355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Венецкий » Рассказы о металлах » Текст книги (страница 16)
Рассказы о металлах
  • Текст добавлен: 4 октября 2016, 03:03

Текст книги "Рассказы о металлах"


Автор книги: Сергей Венецкий



сообщить о нарушении

Текущая страница: 16 (всего у книги 18 страниц)

Не менее хитрым оказался кассир одного из крупных европейских банков. Событие, о котором идет речь, произошло накануне первой мировой войны, когда в большинстве стран имели хождение, золотые деньги. Ежедневно в кассы банков стекались тысячи монет, где их разбирали, подсчитывали, сортировали и запечатывали в бумагу. Обычно все эти операции выполняли на специальных деревянных столах. Но однажды один из кассиров, прежде чем начать работу, постелил на стол принесенный из дома кусок сукна и на нем разложил деньги. Начальство пришло в восторг от такой аккуратности и долгое время ставило этого кассира в пример другим. Каждое утро он бережно доставал из ящика стола свою суконку, а когда кончался рабочий день, тщательно скатывал ее и прятал в стол. По субботам кассир уносил ее домой, а в понедельник приносил новый кусок материи.

Так продолжалось до тех пор, пока прислуга кассира не проболталась, что каждую субботу он кладет суконку на сковороду и сжигает. Частицы золота застрявшие за неделю в ворсинках плавились и превращались в крохотный слиточек драгоценного металла.

Одно из самых важных свойств золота – его исключительно высокая химическая стойкость. На него не действуют ни кислоты, ни щелочи. Лишь грозная «царская водка» (смесь азотной и соляной кислот) способна растворить золото. Этим обстоятельством воспользовался однажды известный датский ученый лауреат Нобелевской премии Нильс Бор. В 1943 году, спасаясь от гитлеровских оккупантов, он вынужден был покинуть Копенгаген. Не рискуя взять с собой золотую нобелевскую медаль, он растворил ее в «царской водке», а колбу с полученным раствором спрятал в своей лаборатории. Вернувшись после освобождения Дании домой, ученый химическим путем выделил золото из раствора и заказал из него такую же медаль, как прежняя.

Золото часто называют «царем металлов», окружают ореолом славы, ценят и почитают. И тем не менее судьба его незавидна: ведь золото – вечный узник. В самом деле, едва только добытое из недр земли золото поступает в руки человека, как тот вновь отправляет его в заточенье – в неприступные сейфы, бронированные подвалы, бетонированные подземелья. Вот что представляет собой, например, Форт-Нокс, где за несколькими рядами колючей проволоки, несущей электрический ток напряжением 5 тысяч вольт, находятся основные золотые запасы США. Дальние подступы к форту охраняются десятью сторожевыми башнями, снабженными совершеннейшей радиоэлектронной аппаратурой наблюдения. Установленные в башнях пулеметы и скорострельные пушки автоматически наводятся на цель. Форт разделен на секторы, имеющие затопляемые отсеки. Все помещения форта могут быть за несколько минут заполнены ядовитым газом, способным быстро уничтожить все живое. В самом центре форта в специальном железобетонном блоке, герметически закрытом двадцатитонной дверью с хитроумными замками, хранится золото Америки. Электронные «глаза» ни на мгновенье «не смыкают век». Над фортом постоянно патрулируют вертолеты. Такой охраны не знает ни один другой узник в мире.

Правда, в начале 1975 года Форт-Нокс расстался с частью своих богатств, но произошло это с ведома и согласия президента США, который подписал декрет, разрешающий частным лицам приобретать золото в личное пользование (с 1933 года свободная покупка золота в стране была запрещена). В один из январских дней в Вашингтоне состоялся крупнейший за всю историю золотой аукцион: было пущено с молотка около 56 тонн желтого металла. Но и в Форт-Ноксе еще «кое-что» осталось «на черный день» – примерно 8 тысяч тонн.

Лишь незначительная часть добываемого золота идет на изготовление зубных протезов и ювелирных изделий, еще меньше расходуется на технические нужды. Правда, в последнее время промышленность начала проявлять к золоту повышенный интерес. Все больше и больше желтого металла в качестве материала для транзисторов и диодов поглощает электроника. Из сплавов золота с платиной делают детали оборудования для получения синтетического волокна, которые по условиям производства должны обладать исключительной стойкостью к воздействию химических веществ.

В вакуумной технике используют технически чистое золото, которое при больших разрежениях прочно «прилипает» к находящейся с ним в контакте меди. Молекулы одного металла способны проникать в другой, причем взаимная диффузия идет при температурах, значительно более низких, чем температуры плавления каждого из этих металлов или любого их сплава. Образующиеся в результате такого обмена довольно прочные соединения называются в технике «золотыми печатями». Из золота делают уплотняющие кольца и шайбы для ответственных узлов ускорителей заряженных частиц, им паяют различные стыки на камере и трубах ускорителей. Золото надежно запирает все лазейки воздуха, благодаря чему в установке удерживается необычайно высокий вакуум – в миллиарды раз меньше атмосферного давления. А чем больше разрежение в камере, тем дольше «живут» в ней элементарные частицы.

К помощи золота вынуждены были прибегнуть инженеры, осуществившие в середине 50-х годов прокладку телефонного кабеля через Атлантический океан. Если телеграммы между Америкой и Европой курсируют уже более ста лет, то телефонные трансатлантические разговоры до недавнего времени казались несбыточной мечтой. Главная трудность заключалась в том, что ток, идущий по телефонному кабелю, быстро ослабевает. Как же этого избежать? Помочь могли усилители, которые, располагаясь на некотором расстоянии один от другого на всем протяжении кабеля, поддерживали бы силу тока. А чтобы защитить эти приборы от губительного воздействия морской воды, многие детали их предложено было покрыть золотом. Так удалось решить сложную техническую проблему, и в 1956 году состоялся первый в истории телефонный разговор через Атлантику.

Нет сомнения, что золото внесет весомый вклад и в освоение космического пространства. Несколько лет назад в зарубежной печати появилось сообщение о том, что американские спутники «Просперо» и «Ариэль-4», предназначенные для исследования ионосферы, будут «не простыми, а золотыми»: их наружное покрытие предполагается выполнить из золота. Причем в данном случае конструкторы космических аппаратов руководствовались отнюдь не теми соображениями, по которым римский император Нерон подковал серебром тысячи своих мулов: дело в том, что «царь металлов» обеспечивает эффективное терморегулирование наружной обшивки спутников, не окисляется, хорошо пропускает ионы и другие заряженные частицы, предотвращая тем самым их скопление, могущее привести к каким-либо незапланированным «ЧП».

Потребность промышленности в золоте растет из года в год. Можно не сомневаться, что рано или поздно этот ценнейший металл расстанется со стальными сейфами и перейдет на заводы и в лаборатории, где для него всегда найдется интересная работа.

Ag

Cd

In

Sn

Cs

Ba

La

Hf

Au

Hg

Tl

Pb

«СЕРЕБРЯНАЯ ВОДА»

Исключение из правил. – Дальние родственники. – Молоток из ртути. – На удивление штангистам. – «Чудесные исцелители». – Трагедия на «Триумфе». – Законом запрещены. – Реноме восстановлено. – Рим покупает ртуть. – «Проделки» Чингисхана. – Надпись во дворце Ахеменидов. – Модное увлечение. – Монархи строят лаборатории. – Фокусы средневековых шарлатанов. – Возможны варианты. – Подпольные эксперименты. – Под горячую руку. – Изворотливый Меркурий. – Творение Монферрана. – Радость преждевременна. – Зеленая губная помада. – Фердинанд II рекомендует спирт. – Трудные испытания. – Путевка в жизнь.

Более двухсот лет назад М. В. Ломоносов дал простое и ясное определение понятия «металл». Он писал: «Металлы – тела твердые, ковкие, блестящие». И действительно, железо, алюминий, медь, золото, серебро, свинец, олово и другие металлы, с которыми нам приходится сталкиваться, полностью соответствуют такой формулировке. Но ведь недаром говорят, что нет правил без исключений. В природе имеется приблизительно 80 металлов, и только один из них при обычных условиях находится в жидком состоянии. Вы, разумеется, догадались, что речь идет о ртути.

На примере ртути и ее антипода вольфрама можно убедиться в том, как широк диапазон свойств металлов. Если вольфрам плавится почти при 3400°С (для сравнения укажем, что температура пламени в рабочем пространстве мартеновской печи даже в фокусе горения не превышает 2000°С), то ртуть при лютом морозе продолжает оставаться жидкой, затвердевая лишь при – 38,9°С. Как видите, хотя ртуть и вольфрам принадлежат к одной большой семье металлов, иначе как «дальними родственниками» их не назовешь.

Впервые ртуть была заморожена в 1759 году. В твердом состоянии она представляет собой серебристо-синеватый металл, напоминающий по внешнему виду свинец. Если ртуть налить в форму, имеющую очертания молотка, а затем быстро охладить до затвердевания, например, жидким воздухом, то ртутным молотком можно с успехом забить гвоздь в доску, но при этом нужно торопиться, поскольку такой инструмент весьма недолговечен и может растаять на глазах.

Ртуть – самая тяжелая из всех известных жидкостей: ее плотность 13,6 грамма на кубический сантиметр. Это значит, что литровая бутылка ртути весит больше, чем ведро с водой. Если бы какому-нибудь штангисту пришлось опустить свою стальную штангу не на помост, а в резервуар со ртутью, то этот тяжелейший снаряд не утонул бы в ней, а остался бы преспокойно покачиваться на поверхности жидкого металла, как пробка в воде: ведь железо значительно легче ртути.

Человек знаком со ртутью с доисторических времен. Она упоминается в трудах Аристотеля, Теофраста, Плиния Старшего, Витрувия и других древних ученых. Латинское название этого металла «гидраргирум», которое дал ртути греческий врач Диоскорид, живший в I веке н. э., означает в переводе «серебряная вода». В том, что именно врач имел в те времена дело со ртутью, нет ничего удивительного: еще в древности были хорошо известны ее лекарственные свойства. Правда, порой применение ртути в лечебных целях носило весьма «оригинальный» характер. В литературе описаны, например, случаи, когда при завороте кишок больному вливали в желудок некоторое количество ртути (200 – 250 граммов). По мнению «чудесных исцелителей», предлагавших такой способ лечения, ртуть благодаря большому весу и подвижности должна была пропутешествовать по хитросплетениям кишок и расправить своей тяжестью их перекрутившиеся части. Можно представить, к каким результатам приводили подобные эксперименты.

В наши дни заворот кишок устраняют другими, более надежными способами, но различные соединения ртути и сейчас широко применяют в медицине: так, сулема обладает дезинфицирующими свойствами; каломель служит слабительным; меркузал используют как мочегонное средство: некоторые ртутные мази употребляют при кожных и других заболеваниях.

Нельзя, однако, забывать, что соединения и пары ртути могут вызвать острые отравления человеческого организма. Так, в 1810 году на английском корабле «Триумф» более двухсот человек отравились ртутью, вылившейся из бочки. Вот почему в СССР и многих других странах некоторые производства, связанные с применением ртути и ее соединений, например изготовление ртутных красок, категорически запрещены законом.

В тех случаях, когда без ртути не обойтись, проводят различные профилактические мероприятия, которые предохраняют здоровье рабочих от ее губительного воздействия.

Природа не богата ртутью. Иногда она встречается в самородном состоянии – в виде мельчайших капелек. Основной ртутный минерал – киноварь. Это красивый камень, словно покрытый алыми пятнами крови. С киноварью связан любопытный эпизод. Вы уже знаете, что в последнее время геологи проводят эксперименты по использованию собак для поисков полезных ископаемых. Когда группа овчарок прошла курс обучения, им устроили нечто вроде экзамена: среди многих образцов они должны были найти киноварь. Собаки быстро обнаруживали этот минерал, но «не успокаивались на достигнутом»: все они, словно сговорившись, принимали за киноварь еще и розовый кальцит. Геологи сначала снисходительно посмеивались, но затем решили докопаться до причины этой общей ошибки «экзаменующихся». И что же оказалось? Внутри розового кальцита находились вкрапления киновари – реноме четвероногих «геологов» было восстановлено.

Крупнейшее в мире ртутное месторождение (Альмаден) находится в Испании, на долю которой до недавнего времени приходилось около 80% мировой добычи ртути. Плиний Старший упоминает в своих сочинениях, что Рим закупал в Испании ежегодно до 4,5 тонны ртути.

Одно из старейших в нашей стране ртутных месторождений – Никитовское – находится в Донбассе. Здесь на различной глубине (до 20 метров) обнаружены древние горные выработки, в которых можно было найти и орудия труда – каменные молотки.

Еще более древний – рудник Хайдаркан («Великий рудник») в Ферганской долине (Киргизия), где также сохранились многочисленные следы древних работ: крупные выработки, металлические клинья, светильники, глиняные реторты для обжига киновари, большие отвалы образующихся при этом огарков.

Археологические раскопки показывают, что в Ферганской долине ртуть добывали на протяжении многих столетий и лишь в XIII – XIV веках, после того как Чингисхан и его преемники уничтожили здесь ремесленноторговые центры, а население перешло на кочевой образ жизни, добыча руды в Фергане была прекращена.

В Средней Азии разрабатывались и другие месторождения ртути. Так, например, надписи во дворце древнеперсидских царей Ахеменидов (VI – IV века до н. э.) в Сузах говорят о том, что киноварь, которую в те времена использовали главным образом как краситель, доставляли сюда с Зеравшанских гор, расположенных на территории современных республик Таджикистана и Узбекистана. По-видимому, ртуть добывали здесь еще в середине первого тысячелетия до н. э.

Тяжелым и вредным был раньше труд горняков. У Киплинга есть такие строки: «Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту...». До сих пор в лабиринтах горных выработок, где в древности добывали ртуть, можно встретить множество скелетов. Дорогой ценой – тысячами жизней – приходилось расплачиваться с горами за красный камень, будто обагренный кровью тех, кто пытался проникнуть к ртутным сокровищам.

Значительно возросла добыча ртути в средние века – в период повсеместного увлечения алхимией. Интерес, который проявляли к ртути алхимики, объяснялся тем, что, по одной из их теорий, ртуть, сера и соль были возведены в ранг «первородных элементов». Ртути приписывалось «материнское начало»: «...с помощью теплоты лед растворяется в воду, значит, он из воды; металлы растворяются в ртути, значит, ртуть – первичный материал этих металлов».

Итак, алхимикам, вооруженным столь «солидной научной теорией», оставалось лишь найти «философский камень», при помощи которого можно было бы превращать ртуть в золото, и, засучив рукава, приниматься за работу. Но вот беда: поиски «философского камня» затянулись несмотря на то, что в их удачном исходе были заинтересованы такие влиятельные особы, как английский король Генрих VI, император «Священной Римской империи» Рудольф II и другие европейские монархи, создававшие у себя при дворе крупные алхимические лаборатории.

Правда, кое-какие плоды эти исследования все же принесли: придворный алхимик Генриха VI обнаружил, что натертая ртутью медь приобретает серебристый оттенок, и король оперативно внедрил это «открытие» в жизнь: он выпустил под видом серебряных большую партию медных монет, покрытых ртутью, прикарманив на этой операции солидную сумму.

Время от времени в разных странах появлялись лица, якобы овладевшие тайной «философского камня». Иногда это были заблуждавшиеся ученые, а чаще – шарлатаны, знавшие немало способов «получения» искусственного золота.

Один из них заключался в следующем. На глазах присутствующих алхимик помешивал расплавленный свинец или ртуть, находящиеся в тигле, деревянной палочкой, в которую были предварительно спрятаны кусочки золота. Частично это золото растворялось в расплавленном металле. После «эксперимента» в тигле, естественно, можно было обнаружить следы золота, которое свидетельствовало, а точнее лжесвидетельствовало, о чудесном превращении.

Однако слухи об этих «кудесниках» рано или поздно доходили до правителя страны, и тогда им приходилось либо признаваться в обмане, либо организовывать при дворе массовое производство золота, а уж тут деревянная палочка была плохим помощником.

Уличенного во лжи алхимика обычно вешали, как фальшивомонетчиков – на позолоченной виселице, в одежде, усыпанной блестками. Впрочем, были и другие варианты казни. В 1575 году, например, герцог Люксембургский сжег заживо в железной клетке женщину-алхимика Марию Зиглерин за отказ сообщить ему состав «философского камня», который она по вполне понятным причинам не знала, хоть и утверждала на свою беду обратное.

Спустя некоторое время алхимия была предана проклятию католической церковью и официально запрещена в Англии, Франции и других странах. Но подпольные алхимические эксперименты не прекращались; продолжались и. казни. Под горячую руку попал французский химик Жан Барилло, который был казнен только за то, что изучал в своей лаборатории химические свойства элементов. Его опыты показались подозрительными, и судьба ученого была тотчас же решена.

В дошедших до наших дней алхимических рецептах ртуть часто называют меркурием. Это название было дано металлу еще в Древнем Риме за способность капелек ртути быстро «бегать» по гладкой поверхности, чем она, по мнению римлян, напоминала хитрого, ловкого и изворотливого бога Меркурия – покровителя торговли. Кстати, и другие элементы в алхимической литературе были зашифрованы: золото обозначалось символом Солнца, железо – планеты Марса, медь – планеты Венеры и т. д. Таким образом алхимики скрывали свои знания от посторонних, которые не были знакомы с их символикой.

Способность ртути растворять многие металлы, образуя так называемые амальгамы, была замечена еще до нашей эры. В более поздние времена амальгамы использовали для покрытия медных церковных куполов тончайшим слоем золота. Таким способом был позолочен, например, купол Исаакиевского собора – изумительного памятника архитектуры, созданного в 1818 – 1858 годах в Петербурге по проекту Огюста Монферрана.

Более ста килограммов червонного золота было нанесено амальгамацией на медные листы, из которых выполнен гигантский, диаметром около 26 метров, купол этого собора. Поверхность медных листов тщательно очищали от жира, шлифовали и полировали, а затем покрывали амальгамой – раствором золота в ртути. После этого листы нагревали на специальных жаровнях до тех пор, пока ртуть не испарялась, а на листе при этом оставалась тонкая (толщиной несколько микрон) пленка золота. Но легкий синевато-зеленый дымок паров ртути, который, казалось, бесследно исчезал, успевал «по пути» отравить рабочих, занимавшихся позолотой. И хотя по правилам тогдашней «техники безопасности» позолотчики пользовались стеклянными колпаками, эта «спецодежда» не могла спасти от отравления. Люди погибали в страшных муках. По свидетельству современников, золочение купола стоило жизни 60 рабочим.

С амальгамами связаны не только печальные факты, но и забавные истории. Рассказывают, будто бы в начале нашего века один исследователь пытался получить золото из ртути, воздействуя на ее пары мощными электрическими разрядами. Много времени и труда потратил он, и вот, наконец, пришел успех: в ртути появились первые следы золота. Радость экспериментатора не знала границ. Каково же было разочарование, когда выяснилось, что золото попало в ртуть с... золотой оправы его собственных очков. Поправляя время от времени очки руками, на которых были мельчайшие капельки ртути, ученый переносил золото в виде амальгамы в исследуемую ртуть.

Амальгамы и сейчас применяют в ряде случаев для золочения металлических изделий (разумеется, при этом дело обходится без жертв), в производстве зеркал, в зубоврачебном деле, в лабораторной практике.

Из ртутной соли гремучей кислоты (гремучей ртути) изготовляют взрывчатые вещества.

Широко применяют в технике ртуть и в чистом виде. В химической промышленности, например, она участвует в производстве хлора, едкого натра, синтетической уксусной кислоты. Весьма надежны и долговечны ртутные вентили, служащие для выпрямления переменного тока. В автоматической и измерительной аппаратуре используют ртутные выключатели, которые обеспечивают мгновенное замыкание и размыкание электрической цепи.

Ртутно-кварцевые лампы позволяют получить интенсивное ультрафиолетовое излучение. В медицине эти лампы служат для обезвреживания воздуха в операционных залах, для облучения организма человека в лечебных целях.

В 1922 году чешский химик Ярослав Гейровский открыл полярографический метод химического анализа, в котором ртуть играет далеко не последнюю роль. За это открытие ученый был удостоен Нобелевской премии.

Разреженными парами ртути с добавкой аргона наполнены стеклянные трубки люминесцентных ламп. Еще в 1937 году была предпринята попытка использовать ртутные лампы для освещения улицы Горького в Москве. Но вскоре от этих ламп пришлось отказаться, так как излучаемый ими мертвенно-бледный свет придавал лицам людей малопривлекательный землистый оттенок, а губная помада, например, из красной превращалась в зеленую.

В дальнейшем удалось разработать специальные составы – люминофоры, которые, будучи нанесенными на внутреннюю поверхность ламп, позволяют получать свет различной окраски, в частности белый свет, очень близкий к дневному.

Ртуть – «главное действующее лицо» во многих физических приборах – манометрах, барометрах, вакуумных насосах. Но, пожалуй, наиболее распространенные ртутные приборы – это термометры.

В XVII веке, когда были созданы первые приборы для измерения температуры, рабочей жидкостью в них служила вода, но на холоде она замерзала, стекло разлеталось вдребезги и термометры выходили из строя. Тосканский герцог Фердинанд II, по-видимому, достаточно хорошо знакомый с винным спиртом, предложил использовать его вместо воды – термометры стали более надежными, но, поскольку качество спирта не всегда было одинаковым, в показаниях приборов наблюдались заметные расхождения. Первым, кто начал измерять температуру при помощи ртути, был французский физик Амонтон. Спустя несколько лет немецкий физик Фаренгейт создал свой ртутный термометр со шкалой, которая до сих пор употребляется в Англии и США.

В наше время ртутные термометры имеют самое разнообразное назначение. От этого зависит конструкция термометра, в частности толщина капилляра, по которому перемещается ртуть. Самый тонкий капилляр у медицинского градусника – всего 0,04 миллиметра. Чтобы этот тончайший столбик ртути можно было заметить невооруженным глазом, капилляр делают в форме трехгранной увеличительной призмы, а на его заднюю стенку наносят «экран» – полоску белой эмали.

Поскольку ртуть не должна опускаться, пока ее не стряхнешь, нужно в каком-то месте канал сузить, но и без того узкий трехгранник сужать уже нельзя. Поэтому к нему снизу припаивают маленькую цилиндрическую трубку и в ней делают пережим.

Применяемая для термометров ртуть должна отличаться особой чистотой: ведь малейшие примеси могут существенно исказить показания. Вот почему ртуть подвергают специальной обработке, промывают, дистиллируют и только после этого заполняют ею стеклянные капилляры.

Кстати, несмотря на хрупкость стекла, оно пока является незаменимым в этом случае материалом. Использовать вместо него, допустим, прозрачную пластмассу нельзя: она, как решето, пропускает губительный для ртути кислород.

Заполнение капилляра ртутью – очень ответственная операция: в трубку не должен попадать воздух. Раньше, когда этот процесс выполняли вручную, мастерам приходилось по нескольку недель нагревать поочередно то один, то другой конец заполненной ртутью стеклянной трубочки, изгоняя оттуда воздушные пузырьки. Сейчас с этим делом быстро и успешно справляются машины.

Прежде чем попасть к месту своей будущей «работы», термометры проходят еще много испытаний и проверок. Увы, некоторых из них ждет печальный приговор: «Брак». Жизненный путь этого неудачника тут же заканчивается в корзине для отходов. Но зато можно не сомневаться в точности тех термометров, которые выдержали все «экзамены» и получили своего рода «аттестат зрелости» – заводское клеймо. Беспристрастная капелька ртути, заключенная в стеклянный капилляр, будет верно служить науке, промышленности, сельскому хозяйству, медицине.

За свою многовековую историю производство ртути прошло длинный путь. Когда-то ртутную руду обжигали в глиняных горшках, а испаряющаяся при этом ртуть конденсировалась на листьях свежесрубленных деревьев, устанавливаемых около горшочков в кирпичных камерах. Сейчас на заводах действуют автоматические агрегаты для непрерывного получения ртути. Рабочему достаточно нажать кнопку дистанционного управления, и тонны ртутного концентрата заполнят бункер огромной электрической печи. В ней при температуре в сотни градусов ртуть начинает испаряться из концентрата. Пары затем охлаждают, и образовавшаяся ртуть поступает в специальный резервуар.

В дальнейшем металл подвергают окончательной очистке и заливают в стальные баллоны, вмещающие по 35 килограммов. Особо чистую (рафинированную) ртуть высшего качества разливают в фарфоровые стаканы – по 5 килограммов в каждый. В таком виде она поступает на склад готовой продукции.

Здесь «серебряная вода» получает путевку в жизнь.

Sn

Sb

Te

I

Hf

Ta

W

Re

Pb

Bi

Po

At

ПОГУБИВШИЙ РИМ

Бдительные гуси. – Печальная судьба патрициев. – На службе инквизиции. – Секреты браминов. – Крики ужаса на «Мосту вздохов». – Веский аргумент. – Недопустимая «самодеятельность». – Тучи над городом встали. – «Made in Rodos». – Пожар в афинском порту. – Бывают ли чудеса? – Ядовитый «сахар». – В нападении и защите. – «Мини»-иллюминатор. – Находка под слоем земли. – Библиотека царя Ашшурбанипала. – Сколько лет горным породам? – Рудознатцам – зеленую улицу. – Один на 10 миллионов. – Зачем нужна «конспирация»? – «Фамильные» узы. – «Кошку назвали кошкой».

Рим спасли гуси – это известно всем. Бдительные птицы своевременно заметили приближение неприятельских войск и тотчас резкими гортанными звуками сигнализировали об опасности. На этот раз все обошлось благополучно. Но, тем не менее, Римской империи суждено было впоследствии пасть. Что же послужило причиной падения некогда могущественного государства? Что погубило Рим?

«В падении Рима повинно отравление свинцом», – так считают некоторые американские ученые-токсикологи. По их мнению, использование оправленной в свинец посуды и свинцовых косметических красок обусловило быстрое вымирание римской аристократии. Из-за систематического отравления малыми дозами свинца средняя продолжительность жизни римских патрициев не превышала 25 лет Люди низших сословий, согласно этой теории, в меньшей степени подвергались свинцовому отравлению, поскольку они не имели дорогой посуды и не употребляли косметических средств. Но и они пользовались знаменитым водопроводом, «сработанным еще рабами Рима», а трубы его, как известно, были сделаны из свинца.

Люди вымирали, империя чахла. Разумеется, виноват в этом был не только свинец. Существовали и более серьезные причины – политические, социальные, экономические И все же доля истины в рассуждениях американских ученых, безусловно, есть: обнаруживаемые при раскопках останки древних римлян содержат большие количества свинца

Все растворимые соединения этого элемента ядовиты. Установлено, что вода, которая питала Древний Рим, была богата углекислым газом. Реагируя со свинцом, он образует хорошо растворимый в воде кислый углекислый свинец. Поступающий даже в малых порциях в организм свинец задерживается в нем и постепенно замещает кальций, который входит в состав костей. Это приводит к хроническим заболеваниям.

На «совести» свинца лежит не только погубленный Рим, но и другие темные дела. Во времена разгула инквизиции иезуиты использовали расплавленный свинец как орудие пыток и казни. В Индии еще в начале прошлого века, если человек низшей касты сознательно или нечаянно подслушивал чтение священных книг браминов, ему вливали в уши расплав свинца (чтобы поддержать свою власть над народом, жрецы Вавилона, Египта, Индии издавна держали свои знания в глубокой тайне).

В Венеции сохранилась средневековая тюрьма для государственных преступников, соединенная «Мостом вздохов» с замечательным памятником архитектуры – Дворцом дожей. На чердаке тюрьмы имелись специальные камеры под свинцовой крышей – для «особо провинившихся». Летом узники здесьизнывали от жары, зимой – стыли от холода. А на «Мосту вздохов» слышны были крики ужаса...

С тех пор как изобрели огнестрельное оружие и из свинца начали отливать смертоносные пули для ружей и пистолетов, он стал одним из самых «веских аргументов» в споре враждующих сторон. Свинец не раз решал исход и грандиозных военных баталий, и мелких гангстерских потасовок.

Может сложиться впечатление, что, кроме вреда, от свинца ничего не дождешься, и поэтому ближайшая и главная задача человечества – полностью избавиться от этого злого металла, принесшего уже столько бед и горя. Но люди почему-то не только не стремятся к такому избавлению, но, напротив, постоянно расширяют производство свинца. Из всех цветных металлов, только алюминий, медь и цинк производятся в большем количестве, чем свинец. Какой же полезной деятельностью занимается этот металл?

История знает немало примеров, когда народы вели справедливые войны за свою свободу и независимость – ив этой борьбе им помогал свинец. Чтобы быть уверенным в надежности своих границ, необходимо иметь не только «порох в пороховницах», но и все тот же свинец. Вот почему военное значение этого металла весьма велико.

Когда в начале нашего века бурное развитие техники привело к созданию автомобилей, подводных лодок, самолетов, возникновению химической и электротехнической промышленности, в производстве свинца произошел особенно резкий скачок.

Примерно треть всей мировой добычи этого металла расходуется сейчас на изготовление аккумуляторов, решетки которых делают, например, из сплава свинца и сурьмы, а заполнителем служит смесь свинца и глёта (окиси свинца).

Крупный потребитель этого металла – топливная промышленность. В бензиновых двигателях горючую смесь, перед тем как поджечь, сжимают, и чем сильнее это сжатие, тем экономичнее работает двигатель. Но при значительной степени сжатия горючая смесь взрывается, не дожидаясь, когда ее подожгут. Естественно, такая «самодеятельность» недопустима. На помощь пришел тетраэтилсвинец. Небольшие добавки его к бензину (меньше 1 грамма на литр) предотвращают взрывы, заставляя топливо сгорать равномерно, а главное – в тот самый момент, когда это нужно.


    Ваша оценка произведения:

Популярные книги за неделю