выставили зажигание правильно, и центробежный автомат опережения зажигания в трамблере у вас не заклинило (если он там вообще есть: на современных автомобилях все опережение делает компьютер управления двигателем). Но в бензобаке вашего автомобиля вдруг оказался бензин, имеющий более высокое октановое число. Нет, вы не заливали в бак АИ-98, тогда как двигатель отрегулирован под АИ-93, вы использовали различные присадки в топливо, например присадки для удаления воды. Неизвестно, как изменилось октановое число да и другие свойства бензина после добавления этих присадок к топливу, купленному на вашей любимой автозаправке. Вот и получается, что пока вся эта импортная автохимия не заполонила полки наших автомагазинов, мы не встречали прогоревших клапанов в японских двигателях. А теперь – обычное дело.

Во всех руководствах по обслуживанию двигателя обязательно есть упоминание о необходимости регулировки клапанных зазоров. Это всем хорошо известно, но тем не менее многие мастера игнорируют это «пожелание» производителей автомобилей. О регулировке клапанных зазоров вспоминают лишь тогда, когда под клапанной крышкой раздается стук. Это говорит о том, что тепловые зазоры в клапанах недопустимо увеличились. В таком случае слегка снижается мощность двигателя, но в целом клапанный стук на работоспособности двигателя никак не отражается.

И третья причина неплотного закрытия клапанов – это проблемы с гидрокомпенсаторами клапанных зазоров, если они есть. Хотя сами гидрокомпенсаторы обычно в этом не виноваты, все дело – в распределительном валу и в наличии достаточного количества качественного масла в головке блока. Подробно об этом писалось в книге «Ремонт японских автомобилей (заметки автослесаря)», поэтому только коротко повторим основные моменты. Компенсатор – это поршенек, расположенный в цилиндрике. Там же в цилиндрике есть слабенькая пружинка, которая все время пытается вытолкнуть этот поршенек. Тут же «набегает» кулачок распредвала, и поршенек моментально вдавливается обратно в цилиндрик. Кулачок «сбежал» – поршенек снова выталкивается, пока не упрется в тыльную часть кулачка. Пока он выталкивается, через обратный шариковый клапан в цилиндрик засасывается моторное масло. Кулачку, когда он снова «набежит», чтобы вдавить поршенек, нужно будет не только пересилить слабенькую пружину, но и сжать при этом некоторое количество моторного масла. Известно, что масло, как и все жидкости, не сжимается, поэтому через несколько оборотов распределительного вала компенсатор будет «стоять колом», так как все пространство под поршеньком будет заполнено моторным маслом. Поршенек же будет находиться на высоте, соответствующей тыльной части кулачка распредвала. Теперь представьте, что на тыльной стороне кулачка образовалась ямка. Она может возникнуть в результате износа основания кулачка, так как именно в этом месте наиболее высокое давление на его поверхность. Поршенек быстро выдвинется, воспринимая эту ямку как тыльную сторону кулачка. Истинная же тыльная сторона будет для поршенька еще одним маленьким кулачком, и компенсатор передаст усилие на клапан и слегка его приоткроет. Таким образом, износ распредвала у двигателей с гидрокомпенсаторами клапанных зазоров приводит к неплотному закрытию клапанов и, естественно, к снижению компрессии. Замер компрессии дает, например, следующие результаты. Первый удар – 8 кг/см2, второй – 10 кг/см2, третий – 10,5 кг/см2, четвертый – снова 10,5 кг/см2и так далее. Стрелка манометра замирает на 10,5 кг/см2и больше не пытается даже дернуться. А 10,5 кг/см2держатся только за счет обратного клапана компрессометра, тогда как в цилиндре компрессии нет. Чтобы проверить, правильно ли работает гидрокомпенсатор, мы иногда измеряем компрессию при работающем на холостом ходу двигателе. Свечу зажигания выкручиваем и заземляем на корпус. На нее надеваем штатный высоковольтный провод, а в свечное отверстие вкручиваем компрессометр. В нем должна быть кнопка, с помощью которой можно сбрасывать давление в манометре. Теперь заводим двигатель. Компрессометр сразу показывает 5–6 кг/см2, но через несколько секунд, если кнопкой сбросить давление, при неисправном гидрокомпенсаторе он будет показывать 0. У исправного же цилиндра стрелка вновь окажется примерно на 5 кг/см2.


    Ваша оценка произведения:

Популярные книги за неделю