Текст книги "Шаг за шагом. Усилители и радиоузлы"
Автор книги: Рудольф Сворень
Жанр:
Радиоэлектроника
сообщить о нарушении
Текущая страница: 5 (всего у книги 16 страниц)
Рис. 18. В результате частотных искажений меняется соотношение между составляющими сложного звука, меняется его тембр, ослабляется звучание некоторых инструментов.
Причины частотных искажений громкоговорителя различны. Вот одна из них: на высших частотах начинает сказываться инерция диффузора, он не поспевает за быстрыми изменениями тока и поэтому с повышением частоты все хуже излучает звук.
Чтобы можно было судить о частотных искажениях в каком-либо устройстве, в том числе в громкоговорителе и микрофоне, чаще всего рисуют его частотную характеристику. Частотная характеристика громкоговорителя (рис. 19) показывает, как изменяется звуковое давление или сила звука, если менять частоту переменного тока в звуковой катушке, поддерживая неизменной его амплитуду.
Опорной точкой частотной характеристики договорились считать частоту 1000 гц. Работу громкоговорителя или микрофона на других частотах сравнивают с тем, что они дают на частоте 1000 гц, и, исходя из этого, говорят о завале или подъеме частотной характеристики, то есть об ослаблении или усилении тех или иных составляющих.
Четыре возможные частотные характеристики показаны на рис. 19, внизу справа. На первой из них (а) завалены низшие частоты, на второй (б) – высшие. К сожалению, в реальном случае оба эти недостатка объединяются: обычно завалены как высшие, так и низшие частоты (в).
Рис. 19 Частотная характеристика громкоговорителя показывает, как изменяется звуковое давление при изменении частоты тока (синусоидального) в звуковой катушке; величина тока на всех частотах одинакова.
Звуковое давление или силу звука, как правило, указывают в децибелах, и это позволяет довольно просто оценить степень подъема (обозначают знаком «+»), либо завала (знак «—») характеристики, степень частотных искажений. За нулевой уровень принимают звуковое давление (силу звука) на частоте 1000 гц.
Иногда вводят коэффициент частотных искажений – Кч.и, который показывает, на сколько децибелов (или, что то же самое, во сколько раз) сила звука на той или иной частоте сильнее или слабее, чем на частоте 1000 гц. Так, если указано, что Кч.и-200 = 20 дб, а Кч.и-5000 = —10 дб, то это означает, что при одном и том же токе в звуковой катушке сила звука на частоте 200 гц будет в 100 раз (на 20 дб) больше, а на частоте 5 кгц в 10 раз (на 10 дб) меньше, чем на опорной частоте 1000 гц.
По частотной характеристике легко определить значение Кч.и для любой частоты.
Частотные искажения, так же как и нелинейные, приводят к изменению формы сигнала (в частности, звука), к изменению его спектра. Однако в результате частотных искажений никаких новых составляющих не возникает, а лишь меняется соотношение старых. При этом резко меняется тембр звука, из оркестра исчезают целые группы инструментов, неузнаваемыми становятся голоса певцов. Завал низших частот резко ослабляет звучание контрабаса, барабана, рояля. Если завалены высшие частоты, то прежде всего исчезают скрипки и флейты, звук становится глухим, бубнящим.
Конечно, нам хотелось бы, чтобы частотная характеристика всех наших переводчиков и других звеньев системы передачи звука была идеальной, то есть имела бы вид прямой линии во всем диапазоне от 16 гц до 22 кгц (рис. 19, г.).
В этом случае соотношение между всеми слышимыми составляющими сложных звуков оставалось бы неизменным и мы были бы гарантированы от изменений тембра и других подобных неприятностей. Но (опять эти «но»!) создание идеальной частотной характеристики во всем диапазоне слышимых частот – задача чрезвычайно сложная, и эту сложность вы вскоре почувствуете сами. Конструкторы, конечно, стремятся к равномерной частотной характеристике, но в разумных пределах. В дорогих и сложных системах высококачественного звучания диапазон воспроизводимых частот должен быть весьма широким. В простых, недорогих установках приходится идти на значительное сужение диапазона, а значит (что поделаешь!), на заметные частотные искажения, на ухудшение качества звучания.
В результате большого числа экспериментов было предложено все аппараты для воспроизведения звука разделить на четыре класса (не путайте с классами приемников – здесь нет прямого совпадения) и для каждого из них установить такую полосу частот:
Высший класс – от 30–40 гц до 14–15 кгц (неискаженное воспроизведение звука); неравномерность характеристики – 6 дб.
Первый класс – от 50 гц до 10 кгц (высококачественное воспроизведение звука); неравномерность характеристики – 6 дб.
Второй класс – от 100 гц до 6 кгц (воспроизведение среднего качества); неравномерность характеристики – 16 дб.
Третий класс – от 150–200 гц до 4 кгц (воспроизведение низкого качества); неравномерность характеристики – 16 дб.
Переход в каждый следующий, более высокий класс, например из третьего во второй или из второго в первый, связан со значительным усложнением аппаратуры. Оправдано ли это? Стоит ли затрачивать энергию, время, средства на то, чтобы на несколько килогерц расширить частотную характеристику?
Для разборчивого воспроизведения речи вполне пригодна аппаратура третьего класса. Как правило, нас удовлетворяет даже обычный телефон, где верхняя граничная частота составляет 2,5 кгц, а иногда даже 1,5 кгц. Голос собеседника при этом очень сильно искажен, однако обычно это нас не огорчает – главное, чтобы был понятен смысл сказанного. Совсем иначе обстоит дело с воспроизведением музыки.
Здесь мы уже не можем сказать: «Искажения? Пустяки! Главное, чтобы можно было догадаться, какая мелодия…»
При воспроизведении музыки искажения, и в первую очередь частотные, могут оказаться той самой ложкой дегтя, с которой и бочка меда не нужна. Во всяком случае, аппаратура третьего класса воспроизводит музыку с весьма заметными искажениями, и звучит эта музыка, прямо скажем, плохо.
Правда, точных границ между «хорошо» и «плохо» никто не устанавливал – заметность частотных искажений, так же как и нелинейных, зависит от многих факторов и в том числе от вкуса слушателя, его музыкальности, тренировки, тонкости слуха и, если хотите, от настроения и характера. Есть люди, для которых «лишь бы играло», «лишь бы музыка», а то, что под эту музыку даже не всякий цирковой слон согласится танцевать, – для них это несущественно. Наверняка никто из нас не захочет есть пирожное, в которое кондитер по рассеянности вместо сахара и крема положил горчицу и перец.
А вот музыку, в каждый звук которой композитор вложил определенный смысл, определенные мысли и чувства, мы иногда готовы проглотить, не замечая «перца» и «горчицы».
О качестве звучания, о высокой верности воспроизведения звука мы еще не раз будем вспоминать. Но сейчас, поскольку к слову пришлось, хочется посоветовать: сравните звучание карманного приемника (от него многого не потребуешь, здесь главное – габариты, вес, экономичность) и хорошей радиолы первого или даже второго класса. Такое сравнение наверняка поможет вам понять, «на что идут деньги», зачем мы строим сложную и дорогую звуковоспроизводящую аппаратуру высоких классов, почему добиваемся минимальных частотных и нелинейных искажений.
Мы с вами в самом общем виде познакомились с принципом работы главных переводчиков, с некоторыми характеристиками их работы. Теперь поговорим о конкретных типах громкоговорителей и микрофонов, применяемых в радиолюбительской аппаратуре. Начнем с микрофонов.
Все начинается с микрофона
Данные некоторых распространенных микрофонов приведены в табл. 7.
В ней наряду с уже знакомыми нам характеристиками – полоса частот и неравномерность частотной характеристики (рис. 21) – вы встретите и незнакомые. Среди них – чувствительность. Она показывает, какое напряжение дает микрофон под действием звукового давления 1 н/м2.
Рис. 21. Частотная характеристика микрофона показывает, как зависит выходное напряжение от частоты звука при неизменном звуковом давлении.
Чем лучше микрофон преобразует звуковую энергию в электрическую, тем больше его выходное напряжение при одном и том же звуковом давлении, тем, следовательно, выше чувствительность [3].
В табл. 7 указано также рекомендованное сопротивление нагрузки, то есть сопротивление, на которое должна работать звуковая катушка микрофона. Если сделать сопротивление нагрузки больше, то возрастут искажения, а если меньше – снизится чувствительность.
Есть микрофоны (они называются направленными), которые по-разному реагируют на звуки, идущие с различных направлений. Иногда такие микрофоны очень удобны – они, например, хорошо «слышат» голос певца и «не обращают внимания» на шум в зале. Можно построить своего рода карту, которая покажет, как меняется чувствительность при изменении направления звука. Такая карта (рис. 22) называется диаграммой направленности. Ее легко получить, если обойти с источником звука вокруг микрофона и одновременно измерять выходное напряжение. Наиболее часто встречаются диаграммы трех видов: круговая (ненаправленный микрофон – НН), кардиоидная, то есть напоминающая очертания сердца (однонаправленный микрофон – ОН), и «восьмерка» (двунаправленный микрофон – ДИ). Сокращенные обозначения вида направленности приведены в таблице.
Рис. 22. Диаграмма направленности микрофона показывает, как зависит его чувствительность от направления, с которого приходит звук. Различают микрофоны ненаправленные (НН), однонаправленные (ОН) двунаправленные (ДН).
Среди всех электродинамических микрофонов (МД) есть несколько типов (МД-41, МД-47, МД-55) с весьма высокой чувствительностью. Она достигается благодаря тому, что внутри микрофона установлен миниатюрный трансформатор или автотрансформатор, повышающий выходное напряжение. Без такого трансформатора чувствительность микрофона резко падает и мало отличается от чувствительности других динамических микрофонов.
Высокое рекомендованное сопротивление нагрузки микрофонов также всегда связано с использованием трансформаторов.
Микрофонный трансформатор повышает выходное напряжение в 15–25 раз. Вот данные одного из таких трансформаторов (микрофон МД-47). Первичная обмотка – 140 витков, провода ПЭЛШО – 0,25; вторичная обмотка – 3500 витков, провода ПЭВ = 0,13; сердечник – кольцо, свернутое из пермаллоевой ленты шириной 9 мм. Для того чтобы защитить трансформатор от внешних электрических и магнитных полей, его прячут в экран из толстого (до 5–8 мм) пермаллоя или мягкой стали. С той же целью оба провода, которые выходят из микрофона, заключены в экранирующий чулок.
В последние годы получили распространение миниатюрные электромагнитные микрофоны М-1 (для транзисторных слуховых аппаратов), ДЭМШ-1 и ДЭМ-4м. По своему устройству они напоминают хорошо всем известный электромагнитный преобразователь – головной телефон (наушник). Основой здесь являются постоянные магниты, прилегающая к ним неподвижная катушка с весьма большим числом витков и легкая подвижная стальная мембрана (рис. 20, 2).
рис. 20, 2
Электромагнитные преобразователи устроены так, что колебания мембраны приводят к изменению магнитного поля катушки, и на ее концах появляется э. д. с. И наоборот, если пропустить по катушке низкочастотный переменный ток, то мембрана придет в движение и создаст звуковые волны. Это значит, что электромагнитные переводчики, так же как и электродинамические, могут работать как в качестве микрофона, так и в качестве громкоговорителя (здесь, пожалуй, вместо «громко» правильнее было бы поставить «тихо»).
Головной телефон (ТОН-1) мы ввели в таблицу не только для сравнения. Когда под руками не найдется ничего другого, как говорят радисты, «в аварийном случае», он может взять на себя и роль переводчика-микрофона.
Особую группу составляют так называемые пьезомикрофоны (рис. 20, 3). «Сердце» такого микрофона – кристалл с пьезоэлектрическим эффектом. При сжатии или растяжении этого кристалла на нем появляется электрическое напряжение. Благодаря этому пьезокристалл прекрасно справляется с обязанностями переводчика: под действием звуковых волн, то есть под действием переменного звукового давления, создает переменное напряжение – электрическую копию звука. Иногда любители применяют пьезомикрофоны от слуховых аппаратов «Звук», «Слух» и «Кристалл».
рис. 20, 3
В таблице вы найдете и микрофонные капсюли от телефонных аппаратов (МК-10, МК-59). Вы, очевидно, знаете, как работают эти переводчики. Под действием звуковых волн меняется давление на угольный порошок, которым заполнен капсюль (рис. 20, 4), меняется плотность, а значит, и электрическое сопротивление порошка. Если пропустить через капсюль ток, то, согласно закону Ома (величина тока зависит от сопротивления цепи), он будет меняться, превращаясь в электрическую копию звука.
рис. 20, 4
Сам по себе угольный капсюль – это еще не микрофон. К нему необходимо добавить источник постоянного тока, например батарейку на 1–1,5 в. Кроме того, капсюль обычно включают через трансформатор (Тр-м), который отделяет переменный ток от постоянного. Постоянный ток, как известно, через трансформатор не проходит, и поэтому во вторичную обмотку (обмотка II) попадает лишь основная продукция микрофона – переменное напряжение низкой частоты. Существуют и другие схемы включения угольных микрофонов (рис. 68, 7).
Главное достоинство угольных микрофонов – высокая чувствительность – определяется тем, что на создание электрической копии звука расходуется энергия батареи. Начальную величину тока, от которой сильно зависит чувствительность, устанавливают в зависимости от общего сопротивления капсюля. Для низкоомных капсюлей (сопротивление до 50 ом) рекомендуется сила тока до 80 ма, для среднеомных (70—150 ом) – не более 50 ма и для высокоомных (150–300 ом) – не более 25 ма. Если уменьшить начальный ток, уменьшится и чувствительность, но при этом снизятся все виды искажений.
Самое главное, что нужно знать об электромагнитных телефонах (наушниках) и угольных капсюлях, – это то, что их нельзя вынимать из телефонных аппаратов и особенно из телефонов-автоматов. Тот, кто выдернет капсюль или наушник из действующего телефона, – самый настоящий преступник. Сам того не зная, он может стать даже убийцей. Не верите? А вы представьте себе, как ночью люди мечутся от одного испорченного телефона к другому, тщетно пытаясь вызвать «скорую помощь» или пожарную машину…
Наушники и капсюли стоят недорого, и не так-то уж сложно их купить. Ну, а если вы не найдете их в магазине, обратитесь на любой телефонный узел, в любую воинскую часть связи, и вам там наверняка не откажут. Вы уже, очевидно, обратили внимание на то, что вся табл. 7 разделена на три части. В первую попали так называемые профессиональные микрофоны, предназначенные для студий радиовещания, телевидения и звукозаписи, для концертных залов. Любители такие микрофоны применяют редко: они нужны лишь тогда, когда все остальное оборудование, в том числе и студия, где установлен микрофон, достойны его высоких качественных показателей.
Третья, самая нижняя часть таблицы отводится микрофонам, для которых характерны сравнительно большие искажения, особенно частотные. Для речевых передач эти микрофоны еще пригодны, а вот музыку могут сильно исказить.
Наиболее широко радиолюбители применяют динамические микрофоны, данные которых приведены в средней части табл. 7. В этих микрофонах простота, надежность и сравнительно невысокая стоимость сочетаются с вполне удовлетворительными характеристиками. Любительские микрофоны обычно отличаются высокой чувствительностью (за счет трансформатора) при довольно широкой полосе частот.
У микрофона есть много «коллег», которые так же, как и он сам, создают электрические копии звуковых колебаний. Разница лишь в том, что микрофон, образно говоря, переводит на электрический язык то, что слышал сам, а его «коллеги» специализировались на переводе письменных источников. Вы уже, очевидно, догадались, что «коллеги», о которых идет речь, – это считывающие устройства в системах звукозаписи: магнитные головки, звукосниматели, фотоэлементы. Многие «коллеги» одновременно являются близкими «родственниками» микрофона, так как очень похожи на него по своему устройству и принципу действия.
Записать звук – это значит создать своего рода график – его называют фонограммой, в котором каким-то образом отражались бы изменения звукового давления. Так, фонограмма звукового кино – это узкая прозрачная полоска (рис. 23, а, 24, а), ширина которой меняется, чем-то напоминая кривую на обычном графике звука. От ширины прозрачной полоски зависит количество света, попадающего на фотоэлемент. Поэтому, когда пленка движется перед фотоэлементом, ток в его цепи меняется, превращаясь в электрическую копию записанного звука. В реальных киноустановках с фотоэлемента получают низкочастотное напряжение 0,5–5 мв.
Рис. 23. Записать звук – это значит создать своего рода график (фонограмму), где тем или иным способом будет отмечено, как менялось звуковое давление с течением времени.
Рис. 24. При воспроизведении звука считывающее устройство (фотоэлемент, магнитная головка, звукосниматель) «просматривает» фонограмму и создает электрический сигнал – копию звука. В дальнейшем эта электрическая копия превращается в звук.
Магнитная фонограмма – это тоже своего рода график, нарисованный «магнитными чернилами». Изменения звукового давления отражены в изменениях намагниченности стальной проволоки или специальной пленки с тонким слоем окислов железа. Чем громче звук, чем выше амплитуда звукового давления, тем сильнее магнитный след, оставленный на фонограмме в процессе записи. Пленка движется мимо тонкой щели магнитной головки (катушка на сердечнике), плотно прилегая к ней (рис. 24, б). При этом меняется магнитное поле, которое пленка создает в сердечнике, и в катушке наводится переменный ток. Ток повторяет все изменения намагниченности пленки, то есть в итоге все изменения звукового давления. Как видите, воспроизводящая магнитная головка по принципу действия чем-то напоминает электромагнитный микрофон (рис. 24, б). Типичные головки развивают низкочастотное напряжение до 0,5—10 мв.
Самая простая, самая популярная и, пожалуй, самая удобная фонограмма – это обычная граммофонная пластинка. Звук записан на пластинке (диске) в виде тонкой извилистой спиральной канавки, а «считывание» осуществляет звукосниматель, игла которого тщательно «ощупывает» канавку (рис. 23, в, 24, в).
В последние годы достигнуто весьма высокое качество грамзаписи. В частности, частотная характеристика фонограммы лежит в пределах 100 гц – 16 кгц при неравномерности до 20 дб. А еще недавно частота 4,5 кгц считалась предельной. С появлением долгоиграющих пластинок в значительной мере уменьшился главный недостаток грамзаписей – высокий уровень собственных шумов.
Современные звукосниматели очень напоминают пьезоэлектрический микрофон. Игла, двигаясь по звуковой канавке, колеблется, следуя за всеми ее изгибами. Колебания иглы передаются пьезокристаллу, и на нем появляется переменное напряжение низкой частоты. Внешний вид, устройство и основные детали одного из распространенных звукоснимателей показаны на рисунке 20, 5, б.
рис. 20, 5, б
Вот некоторые цифры, характеризующие его работу: вес звукоснимателя, приведенный к концу иглы, не превышает 5—12 г; диаметр кончика иглы для обычных пластинок 20 мк. для долгоиграющих – 8 мк; амплитуда колебаний иглы, соответствующая самым громким звукам, – 30 мк, самым тихим – 0,3 мк; этим колебаниям соответствует напряжение на кристалле 2 и 200 мв; рекомендованное сопротивление нагрузки звукоснимателя 100–500 ком.
На этом мы заканчиваем знакомство с микрофоном, его «коллегами» и «родственниками». Настала очередь громкоговорителей.
Громкоговоритель
Конструктивной основой электродинамического громкоговорителя (рис. 14, 1) можно считать штампованный корпус из довольно толстой (0,5–2 мм) листовой стали. К нему прикреплена магнитная система, которая чаще всего имеет форму стакана или скобы. Сам постоянный магнит изготовлен из специальных сплавов АЛНИ, АНМ, АНКО, в которые входят железо, алюминий, никель, а в последний сплав – еще и кобальт. В последнее время широко применяется магнитная керамика – фероксдур. Это особым образом спрессованные порошки окислов железа и бария, сильно намагниченные и спекшиеся при высокой температуре. Керамические магниты официально называют МБА – магниты бариевые анизотропные. Магнитную систему конструируют так, чтобы самое сильное поле было в зазоре между керном и фланцем, то есть там, где находятся витки звуковой катушки.
Звуковая катушка намотана на плотном бумажном или картонном каркасе и вся вместе с обмоткой пропитана бакелитовым лаком. Обмотка выполнена медным проводом диаметром 0,1–0,12 мм (малая мощность) или 0,15—0,2 мм (мощность более 1 ва). Провод уложен в два, а иногда и четыре слоя, чтобы оба вывода были направлены в сторону диффузора. Наиболее распространены катушки с сопротивлением 2—12 ом (табл. 8), и поэтому динамические громкоговорители часто называют низкоомными. В последнее время, правда, начинают появляться и высокоомные динамики, но о них будет отдельный разговор (стр. 234).
1 Первая цифра названия указывает мощность громкоговорителя в вольтамперах.
Мощность громкоговорителя ВГД-1 равна 3 ва.
Рассмотрим некоторые характеристики громкоговорителя. Громкоговоритель неодинаково хорошо превращает в звук электрические сигналы разных частот, иными словами, вносит частотные искажения. Частотная характеристика громкоговорителя в основном определяется размерами, конструкцией, материалом, способом подвески диффузора. Материалом для диффузора, как правило, служит бумажная масса, часто с примесью шерсти; основная технология – литье, штамповка. Громкоговорители с небольшим диффузором плохо воспроизводят низшие частоты и хорошо высшие – небольшой, подвижный, легкий диффузор послушно следует за самыми быстрыми изменениями тока. Диффузор большого диаметра, наоборот, плохо воспроизводит высшие частоты, так как его «дальние районы» не поспевают за быстрыми движениями звуковой катушки. Зато громкоговорители с большим диффузором хорошо воспроизводят низшие частоты, и их часто называют низкочастотными.
Частотная характеристика в области низших частот в огромной степени зависит от резонансных свойств подвижной системы громкоговорителя. Диффузор, звуковая катушка, центрирующая шайба образуют самую настоящую колебательную систему, своего рода гитарную струну. Частота собственных колебаний этой «струны» обычно лежит в пределах 30—300 гц. Если подвести к громкоговорителю переменный ток сложной формы, то подвижная система за счет резонанса будет подчеркивать те составляющие этого тока, частота которых равна частоте собственных колебаний. Поэтому в районе резонансной частоты (частота собственных колебаний) будет некоторый подъем частотной характеристики (рис. 14, 6). Такой подъем иногда полезен (рис. 33).
рис. 14, 6
Однако у этой красивой медали, как и у всякой другой, есть и обратная сторона. После резонанса появляется своего рода обрыв на частотах ниже резонансной, – громкоговоритель практически перестает работать. Вот почему при выборе низкочастотных громкоговорителей стараются подобрать экземпляр с самой низкой резонансной частотой и сместить завал частотной характеристики как можно левее, в область низших частот.
Но и это еще не все.
Резко выраженный резонанс подвижной системы – явление неприятное, и его стараются приглушить, даже если он попадает на самые низшие частоты. При воспроизведении реальных звуков – речи и музыки – громкоговоритель почти все время работает в импульсном режиме, воспроизводит звуковые импульсы, толчки. После каждого такого толчка подвижная система будет некоторое время совершать свободные колебания (вспомните кинофильм о колебаниях струны) и излучать при этом свои собственные призвуки (рис. 25).
Рис. 25. В громкоговорителе с сильно выраженными резонансными свойствами под действием импульсных сигналов возникают свободные колебания диффузора, появляются посторонние призвуки и, следовательно, увеличиваются нелинейные искажения.
Чтобы избавиться от этого неприятного явления или, по крайней мере, ослабить его, подвижную систему стараются демпфировать – создать в ней дополнительные потери энергии и резко сократить время свободных колебаний. Демпфирование осуществляется несколькими путями и в том числе с помощью так называемого внешнего оформления громкоговорителя – ящиков, футляров, щитов и т. п.
Чтобы улучшить демпфирование, можно также зашунтировать звуковую катушку. При этом, чем меньше шунтирующее сопротивление (рис. 30, 7, а), тем больше потери в колебательной системе, тем хуже ее резонансные свойства, тем, следовательно, лучше демпфирование. Правда, всякий посторонний шунт наряду с полезным делом – демпфированием – будет приносить заметный вред: отбирать мощность, предназначенную для звуковой катушки. Здесь напрашивается такой вывод: не включать отдельный «пожиратель» колебательной энергии, а подобрать источник сигнала таким образом, чтобы он сам сильно шунтировал звуковую катушку своим выходным сопротивлением.
Мы увидим дальше, что источником сигнала для громкоговорителя почти всегда является ламповый или транзисторный усилитель. Среди прочих характеристик такого усилителя важное значение имеет его выходное сопротивление.
Чем меньше это сопротивление, тем лучше демпфирован громкоговоритель, подключенный к усилителю (рис. 25). Качество работы громкоговорителя в большой степени зависит от центровки звуковой катушки. Даже незначительная асимметрия, небольшое смещение оси значительно повышает все виды искажений, не говоря уже о том, что может вызвать «затирание» витков о фланцы магнитной системы (рис. 14, 1, г).
рис. 14, 1, г
Центровка звуковой катушки осуществляется с помощью эластичной гофрированной шайбы из пропитанного лаком шелковистого материала. Иногда встречаются и другие типы центрирующих шайб (рис. 14, 1, в).
рис. 14, 1, в
Коэффициент нелинейных искажений для конкретных типов громкоговорителей в таблицах не указывают. Предполагается, что для любого динамического громкоговорителя при номинальной мощности коэффициент Кн.и на средних частотах составляет 5 %, на высших – 3 %, а на низших частотах – 7 % и даже 10 %. Эти данные соответствуют номинальной мощности громкоговорителя.
Считается, что повышенные искажения на низших частотах малозаметны. Основания для такого на первый взгляд странного вывода дает статистика. Оказывается, что в реальном случае при воспроизведении музыки и речи мощность низкочастотных составляющих в среднем сравнительно невелика, сами по себе они редко выходят на нелинейные участки амплитудной характеристики.
В табл. 8 приведена величина сопротивления звуковой катушки громкоговорителя на частоте 1000 гц (zзв-1000). Эта оговорка нужна потому, что полное сопротивление катушки z носит сложный характер: в нем отражены затраты энергии на излучение звука, учтено индуктивное сопротивление катушки xL, потери в проводе Rзв и другие виды потерь. Некоторые из этих составляющих сильно зависят от частоты и могут меняться в несколько раз (рис. 14, 4).
рис. 14, 4
Вот почему, называя величину сопротивления катушки, приходится указывать, к какой частоте оно относится. Кстати, если вам попадется громкоговоритель, данных которого нет в таблице, то величину zзв-1000 можно приближенно определить самому. На средних частотах и на частоте 1000 гц полное сопротивление zзв обычно на 10–20 % больше активного сопротивления провода Rзв, а эту величину можно измерить омметром. В дальнейшем, смирившись с некоторой неточностью, будем считать, что полное сопротивление равно активному Rзв.
Важная характеристика громкоговорителя – его номинальная (это слово имеет примерно тот же смысл, что и «нормальная», «расчетная») электрическая мощность Рзв. ном – мощность, которая находится на границе допустимых нелинейных искажений. Если подвести к громкоговорителю мощность Рзв больше номинальной (рис. 26), то колебания диффузора попадут в область сильной нелинейности и Кн.и превысит допустимую величину (5–7 %). И наоборот, если подводимая мощность меньше номинальной, то и нелинейные искажения значительно меньше допустимых.
Рис. 26. Мощность, подводимая к громкоговорителю, не должна превышать его номинальной мощности, так как при перегрузке резко возрастают нелинейные искажения.
Вы уже, очевидно, обратили внимание, что в табл. 8 мощность указана не в привычных единицах – ваттах (вт), а в незнакомых нам пока единицах – вольтамперах (ва). Прежде чем говорить о различии этих единиц мощности, отметим их сходство.
Как известно, мощность Р – это произведение напряжения U на ток I. Мощность, потребляемая громкоговорителем Pзв – это произведение напряжения, подведенного к звуковой катушке, Uзв на величину тока в ней Iзв (рис. 30, 8).
рис. 30, 8
Если напряжение равно 1 в, а ток 1 а, то мощность равна 1 вт, то есть количественно вольт, умноженный на ампер (вольтампер), равен ватту. Зачем же, спросите вы, пользоваться двумя равными по величине единицами? Недостаточно ли одной? Две единицы – вт и ва – введены для того, чтобы показать некоторое качественное отличие, показать, что существуют два сорта мощности: активная мощность (измеряется в ваттах) и реактивная мощность (измеряется в вольтметрах).
Активная мощность – это то, что громкоговоритель забирает навсегда: она затрачивается на излучение звуковых волн, на нагрев провода катушки, то есть эта мощность расходуется необратимо. Примером реактивной мощности может служить то, что «забирает» собственное магнитное поле катушки. Слово «забирает» мы взяли в кавычки потому, что магнитное поле навсегда электрической мощности не потребляет. Когда переменный ток нарастает, то он затрачивает энергию на создание магнитного поля. Но оно полностью возвращает «долг», когда ток начинает уменьшаться. Итак, реактивная мощность не расходуется, а просто перекачивается от генератора к нагрузке – в нашем примере к звуковой катушке и обратно. Реактивная мощность зависит от реактивного (в нашем случае индуктивного) сопротивления и меняется с частотой.
Для того чтобы отличить активные, потребляемые ватты от реактивных, последние называют вольтамперами. Эта же единица используется для обозначения полной мощности, в которую входит реактивная и активная составляющие. Нужно сказать, что на средних частотах указанная в табл. 8 полная мощность на 80–90 % состоит из активной составляющей, так как большую часть энергии громкоговоритель забирает навсегда. Поэтому в дальнейшем мы будем считать мощность, которая подводится к громкоговорителю, чисто активной и обозначать ее в ваттах, а на реактивную мощность там, где это только возможно, не будем обращать внимания. Кстати говоря, это наше решение прямо вытекает из того, что мы пренебрегаем индуктивной составляющей полного сопротивления катушки и считаем, что полное сопротивление zзв-1000 примерно равно активному Rзв.