355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роберт Криз » Призма и маятник. Десять самых красивых экспериментов в истории науки » Текст книги (страница 2)
Призма и маятник. Десять самых красивых экспериментов в истории науки
  • Текст добавлен: 9 октября 2016, 12:59

Текст книги "Призма и маятник. Десять самых красивых экспериментов в истории науки"


Автор книги: Роберт Криз


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 2 (всего у книги 15 страниц) [доступный отрывок для чтения: 6 страниц]

Эратосфен написал два сочинения по географии, очень важные для античного мира. Трехтомник «Географика» представлял собой первую попытку картографирования мира с использованием параллелей (линий, параллельных экватору) и меридианов (линий, которые проходят через оба полюса и данную точку на карте). Его «Измерения мира» содержали первые известные описания способов измерения размеров Земли. К несчастью, обе работы утеряны, и нам приходится восстанавливать логику рассуждений Эратосфена на основании замечаний других древних авторов, знакомых с его работами13. На наше счастье, таковых было довольно много.

Эратосфен начал свои рассуждения с предположения, что если Земля – небольшое шарообразное тело в огромной Вселенной, то другие составные части Вселенной, такие как Солнце, располагаются довольно далеко – так далеко, что его лучи можно считать параллельными независимо от того, в каком месте они падают на Землю. Эратосфену также было известно, что по мере того, как солнце поднимается вверх по небосводу, тени становятся короче, а из рассказов путешественников он знал, что во время летнего солнцестояния в городе Сиена (современный Асуан) солнце в полдень достигает зенита и находится прямо над головой и тогда исчезают тени у всех вертикальных предметов – будь то колонны, столбы и даже гномоны солнечных часов, главная функция которых как раз и состоит в отбрасывании тени. На несколько мгновений солнечные лучи даже достигают дна городского колодца, освещая всю его поверхность, «подобно пробке, идеально подходящей к отверстию», как сообщает один древний источник14. (Я, конечно, немного неточен: тени не исчезали полностью, а просто падали прямо под предметами, в другое же время они падают сбоку от них.)

Помимо этого, Эратосфену было известно, что Александрия располагается к северу от Сиены и примерно на том же меридиане. Благодаря царским землемерам, которых египетское правительство ежегодно – после сезонных разливов Нила – посылало измерять и наносить на карту границы полей, ученый знал, что оба города находятся на расстоянии пяти тысяч стадиев друг от друга (это число было, конечно, приблизительным, поэтому использовать упомянутую информацию для установления точного соответствия между стадиями и современными мерами длины невозможно).

В сегодняшних терминах Сиена располагалась на Тропике Рака, воображаемой линии, опоясывающей мир и проходящей через северную Мексику, южный Египет, Индию и южный Китай (ее можно увидеть на большинстве глобусов). Для всех точек на ней характерна одна необычная особенность: солнце находится прямо над головой только один раз в году, в самый долгий световой день – 21 июня, день летнего солнцестояния. Те, кто живет к северу от Тропика Рака, никогда не видят солнце непосредственно над головой, и предметы всегда отбрасывают тени. Те же, кто живет в Северном полушарии к югу от Тропика Рака, видят солнце прямо над головой дважды в год: один раз – перед днем летнего солнцестояния и один раз – после. Непосредственная дата зависит от того, где расположена данная местность. Причина упомянутого явления заключается в положении Земли, ось которой наклонена по отношению к плоскости орбиты ее обращения вокруг Солнца.

Однако совсем другое занимало сейчас мысли Эратосфена. Для него главным было то, что в момент, когда солнце стоит прямо над головой в Сиене, оно не находится в зените ни в одном другом месте к северу и к югу от нее, включая и Александрию. Во всех остальных местах гномон солнечных часов отбрасывает тень. Длина же тени должна зависеть от кривизны земной поверхности. Чем больше кривизна, тем длиннее будет тень в таком месте, как, например, Александрия.

Эратосфен обладал достаточными познаниями в геометрии, чтобы разработать весьма изящный эксперимент, на основе которого он смог вычислить меру названной кривизны и, исходя из этого, определить протяженность земной окружности.

Чтобы оценить красоту данного эксперимента, нет нужды знать что-либо конкретное о том, как Эратосфен проводил его. Это очень удачное обстоятельство, так как нам практически ничего неизвестно об условиях его проведения. Эксперимент известен нам лишь по далеко не полным описаниям современников и учеников Эратосфена, многие из которых, очевидно, даже не до конца понимали то, что именно они описывают. Нет необходимости знать что-либо о логике рассуждений ученого: что непосредственно пробудило его интерес к данной проблеме, какими были его первые шаги в разработке будущего эксперимента, встречал ли он какие-либо препятствия на своем пути, как он реализовал свой проект и к каким дальнейшим научным изысканиям это привело. Конечно, можно лишь сожалеть о подобном недостатке информации, так как может сложиться впечатление, что идея пришла к Эратосфену в виде некого озарения, как гром среди ясного неба. Но как бы то ни было, отсутствие всех этих деталей не мешает нашему пониманию сути эксперимента. У нас не возникает необходимости предаваться интеллектуальным спекуляциям, углубляться в сложные математические вычисления или строить догадки, основанные на сомнительных эмпирических данных. Красота эксперимента Эратосфена состоит в том, что он доказал возможность производить измерения космического масштаба, измеряя длину крошечной тени.

Поразительную простоту и элегантность иллюстрируют две диаграммы на рис. 2 и 3.

Во время солнцестояния, когда солнце в Сиене находится прямо над головой ( А ), тени исчезают – они падают по направлению прямо к центру Земли (линия АВ ). Тени в Александрии ( Е ) в этот момент также падают в том же самом направлении ( CD ), так как солнечные лучи условно параллельны друг другу. Но так как земная поверхность искривлена, они падают под небольшим углом, который мы назовем х . Небольшой угол (короткая тень) означал бы, что земная поверхность относительно плоская и что, следовательно, Земля имеет очень большую окружность. Большой угол (или длинная тень) будет означать сильное искривление и, соответственно, небольшую окружность. Однако существует ли способ точного измерения длины земной окружности по длине тени? Такой способ дает геометрия.

Рис. 2. Угол между лучом солнца в тот момент, когда оно находится в зените в Александрии, и вертикальным шестом (гномоном) в Сиене (х) равен углу между земными радиусами (y), проведенными к Александрии и Сиене. Следовательно, отношение длины дуги окружности EF к полному кругу таково же, что и отношение длины дуги AE (расстояние от Сиены до Александрии) к окружности Земли

Евклид доказал, что внутренние накрест лежащие углы, образуемые прямой, пересекающей две параллельные прямые, равны. Таким образом, угол х , образуемый тенями в Александрии, равен углу у с вершиной в центре Земли, образуемому двумя лучами, проходящими через Александрию и Сиену ( ВС и ВА ). Это, в свою очередь, означает, что соотношение между длиной дуги гномона ( FE ) и полной окружности вокруг гномона (см. рис. 2) такое же, как и соотношение между расстоянием от Сиены до Александрии и длиной земной окружности. Эратосфен пришел к выводу, что если измерить названное относительно небольшое расстояние, то можно вычислить длину земной окружности. Хотя Эратосфен мог произвести свои измерения целым рядом разных способов, историки науки уверены, что он проделал их с помощью греческой разновидности солнечных часов, так как дуга их тени достаточно четко видна. Солнечные часы, или скафис, представляли собой бронзовую чашу с закрепленной в центре иглой – гномоном, тень которого медленно скользила вдоль линий на внутренней поверхности чаши, соответствующих часам. Однако Эратосфен воспользовался часами необычным способом. Его интересовало не положение тени на часовых отметках, а угол тени, отбрасываемой гномоном в полдень в день летнего солнцестояния. Вначале он измерил, какую часть этот угол составляет в полной окружности (измерение окружности с помощью деления ее на 360 равных частей, называемых градусами, вошло в общую практику лишь примерно столетие спустя после Эратосфена). Или, что практически то же самое, он мог измерить отношение длины дуги, отбрасываемой гномоном на поверхности сосуда, к длине всей окружности сосуда.

Рис. 3. Вероятно, Эратосфен измерял, какую часть всей окружности солнечных часов составляет длина тени (EF), то есть какую часть полного угла составляет угол (х) между лучом и отвесной линией

В полдень того же дня Эратосфен выяснил, что сектор, занимаемый тенью, составляет 1/50 полной окружности (мы бы сейчас сказали: составляет 7,2 градуса). Таким образом, расстояние между Александрией и Сиеной равнялось пятидесятой части протяженности всего меридиана. Умножив 5000 стадий на 50, он получил 250 000 стадий для длины земной окружности. Позже, внеся некоторые уточнения, Эратосфен увеличил цифру до 252 000 стадий (в переводе на современные меры длины и то и другое число – это чуть больше 25 000 миль). Причина, по которой Эратосфен внес данное уточнение, не совсем ясна, но, скорее всего, это как-то связано с его стремлением упростить расчет географических расстояний.

Эратосфен делил круг на шестьдесят частей, и на каждую такую часть приходилось по равному количеству в 4200 стадий при общей протяженности земной окружности в 252 000 стадий. Но какую бы из двух названных величин мы ни использовали, 250 000 или 252 000 стадий (при том что, как мы уже знаем, не существует абсолютно точной формулы перевода стадий в современные меры длины), результат, полученный Эратосфеном, лишь незначительно отличается от величины, которая считается правильной сегодня, – 24 900 миль.

Важнейшим условием успешности эксперимента Эратосфена была его картина Вселенной. Без нее он не смог бы прийти к своей идее. К примеру, в древнекитайском картографическом тексте «Хуайнаньцзы» («Философы из Хуайнани») тоже отмечается, что гномоны одинаковой высоты, но находящиеся на разных (север – юг) расстояниях друг от друга, в одно и то же время отбрасывают тени различной длины15. Исходя из предположения, что Земля плоская, автор трактата объясняет названную разницу тем, что гномон, отбрасывающий более узкую тень, находится ближе к положению солнца на небе, и приходит к выводу, что разницу в длине теней можно использовать для расчета высоты неба!

Данные Эратосфена и его вычисления были достаточно приблизительными. Возможно, он знал, что Сиена расположена не совсем на той линии, которую мы сейчас называем Тропиком Рака. И что находится она не прямо к югу от Александрии. И что расстояние между обоими городами не равняется в точности пяти тысячам стадий. А так как солнце на небе представляет собой не световую точку, а небольшой диск (примерно в половину градуса шириной), свет от одной стороны диска падает на гномон не совсем под тем же углом, что и свет от другой его стороны, таким образом слегка смазывая тень.

Но если исходить из уровня развития науки и техники во времена Эратосфена, то его эксперимент был проведен блестяще. Полученный им результат в 252 000 стадий в течение нескольких столетий рассматривался как вполне достоверная оценка протяженности земной окружности. В первом веке нашей эры римский автор Плиний называл Эратосфена «великим ученым, особенно славным» в вопросе длины земной окружности, и характеризовал его эксперимент как «дерзкий», рассуждения – как «тонко обоснованные», а полученный результат – как «общепризнанный»16.

Примерно через сто лет после Эратосфена другой греческий ученый попытался на основании разницы между углом, под которым из Александрии была видна яркая звезда Канопус, и углом, под которым она же была видна с Родоса (где, как считалось, эта звезда находится прямо на горизонте), измерить протяженность земной окружности, но его результат оказался ненадежным. Даже целое тысячелетие спустя арабские астрономы не смогли улучшить результат Эратосфена, несмотря на то, что пытались сделать это, измеряя земной горизонт, видимый с вершины горы известной высоты, и высоту звезды над горизонтом из двух различных точек одновременно. Результаты Эратосфена сумели улучшить лишь в наше время, когда стали доступны более точные данные о положении небесных тел.

Эксперимент Эратосфена стал причиной настоящего переворота в географии и астрономии. Во-первых, теперь любой географ мог определить расстояние между любыми двумя точками на земной поверхности известной широты, например между Афинами и Карфагеном или между Карфагеном и дельтой Нила. Эратосфен определил размеры и положение известной ему обитаемой части Земли, а его преемники получили в свое распоряжение измерительную методику для определения космических расстояний – например, расстояний до Луны, Солнца и звезд. Короче говоря, благодаря эксперименту Эратосфена полностью преобразились представления тогдашнего человечества о Земле, ее положении во Вселенной (или, по крайней мере, в Солнечной системе) и о месте человека во всем этом.

Эксперимент Эратосфена не требует каких-либо особых условий и может быть проведен многими различными способами. Именно поэтому он и явился значительным вкладом в человеческую культуру. Его составляющие просты и знакомы каждому: тень, измерительный инструмент и элементарные правила геометрии. Для его проведения необязательно отправляться в Александрию или иметь в своем распоряжении греческие солнечные часы. Даже совсем необязательно дожидаться дня летнего солнцестояния. Сотни школ по всему миру включают эксперимент Эратосфена в свои программы в качестве обязательного. Некоторые при его проведении используют солнечные часы собственного изготовления, другие – флагштоки или башни. В последнее время подобные эксперименты часто проводятся совместно несколькими школами – по электронной почте и с использованием различных картографических интернет-ресурсов. Подобные воспроизведения эксперимента Эратосфена не похожи, скажем, на реконструкции старинных сражений (такие реконструкции часто устраивают любители истории). В ходе такой реконструкции основной целью является историческая достоверность или, по крайней мере, игровое уподобление прототипу. Что касается эксперимента Эратосфена, то учащиеся не копируют и не реконструируют его, они просто проводят его, словно в первый раз, и эксперимент демонстрирует тот же результат снова и снова – с прямотой и ясностью, в которой невозможно усомниться.

Эксперимент Эратосфена является ярчайшей иллюстрацией самих основ процесса экспериментирования в целом. Каким образом ученые могут узнать протяженность земной окружности без непосредственного ее измерения? Оказывается, мы совсем не беспомощны и нам нет нужды ждать, пока кто-нибудь изготовит для нас рулетку в несколько десятков тысяч миль длиной. Умно организованный эксперимент с использованием доступных и, в принципе, весьма элементарных инструментов может заставить даже такую эфемерную и неуловимую вещь, как тень, раскрыть для нас самые сокровенные и неизменные тайны небес. Эксперимент Эратосфена дает нам метод упорядочения того, что, на первый взгляд, представляется хаосом, с помощью простейших инструментов нашего собственного изготовления.

Красота эксперимента Эратосфена проистекает из его невероятной, немыслимой широты. Некоторые эксперименты привносят порядок в хаос с помощью анализа, выделения или расчленения вещей в окружающем нас мире. Рассматриваемый эксперимент ведет нас совершенно в другом направлении. С его помощью измеряются огромные расстояния, отраженные в малом. Он расширяет наше восприятие мира, учит нас по-новому смотреть на очень простые вещи и отвечать на элементарный вопрос: «Что есть тень и как она возникает?»

Благодаря этому эксперименту мы начинаем понимать, что размеры тени, которая лежит у нас под ногами, связаны с шарообразностью Земли, с размерами Солнца и с расстоянием до него, с постоянно изменяющимся положением двух этих небесных тел по отношению друг к другу. В эксперименте Эратосфена громадное расстояние, отделяющее нас от Солнца, циклический ход времени и шарообразность Земли становятся почти физически ощутимыми. Таким образом, он воздействует на качество нашего восприятия и понимания действительности.Бытует мнение, что физические эксперименты заставляют человека чувствовать себе более ничтожным во Вселенной. Иногда кажется, что естественные науки лишают человека его привилегированного положения в природе, и многие, чтобы как-то восполнить эту воображаемую утрату, заменяют науку магией, начинают фантазировать, что Солнце, планеты и звезды каким-то образом мистически связаны с нашей судьбой. Но эксперимент Эратосфена, на первый взгляд совершенно абстрактный, более эффективно гуманизирует мир, наделяя нас реалистическим чувством того, кем мы являемся и в какой именно Вселенной находимся. В то время как многое в современном мире пытается возвеличить свой масштаб, силу и власть, данный эксперимент заставляет нас по достоинству оценить огромные возможности, заложенные в малом и временном, и осознать то, насколько связаны между собой вещи самого разного масштаба.

Интерлюдия Почему наука прекрасна?

Но в самом ли деле эксперимент Эратосфена можно назвать красивым? Даже если он удовлетворяет всем трем критериям, которые я упомянул во введении, – если он демонстрирует нечто фундаментальное относительно Вселенной, его составные части эффективным образом организованы и он ставит вопросы о Вселенной, а не о самом эксперименте, – все равно могут возникнуть возражения против характеристики «красивый». Я слышал, к примеру, что разговоры о красоте экспериментов бессмысленны, попахивают снобизмом и отвлекают от более важных вещей.

Те, кто говорит, что разговоры о красоте эксперимента бессмысленны, обычно имеют в виду, что красота ассоциируется с такими понятиями, как субъективность, мнение и эмоции, в то время как наука связана с понятиями объективности, факта и рационального разума. Некоторые критики считают, что называть эксперименты «красивыми» означает навязывать естественным наукам (занимающимся описанием природы) характер и цели деятельности искусств и гуманитарных наук (занимающихся изучением и обогащением человеческой жизни и культуры). По их мнению, это один из вариантов того, что философ Бенедетто Кроче называл «интеллектуалистским заблуждением» – необоснованным смешением искусства и идей. Художник и критик Джон Рескин подчеркивает важность подобного различения в своем определении красоты:

...

«Любой материальный объект, который способен вызвать в нас удовольствие благодаря простому созерцанию его внешних качеств без какого-либо прямого и определенного усилия интеллекта, я характеризую как в той или иной степени красивый»17.

Мы не очень склонны напрягать свой интеллект, чтобы оценить красоту чего-то. А так как эксперименты в естественных науках – творения интеллекта, заявляют возражающие, то их нельзя оценивать как красивые.

Те, кто говорят, что разговоры о красоте научных экспериментов отдают снобизмом, подчеркивают, что красота воспринимается интуитивно и непосредственно: только представьте, что вы должны оценить красоту картины Ван Гога или концерта Моцарта по их описанию! Если принять такой подход, то красота научного эксперимента может быть доступна только самому экспериментатору. Роберт Оппенгеймер как-то заметил, что для неспециалиста пытаться понять процесс рождения квантовой механики – который он назвал временем «ужаса и восторга» – все равно что слушать «воспоминания солдат, возвратившихся с военной кампании беспрецедентной сложности и героизма, или путешественников, покоривших Гималаи, или рассказы о тяжелой болезни, или впечатления мистика от его общения с Богом», и добавляет, что «подобные истории на самом деле очень мало говорят нам о том, о чем собирался сообщить нам рассказчик».

Красоты этого мира – а, как утверждают, вокруг нас их огромное количество – доступны только его обитателям. Таким образом, бо́льшая часть дворца красоты закрыта для тех, кто не принадлежит к касте ученых, что противоречит современным демократическим ценностям и попахивает снобизмом.

Третье и наиболее основательное возражение – «аргумент от искушения». Ученые говорят, что их работа состоит в открытии действующих теорий и что, если кого-то начнет по-настоящему заботить проблема создания прекрасных экспериментов, это в лучшем случае может отвлечь от более серьезной работы, а в худшем – станет просто опасным18. Ученые, дескать, начнут насиловать свой интеллект, заставляя его учитывать «красоту», тем самым снижая научную эффективность. Только люди, безразличные к эстетическому, по-настоящему готовы к проведению глубокой и результативной исследовательской работы. А у тех, кто непосредственно не занимается научными исследованиями, могут возникнуть подозрения, что все эти разговоры о красоте в науке суть не только поверхностные сантименты, но, по сути дела, являются скрытой рекламой с целью воздействия на общественное мнение.

Подобная точка зрения имеет веские основания. Образы, которые я обычно встречал в контекстах, посвященных красоте науки, возникли не в научных лабораториях, а в отделах исследовательских институтов, занимающихся связями с общественностью. Однажды я присутствовал на докладе, где последний слайд демонстрировал знаменитую фотографию Земли, восходящей над поверхностью Луны. Образ, безусловно, очень красивый. Однако несмотря на то, что в течение нескольких десятилетий эта фотография прекрасно выполняла свои рекламные функции для НАСА, астрономы никогда не рассматривали ее как источник научной информации.

Все три перечисленных возражения проистекают из полнейшего непонимания сущности красоты. Первое из них путает красоту с декоративностью. Самый простой способ утратить правильное понимание того, что такое красота в науке, – это начать эстетизировать эксперимент, обращая внимание лишь на его внешние проявления. Но подлинная красота эксперимента заключается в том, как он демонстрирует свою идею. Как мы увидим в дальнейшем, красота experimentum crucis Ньютона не имеет никакого отношения к цветам, получаемым с помощью призмы, но заключена в изяществе, с которым этот эксперимент раскрывает структуру света. Красота эксперимента Кавендиша со взвешиванием мира не имеет отношения к внешнему облику его чудовищного инструментария, но воплощена в предельной точности результата. А красота эксперимента Юнга проистекает не из банального узора черных и белых полос, а из того, каким образом он раскрывает сущностные характеристики света.

Второе возражение, подобно первому, упускает из виду, насколько тесно связано наше восприятие (основанное, конечно, на обширной интеллектуальной информации) с нашими чувствами. Мы не tabulae rasae [3] ни в научной лаборатории, ни в художественной галерее. Мы оцениваем красоту живописи, музыки, поэзии не на основе «чистого» восприятия, а восприятия «подготовленного», детерминируемого нашим прошлым интеллектуальным опытом. И мы часто неспособны ощутить красоту простых вещей, восприятие которых не требует от нас «большого напряжения интеллекта» (к примеру, в одном из стихотворений Пабло Неруды «Ода моим носкам» воспевается красота этой скромной части нашего гардероба).

Усилие, необходимое для понимания красоты экспериментов – а для понимания красоты тех десяти экспериментов, что включены в эту книгу, особого усилия и не требуется, – невеликое препятствие. Гораздо большим препятствием может стать склонность рассматривать все вокруг нас исключительно с прагматической точки зрения, как инструменты для достижения неких определенных целей. Возможно, наша способность воспринимать красоту попросту дремлет и ее нужно только разбудить. И как писала Уилла Кэсер, «красоты вокруг нас не так много, чтобы можно было полениться отступить на десяток шагов назад для лучшего ее восприятия»19.

Третье возражение самое сильное и глубокое. Оно восходит к древнему конфликту между искусством и разумом, возникшему задолго до Платона. Это разновидность опасения, что люди гораздо легче и охотнее ловятся на крючок внешней привлекательности, чем на доводы рассудка. По мнению Платона, изложенному в диалоге «Государство», искусства призваны удовлетворять страстям человека, а не служить его разуму, «потакая неразумному началу души», и таким образом вводят нас в заблуждения20.

Блаженный Августин также видел опасность в способности чувств возобладать над разумом, предупреждал о соблазнах, таящихся даже в церковной музыке, и признавался, что его порой «больше трогает пение, чем то, о чем поется, и я каюсь в прегрешении; я заслужил наказания и предпочел бы вовсе не слышать пения»21.

Посыл третьего возражения сродни идее страшного рассказа: бойся волшебной и искусительной силы образов, держись разума и логики. Многие ориентированные на логику философы, таким образом, разводят или даже напрямую противопоставляют истину и красоту. «Вопрос об истинности, – писал логик Готлоб Фреге в одной из своей работ, – уводит нас из сферы художественного восприятия в сферу научных изысканий»22.

Ответ на это, третье, возражение подводит нас к самой сути науки и искусства. Нам потребуется обратиться не к логическим и математическим моделям, а к философским традициям. Эти традиции исходят из более фундаментального понимания истины как раскрытия явления, а не просто точного воспроизведения явления (как часто подчеркивал Хайдеггер, буквальное значение греческого слова άλήθεια («истина») – нескрытое ). В рамках подобных традиций научное исследование по своей сути связано с красотой. Красота – это не какая-то волшебная сила, существующая независимо от процесса раскрытия истины, она сопровождает его, она в каком-то смысле бессознательный побочный продукт науки. Красота – это инструмент достижения нового основания реальности, высвобождения нашего интеллекта, углубления нашей связи с природой. И в таком понимании красота должна быть противопоставлена элегантности, для которой не нужны никакие новые основания реальности23: «Красота характеризует взаимную подгонку между объектом, открывающим новое основание реальности, и нашей готовностью принять то, что открывается»24.

Но соответствует ли подобным требованиям эксперимент Эратосфена?

Этот эксперимент можно рассматривать абстрактно, как версию глобальной локационной системы, этакий GPS III века до н. э., как вариант решения проблемы квантования или просто как интеллектуальное упражнение. Именно так и рассматривали его большинство моих одноклассников на уроках в средней школе, и именно так и представлял нам его наш учитель. Но чтобы воспринимать его таким образом, надо прежде всего удушить собственное воображение с помощью всеподчиняющего желания во что бы то ни стало найти правильный ответ, с помощью традиционной скучнейшей методики преподавания естественных наук и с помощью нашей привычки к фотографиям, сделанным со спутника. Чаще всего мы не обращаем внимания на тени, эти эпифеномены света, или, отметив их краем глаза и мимолетно подумав: «Как мило!», проходим мимо. Однако эксперимент Эратосфена показывает нам, что каждая тень на залитой солнцем земле связана со всеми другими тенями в некое постоянно меняющееся целое. Размышление над экспериментом Эратосфена должно стимулировать, а не угнетать наше воображение и, нарушая привычное восприятие мира, заставлять нас останавливаться и задумываться над тем, какое место во Вселенной мы занимаем. Эксперимент Эратосфена должен вернуть нам способность удивляться тому, как чудесно устроен наш мир.

Если мы относимся к красоте серьезно, то эксперимент Эратосфена воистину прекрасен. Подобно другим объектам прекрасного, он одновременно является объектом эстетического наслаждения и источником новых, глубинных знаний о сущности Вселенной.

Рис. 4. «Падающая башня» в Пизе

Глава 2. Бросая мяч

Легенда о «Падающей башне»

Поверхность Луны, 2 августа 1971 года

Командир корабля Дэвид Р. Скотт: В левой руке у меня перышко, а в правой – молоток. Насколько мне известно, одним из тех, благодаря кому мы оказались сегодня здесь, был джентльмен по имени Галилей, живший давным-давно и сделавший очень важное открытие относительно падения тел в гравитационных полях. И мы решили: вряд ли найдется лучшее место, чтобы подтвердить правильность его открытий, чем Луна.

В объективе камеры руки Скотта, в одной из которых он действительно держит перышко, а в другой – молоток. Затем камера показывает нам всех участников экспедиции «Аполлон-15» – команду, известную под кодовым названием «Сокол».

Скотт: И мы подумали, что лучше всего попытаться повторить его здесь. Перышко у меня в руке, как вы понимаете, соколиное – в честь нашего «Сокола». Я брошу оба предмета в надежде, что они упадут на поверхность Луны одновременно.

Скотт бросает молоток и перо, они падают и примерно через секунду более или менее одновременно опускаются на лунную поверхность.

Скотт : Смотрите-ка! Галилей был совершенно прав25.

* * *

Согласно легенде, эксперимент на Пизанской башне впервые позволил убедительно установить, что предметы разного веса падают с одинаковой скоростью. Таким образом было опровергнуто авторитетное до той поры мнение Аристотеля. Упомянутая легенда связывает это событие с конкретным человеком (итальянским математиком, физиком и астрономом Галилео Галилеем) и конкретным местом («падающая» Пизанская башня), притом считается, что данное событие было однократным. Но насколько правдива эта легенда? Какие еще вопросы с ней связаны?

Галилей (1564–1642) родился в Пизе, в музыкальной семье. Его отец, Винченцо, был известным композитором и лютнистом, склонным к разнообразному экспериментированию. Он проводил опыты с музыкальным интонированием, интервалами, настройкой инструментов, всякий раз подчеркивая преимущество эмпирических данных над авторитетом древних мыслителей. Его сын унаследовал от отца сильную волю и настойчивость. Биограф Галилея Стиллман Дрейк называет две ключевые черты его личности, которые, по мнению Дрейка, стали основой его научного успеха. Во-первых, это был «бойцовский характер» Галилея, благодаря которому ученый не только не боялся каких бы то ни было конфликтов, но даже стремился к ним, чтобы «ниспровергнуть традицию и отстоять свою точку зрения». Во-вторых, личность Галилея как бы балансировала между двумя крайностями темперамента. С одной стороны, «он получал огромное удовольствие от наблюдения за вещами в окружающем мире, отмечал сходства и связи между ними, делал обобщения, не обращая особого внимания на явные исключения и аномалии». С другой же стороны, «его мучили любые необъясненные отклонения от правила, и он даже часто предпочитал полное отсутствие правила такому, которое не работало с идеальной математической точностью».


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache