355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Баландин » 100 великих загадок географии » Текст книги (страница 2)
100 великих загадок географии
  • Текст добавлен: 23 декабря 2020, 15:00

Текст книги "100 великих загадок географии"


Автор книги: Рудольф Баландин



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

Почему Земля тёплая?

С глубиной температура земных недр обычно повышается. Только в зонах вечной (многолетней) мерзлоты она может быть отрицательной до полукилометровой глубины, но затем начинает возрастать.

В туннелях и на станциях метро глубокого заложения круглый год тепло. В глубоких шахтах жарко и работать трудно. В Кольской сверхглубокой скважине на глубине 7 км температура достигла 120 °C, а через 5 км возросла ещё на 100 градусов. На больших глубинах плоть Земли раскалена до нескольких тысяч градусов.

Нет никакой возможности измерить приборами температуру глубоких недр. Геофизики определяют её косвенным путём, исходя из некоторых предположений и допущений. Ведь мы не знаем химический состав глубоких недр. Например, предполагается, что ядро планеты состоит из железа. В таком случае его температура, согласно расчётам, может составлять от 2500 до 6000°.

На земной поверхности жар Земли выделяется в зонах действующих вулканов и выходов горячих подземных вод. Энергия глубин разряжается во время землетрясений; она вызывает перемещения крупных участков (блоков) земной коры и целых континентов.

Казалось бы, при столь высокой температуре земных недр наша планета должна излучать много энергии. Но как показывают замеры, тепловой поток, выходящий из глубин на поверхность планеты, невелик, примерно в десять тысяч раз меньше поступающей извне лучистой солнечной энергии.

Это чрезвычайно важный факт. В наше время многие авторитетные специалисты в науках о Земле его недооценивают. Пытаясь понять, какие силы сминают в складки и разрывают горные породы, колеблют земную поверхность и движут материки, геофизики ссылаются на энергию земных глубин. На этом основана популярная ныне глобальная тектоника литосферных плит. Впрочем, о ней у нас будет особый разговор.

Два века назад преобладало мнение специалистов, что ниже сравнительно тонкого слоя твёрдых горных пород, который назвали земной корой, клокочет кипящая магма. В действительности, несмотря на высокие температуры, глубинное вещество планеты находится преимущественно в твёрдом и пластичном состоянии из-за высоких давлений. Как установили физики, температура плавления растёт с увеличением давления.


Разрез через Японское море до глубины 500 км.

Внизу – профиль теплового потока. Оконтурена зона глубинных разломов и эпицентров землетрясений (по японским авторам)

По этой причине на тех участках земной поверхности, где по какой-то причине снижается нагрузка на земную кору, при повышении температуры горных пород они могут переходить в текучее состояние.

Откуда берётся тепло Земли?

Для ответа на этот вопрос можно обратиться к фундаментальной работе «Земля» группы американских учёных во главе с Дж. Ферхугеном. Там ясно сказано: «Многое ещё в проблеме земного тепла остаётся неопределённым». Несмотря на то что с той поры, как был сделан такой вывод, прошло четыре десятилетия, ничего не прояснилось.

В познании жизни Земли остаются зияющие пробелы. Исследователям предоставлено обширное поле деятельности, поисков и открытий. А мы обратимся к некоторым фактам, проблемам и гипотезам.

Долгое время считалось, что Земля сохраняет тепло с момента своего рождения. Это возможно в том случае, если она возникла из плазмы при «горячем варианте» образования Солнечной системы или как выброс солнечного вещества.

Если Земля сформировалась в результате гравитационного притяжения холодных частиц, при этом должно было выделяться огромное количество энергии. Но она уходила бы в основном в космическое пространство. Если часть её сохранилась, это не имеет принципиального значения, ибо нет никаких данных о том, что наша планета за последние 3–4 миллиарда лет охлаждалась. Бывали ледниковые эпохи, но они охватывали только земную поверхность.

Принято считать основным источником внутренней тепловой энергии планеты распад радиоактивных элементов. Значительно меньше сказывается ротационная энергия, связанная с гравитационным воздействием Луны и Солнца, что приводит к замедлению вращения Земли.

Более проблематично влияние перераспределения масс вещества в ядре и мантии планеты, а также физико-химических процессов, происходящих в глубоких недрах.

У всех этих гипотез, исключая ротационную, общее уязвимое место. По всем законам термодинамики внутреннее тепло Земли как замкнутой системы должно со временем уменьшаться. При этом интенсивность геологических процессов должна слабеть. Ничего подобного не наблюдается. Напротив, есть данные, что за геологическую историю возрастала активность накопления осадочных горных пород.

Наиболее насыщенные радиоактивными элементами горные породы, в частности граниты, находятся преимущественно в земной коре континентального типа; их почти нет в земной коре дна Мирового океана.

Логично предположить, что тепловой поток из недр на континентах будет значительно выше, чем в океанах. К изумлению геофизиков, измерения показали, что ничего подобного нет.

Как же так? Ротационные силы действуют на всю массу планеты. Физико-химические процессы и радиоактивный распад наиболее активно идут в земной коре континентов. Чем же объяснить равенство тепловых потоков на континентах и в океанах?

По данным японских учёных Ли и Уэды, в океанических бассейнах тепловой поток в среднем на 20–25 % выше, чем на устойчивых древних континентальных щитах (платформах), где преобладают граниты и метаморфические породы с высоким содержанием радиоактивных минералов.

Как объясняют специалисты подобные тепловые аномалии? Насколько мне известно, никаких убедительных объяснений нет. Есть только предположения. Мол, это зависит от неоднородного состава мантии: под океанами в ней больше радиоактивных атомов, чем под континентами.

Как пишут авторы упомянутой выше работы «Земля», «в сущности, этот подход сводится к допущению, что уран, торий и калий перемещаются вместе с другими элементами (кремнием, алюминием, натрием и т. п.), которыми кора континентов значительно обогащена по сравнению с мантией».

Получается допущение, основанное на предположении. И нет другого варианта объяснения. Это особенно странно. Почему геофизики предлагают только одну гипотезу?

С тех пор как в науках о Земле господствует глобальная тектоника плит литосферы, геофизики стараются толковать факты так, чтобы они подходили под эту идею. Для этого надо каким-то образом показать, что в сверхплотной мантии планеты возможны круговые потоки вещества.

Можно ли как-то иначе объяснить равенство потоков земного тепла под континентами и океанами? Есть ещё одна закономерность: самые мощные потоки геотермальной энергии – в наиболее молодых вулканических областях; немногим меньше – в молодых активных горных системах. Что бы это значило?

На мой взгляд, наиболее вероятна такая гипотеза. Под высоким давлением в ядре и мантии Земли деформируются кристаллические решётки минеральных масс, высвобождая энергию. Она излучается относительно равномерно. Поэтому общий поток тепла под континентами и океанами одинаков.

Почему возникают температурные контрасты? Потому что на земную поверхность поступает мощный поток солнечной энергии, в тысячи раз превышающий поток тепла из недр. Взаимодействие воздушной, водной и каменной оболочек планеты при участии живых организмов определяет процессы, происходящие в земной коре, – геохимию и геофизику ландшафта.

В самом общем виде суть в том, что дробление, перенос, химическая обработка, накопление и погружение в земную кору минеральных масс сопровождается аккумуляцией лучистой солнечной энергии. Она «разряжается» в каменной оболочке Земли там, где эти процессы идут наиболее активно.

Такова гипотеза, основанная на учении о Биосфере. Она открывает новые горизонты познания геотермальной энергии. Окончательного ответа на загадку земного тепла нет. Для успешных научных исканий необходимо прежде всего избавиться от предвзятых мнений и обдумывать разные варианты решения загадок природы.

Глобальный солнечный двигатель

Солнечная лучистая энергия одухотворяет Землю. Не только потому, что насыщает энергией живые организмы. Она определяет обмен веществ в организме нашей планеты, проникая в литосферу.

Как могут солнечные лучи, падающие на земную поверхность, достичь земных глубин? Благодаря подвижности земной коры. Она постоянно живёт, разрушаясь и обновляясь. В понижениях осадочные породы, накапливаясь, погружаются в недра. А там, где воздымается земная кора, горные породы срезаются эрозией, обнажая древние пласты. Поэтому на земную поверхность выходят горные породы самого разного, порой весьма почтенного возраста – более трёх миллиардов лет.

Вместе с осадочными толщами погружается в недра нашей планеты и солнечная энергия, накопленная на земной поверхности. Такие минералы, горные породы называют геохимическими аккумуляторами. Люди научились создавать искусственные солнечные батареи. В природе они действуют не так активно, зато без дополнительных затрат материалов, труда и энергии, распространяясь на огромные территории.

Геофизическим пассивным аккумулятором солнечной энергии является Мировой океан. Вода «поглощает» почти все отвесно падающие лучи, хотя при большом угле падения почти полностью их отражает. Она служит системой «водяного отопления» земной поверхности.

Наиболее мощно действуют биохимические аккумуляторы: прежде всего растения и бактерии, а на их основе – грибы, животные. Растения поглощают примерно 5 % солнечной энергии, поступающей на Землю. Это значительно больше, чем энергия землетрясений и вулканов вместе взятых. Она воплощается в сложные органические соединения, которые участвуют в круговоротах земных веществ, накапливаются в осадочных горных породах.

Наиболее сложная ситуация с геохимическими аккумуляторами. В середине прошлого века советские учёные кристаллографы академик Н.В. Белов и В.И. Лебедев предположили, что солнечная энергия может аккумулироваться в «кристаллическом веществе Земли», например в глинистых минералах. При этом в кристаллических решётках увеличивается расстояние между атомами. Погружаясь в зону больших давлений, кристаллические решётки деформируются, выделяя энергию…

Проверка этой гипотеза показала, что всё значительно сложней. Не вдаваясь в детали, отметим: одно уже то, что при эрозии образуются тонкие глинистые частицы, коллоиды, резко увеличивает химическую активность вещества. Минералы насыщаются водой, образуя сложные структуры. Огромную роль играет биохимическая энергия.

В книге «Геохимия ландшафта» советский учёный А.И. Перельман писал: «Глинистые минералы выступают в роли своеобразных “горючих ископаемых”, отдающих заключённую в них энергию при высоких температурах плавления пород (чтобы получить энергию из угля, его тоже надо нагреть, хотя и до менее высокой температуры)…


Круговороты горных пород в Биосфере

Известно, что вопрос об источнике энергии эндогенных (внутренних, глубинных) процессов (горообразование, магматизм и др.) не является решённым. Радиоактивный распад не объясняет многие особенности этих процессов».

Гипотезу геохимических аккумуляторов разрабатывают до сих пор, но так и не удаётся превратить её в убедительно доказанную теорию. В отличие от так называемых точных дисциплин (математика, физика, химия) науки о Земле комплексные, они используют сведения из этих дисциплин и осуществляют синтез разнообразных, порой противоречивых фактов.

Огромные трудности познания связаны с тем, что многие важные геохимические процессы длятся тысячи, а то и миллионы лет, преобразуя минералы и горные породы. А о происходящем в глубоких недрах приходится догадываться, не имея возможности воссоздать процессы в полном объёме.

Как говаривал Михаил Васильевич Ломоносов, «велико есть дело достигать во глубину земную разумом, куда рукам и оку досягнуть возбраняет натура; странствовать размышлениями в преисподней, проникать рассуждением сквозь тесные расселины, и вечною ночью помрачённые вещи и деяния выводить на солнечную ясность».

…Люди создали отрасль промышленности – гелиоэнергетику, которая преобразует и использует солнечную энергию. Техногенные аккумуляторы разнообразны, многочисленны и отлично работают. Так уж повелось: практические свершения нередко опережают теоретическую мысль. Не исключено, что изучение тайн глубинной энергии Земли наведёт учёных на новые идеи о сути энергии вообще.

Понятие энергия (в переводе с греческого – «действие, деятельность») ввёл в философию и физику Аристотель. (Он же ввёл слово «физика», предполагая под этим познание природы; от греческого «фюзис» – «природа».) В Средние века энергию олицетворяла стихия огня. Теперь энергию определяют как единую меру различных форм движения и взаимодействия материи. Но это ничего не говорит о сути этой субстанции.

То, что это мера чего-то, спору нет. Но хотелось бы знать: мера чего?

С увеличением давления вещества меняются: газ может превратиться в жидкость, а жидкость – в твёрдое тело.

Выскажу своё мнение. Известен лишь один процесс получения «чистой» энергии в соответствии с формулой E = mc2. (По недоразумению её приписывают А. Эйнштейну, хотя она была выведена задолго до него.) Это – аннигиляция, соединение частицы с античастицей, например электрона с позитроном. Материальные частицы, обладающие массой покоя, исчезают. При определённых условиях они могут появиться вновь. Откуда? Из всеобщей энергетической среды. Сначала её называли эфиром, затем вакуумом (в переводе с греческого – «ничто»).

Дадим волю фантазии. Предположим, в материальных телах присутствуют частицы и античастицы – носители отрицательного и положительного электрического заряда (в этом нет ничего невероятного). При радиоактивном распаде атомов некоторые из них освобождаются и взаимодействуют, излучая энергию вакуум-эфира.

Во всех телах, если они не охлаждены до абсолютного нуля, движутся атомы, элементарные частицы. Некоторые из них могут на больших скоростях сталкиваться и превращаться в энергию. Чем сильней сжато вещество при ударе или давлении, тем больше вероятность таких столкновений, а значит, больше выделяется тепла…

Это не более чем предположение. В современной физике, чтобы избавиться от противоречий, придумана мнимая частица фонон. По форме это удобно, а по сути ничего не объясняет. Тоже – всего лишь предположение…

Итак, у земной поверхности взаимодействуют воздух, вода, твёрдые минералы, коллоиды, живые организмы. Они объединёнными усилиями «впитывают» лучистую энергию Солнца, переводя её в земные процессы. Наиболее подвижна атмосфера, менее подвижны природные воды, наиболее «медлительна» земная кора. Но и она благодаря своим движениям получает долю этой энергии, разряжая её на значительных глубинах под огромным давлением.

Из всех видов энергии, действующих на Земле (радиоактивный распад, замедление и ускорение вращения планеты, космические лучи) абсолютное первенство остаётся за лучистой энергией Солнца.

Земная кора или…

В науках немалую путаницу вносят неточные названия. Некоторые из них сохраняются с далёкого прошлого и противоречат современным знаниям. Слово «атом» переводится с греческого как «неделимый», хотя давно известно, что это не так. Есть сложная система частиц, называемых элементарными, но из них только фотон можно считать элементарным, да и то это скорее часть волны света, а не частица. Выделяют частицы и античастицы, хотя они совершенно одинаковы, отличаясь только знаком электрического заряда.

Издавна земная кора считалась, на первый взгляд бесспорно, твёрдой надёжной опорой под ногами. В нашем восприятии воздух и вода подвижны, а земля – нечто косное, инертное, застывшее. С поверхности она покрыта более или менее толстым слоем рыхлых осадков, почв, ила. Ниже находятся прочные скалы, которые в некоторых местах выступают на земную поверхность или взрезаны речными долинами, ущельями.

Однако жители сейсмических или вулканических районов знают на собственном опыте, что впечатление о незыблемой каменной тверди обманчиво. Она способна дрожать или извергать из своих недр массы пара, пыли, расплавленной магмы.

Многие учёные прошлого предполагали, что ниже нескольких десятков километров горные породы становятся расплавленными, вязкими или пластичными. Сверху эти раскалённые расплавленные массы покрыты застывшей коркой. Отсюда и пошло название: земная кора.

Это предположение не подтвердилось. С помощью сейсмографов (от греческого «сейсмос» – «колебания») геофизики стали исследовать свойства глубинных горных пород, улавливая отражённые от них колебания при землетрясениях или взрывах. Выяснилось, что на больших глубинах залегают чрезвычайно плотные и прочные каменные массы, а не расплавы.

Интересные сведения были получены при сейсмическом зондировании земных недр. Плотность горных пород с глубиной сначала растёт, затем уменьшаться, снижается и вязкость. Этот слой назвали астеносферой (от греческого «астенос» – «слабый»). Он располагается, местами прерываясь, в интервале глубин от 50—100 км (кровля) до 150–250 км (подошва).

О существовании астеносферы геологи догадывались ещё в начале ХХ века, и термин появился до того, как доказали существование этого слоя. Залегающие выше его кристаллические толщи по-прежнему именуют земной корой. Вместе с астеносферой земная кора образует литосферу (в переводе – каменную оболочку).

И это название тоже не вполне отвечает реальности: каменные массы находятся и глубже, в мантии планеты. По своей плотности они ещё более «каменисты», прочны, чем земная кора. Но так уж принято, термин вошёл в научный обиход, и с этим приходится считаться.

Наиболее напоминают инертную заскорузлую кору давно сформированные континентальные участки пониженной геологической активности (платформы). Здесь астеносфера тонка и залегает глубоко. Под геологически активными зонами она расслаивается на несколько частей и поднимается выше к земной поверхности. Под океанами астеносфера наиболее мощная (в особенности под срединно-океаническими хребтами).

Наиболее подвижна, изменчива именно та каменная оболочка, которую принято называть земной корой. Здесь постоянно накапливаются осадочные породы, поднимаются горы, работают вулканы, перемещаются моря, идёт химическое преобразование горных пород, сминаются в причудливые складки слоистые толщи.

Разве это кора? Нет, «земная кожа» («литодерма», если употреблять греческие слова). Возможен другой вариант: «литомембрана». Но и это не вполне подходит… Создать удачный научный термин – задача непростая. Над ней могли бы задуматься специалисты.

Короче говоря, на кору эта каменная оболочка планеты не похожа. В ней идёт активный обмен веществ с участием природных вод, воздуха и живых организмов. Полный круговорот веществ в литосфере по нашим обыденным меркам происходит чрезвычайно медленно, в масштабах миллионолетий. Для планеты, существующей миллиарды лет, такие сроки невелики.

Какими бы ни были убедительными наши доводы, вряд ли надо настаивать на том, чтобы земную кору переименовали в земную кожу. Точность точностью, но приходится уважать традиции.

Представлена земная кора осадочными слоями, магматическими и метаморфическими (преобразованными в горниле недр) толщами. Плотность её 2–3 т/м3; толщина под океанами – 5—15 км, под континентальными равнинами – 30–40 км, а в горных странах – до 85 км.

Границу коры и лежащей ниже мантии открыл в 1909 году югославский геофизик Мохоровичич, наблюдая отзвуки Балканского землетрясения. С тех пор она называется поверхностью Мохо (Мохоровичича). Подстилается земная кора, как мы знаем, слоем пониженной вязкости – астеносферой. Вместе с земной корой она образует литосферу, залегающую до глубин 200 км.


Одна из схем строения литосферы

Ниже поверхности Мохо приборы отмечают резкую смену плотности или удельного веса каменных масс: с 3,2 до 4,6 т/м3. Отсюда начинается мантия Земли. Земная кора состоит преимущественно из кремния (силициума) и алюминия. Её кратко называют – сиаль. В мантии преобладают, как предполагается, кремний и магний (сима).

Температура мантии около двух тысяч градусов. Плотность её увеличивается с глубиной четырьмя ступенями, позволяющими выделить четыре слоя. Мантия – обширнейшая область высоких давлений и температур.

С глубины 2900 км плотность пород быстро меняется от 11,54 до 14,2. Отсюда начинается ядро Земли, в котором выделяют ещё центральное ядрышко плотностью более 17 (в 17 раз плотней воды). У него есть свойство жидкости: в нём угасают продольные волны, которые возникают при сжатии и расширении, как это бывает с пружиной. (Поперечные волны подобны волнам на море.)

Из чего состоит земное ядро – остаётся загадкой. Оно сдавлено со всех сторон чудовищными силами гравитации. Поэтому плотнейшая внутренняя часть планеты становится текучей, как жидкость.

Из-за равных и направленных к центру гравитационных сил все внутренние сферы стремятся к равновесию, покою. В них вряд ли идут активные химические реакции.

В последние десятилетия популярна гипотеза о круговоротах вещества в мантии. Это весьма сомнительно. Там вещество необычайно плотное и находится под равномерным давлением со всех сторон. Его перемещения не могут быть значительными, а тем более сопоставимыми по скорости с движениями литосферы.

Оболочки Земли распределены по плотности. Наименее плотная и наиболее подвижная – атмосфера. Более плотная и менее подвижная – гидросфера. Ещё инертней и плотней – литосфера. Следует ожидать, что значительно более плотная, чем она, мантия планеты должна быть существенно инертней земной коры.

Гравитационные силы сдавливают Землю равномерно со всех сторон. Казалось бы, земная кора должна иметь одинаковую толщину, а поверхность планеты – быть ровной, если не считать воронок и кратеров от ударов астероидов, как на Луне. Почему же рельеф земной коры не только сложный и разнообразный – от глубочайших впадин до высочайших вершин – и подчинён некоторым закономерностям?

Этот вопрос позже мы обдумать особо. Он связан не только с наукой геоморфологией, которая изучает происхождение рельефа, а затрагивает весь комплекс наук о Земле – и географических, и геологических.

…По-новому раскрывается в геологии время, которое не имеет смысла без материальных проявлений. «Геологическими часами» могут служить скорость накопления осадков, смены форм ископаемых животных и растений, радиоактивные минералы.

Теория относительности предполагает изменение свойств объектов при скоростях, приближающихся к скорости света (увеличение массы, «сплющивание»). Это – виртуальные явления, отражающие точку зрения наблюдателя при некоторых условных допущениях. Совсем иначе – в реальной земной природе.

При геологических медленных скоростях – в масштабах тысяч и миллионов лет – по-настоящему меняются свойства природных объектов. Скальные породы обретают пластичность и сминаются в складки, как пластилиновые. Моря блуждают по поверхности континентов. Реки, змеящиеся по равнине, переползают с места на место. Берега океанов как бы тают от постоянной волновой эрозии. Острова выныривают там, где теперь море. Континенты и островные дуги перемещаются…


    Ваша оценка произведения:

Популярные книги за неделю