Текст книги "Химический язык насекомых"
Автор книги: Роберт Короткий
Соавторы: Валерий Балаян
сообщить о нарушении
Текущая страница: 7 (всего у книги 10 страниц)
Современные исследования энтомологов подтвердили, что половые феромоны воздействуют на самцов, несмотря на большие расстояния и посторонние запахи. Так, самки бабочки-монашенки привлекают самцов с расстояния 200...300 м, айлантовой сатурнии – 2...2,5 км, непарного шелкопряда – 3...4 км, а ночного павлиньего глаза, над которым проводил опыты Фабр, – 8...10 км.
Интересные исследования были проведены с самцами бабочки-глазчатии. Меченых насекомых выпускали через окно движущегося поезда на различном удалении от места, где находилась в садке под марлей самка. Энтомологи подсчитали, что с расстояния 4,1 км на зов самки откликнулись около 40% самцов, а с 11 км – лишь 26%. Как видно, реакция самцов во многом зависит от расстояния до привлекательной самки, скорости ветра и географического расположения местности. Кроме того, существует индивидуальная чувствительность воспринимающих органов насекомых, зависящая от возраста, жизнеспособности, времени суток и других факторов. Поэтому при всем совершенстве электрофизиологических тестов роль того или иного вещества в поведении насекомых может быть определена лишь с помощью оценки их реакций на него в лабораторных или природных условиях. Изучая с помощью фото– и киносъемки ответы насекомых на действие феромонов, ученые смогли установить сложную структуру поведенческих актов этих животных. Сначала шестиногие совершают движения, связанные с переходом их организма в активное состояние. Они начинают поднимать антенны, двигать или чистить их, вибрировать крыльями, поворачиваясь при этом на месте. Такие движения «антеннами» увеличивают вероятность попадания молекул феромонов на рецептор. Затем насекомые двигаются в струе феромона против ветра. На траекторию полета оказывает влияние концентрация феромона. Подобное поведение способствует сближению особей, которое на небольших расстояниях зависит и от их зрения. Далее насекомые обмениваются химическими, визуальными и другими сигналами для стимуляции полового партнера к осуществлению спаривания.
Изучая поведенческие реакции насекомых в специальных устройствах, исследователи пытаются определить ключевой ответ, который можно в дальнейшем регистрировать в биотестах на активность пахучих молекул. Однако из-за многокомпонентности половых феромонов эти ответы бывают различными и зависят от концентрации феромона и привыкания к нему насекомых. Это свидетельствует о необходимости нового подхода к оценке биологической активности феромонов.
Поведенческие реакции насекомых исследуют в специальных устройствах – ольфактометрах. Самый простой из них представляет собой обыкновенную банку или садок с неподвижным воздухом. Более совершенная конструкция у специальных туннельных ольфактометров – цилиндрических устройств с вентиляторами, в которых можно регулировать поток воздуха и визуально наблюдать реакции насекомых как на свету, так и в темноте. Подопытные экземпляры в таких устройствах получают возможность свободно двигаться, а исследователи – наблюдать за их поведением. Для бабочек изготовляют специальные просторные «трубы», а для жуков – лабиринты, путешествуя по которым эти насекомые отыскивают источники пахучих молекул. Такие ольфактометры можно использовать и для сравнительной оценки различных источников феромона.
Известно, что «нос» насекомых может различить самый тонкий аромат среди множества других запахов. Современные химики-аналитики также научились выделять определенные пахучие молекулы из огромного количества химических веществ. Исследователи делают это с помощью новейших методов анализа, один из которых – хроматография.
Этот метод был открыт русским ученым М. С. Цветом в 1906 г. Исследователь еще в юношеские годы заинтересовался тайной зеленого пигмента – хлорофилла. Изучая этот пигмент – «трансформатор» энергии солнечных лучей в энергию химических связей молекул, ученый совершил важное научное открытие. Он изобрел великолепный метод разделения органических веществ, основанный на различной способности их к адсорбции. Используя для разделения зеленых пигментов производные петролейного эфира, М. С. Цвет наблюдал две окрашенные полоски – темно-зеленую и синюю (хлорофиллы а и в). Работая со смесью пигментов из листьев крапивы, ученый с помощью специальной колонки (цилиндра из стекла) получил такое расположение разноцветных слоев: верхний – бесцветный, затем желтый, снова светлый, желто-зеленый, зеленовато-синий, три слоя желтых и последний – светло-серый. Почти настоящая радуга! Химические компоненты зеленого пигмента расположились друг за другом в колонке с адсорбентом, и эту разноцветную картину можно было уже идентифицировать как качественно так и количественно. Красный столбик с пигментом ученый назвал хроматограммой, а сам способ такого разделения сложных веществ – хроматографическим методом. М. С. Цвет, как и многие другие скромные труженики науки, не получил при жизни признания и высокого положения в обществе, но вклад его в науку по достоинству оценен учеными XX в.
Метод, открытый русским ученым, произвел научную революцию во многих областях человеческого знания: биологии, химии, физике и медицине. Благодаря хроматографии стало возможным быстро и точно определить строение и химический состав белков, удалось расшифровать состав очень редких и загадочных веществ, пришельцев из космоса – углистых хондритов. Этот метод широко применяется для анализа загрязнения окружающей среды и установки правильного диагноза в клинических лабораториях. Для химиков хроматографический метод стал надежным помощником в исследованиях молекул: от простых газов до сложнейших углеводородов и аминокислот. Без хроматографии не обходятся и исследователи феромонов. Со временем открытия «молекул любви» тутового и непарного шелкопрядов и до наших дней этот метод надежно служит охотникам за молекулами.
Так, для разделения экстрактов из насекомых применяют различные виды хроматографического анализа. Результаты его регистрирует перо самописца, вырисовывая множество низких и высоких пиков. Например, при расшифровке феромона тутового шелкопряда бомбикола ученые наблюдали около 30 различных пиков.
Со времени открытия этого пахучего вещества положение дел у охотников за летучими молекулами значительно улучшилось. Благодаря современным методам исследований стало возможно определить содержание изучаемого феромона в массе вещества менее 0,1 мг. Если доктору А. Бутенандту потребовалось 20 лет на разгадку тайны пахучих молекул шелкопряда, то сейчас в течение 2...3 лет ученые расшифровывают структуру аттрактантов десятков насекомых. Стали известны химические формулы феромонов яблонной плодожорки, хлопкового долгоносика, бабочки-гелехиды, медоносной пчелы, капрового жука и других шестиногих. Теперь известно, что для общения на химическом языке насекомые пользуются многоатомными спиртами, эфирами, кетонами и различными циклическими соединениями. В настоящее время исследователи обладают целым арсеналом средств для разгадки строения пахучих молекул. В этом химикам в значительной степени помогли физики, и прежде всего тем, что создали физико-химические методы анализа органических веществ. Однако для успешного решения задачи мало располагать точными методами и сложными приборами, без которых сейчас не обходится ни одна аналитическая лаборатория. Охотнику за молекулами-невидимками нужно иметь глубокие знания и опыт, а также уметь правильно сделать выбор методики, необходимой в каждом конкретном случае.
Для разделения смеси феромонов химики, как правило, пользуются методом газо-жидкостной хроматографии. Обладая высокой чувствительностью, он позволяет обнаружить одну молекулу искомого феромона среди 1012 молекул газа-носителя. Сущность этого метода заключается в том, что смесь пахучих молекул пропускают через колонку с неподвижной жидкой фазой при помощи инертного газа. Компоненты смеси разделяются в зависимости от их свойств между газовым потоком и неподвижной фазой и выходят из колонки в определенном порядке. Затем они регистрируются специальными детекторами и записываются в форме пиков на перфоленте хроматографа. Для идентификации полученных компонентов сравнивают их показатели при разделении на колонке с аналогичными параметрами известных чистых веществ – «свидетелей». На проведение такого анализа уходят минуты, а его возможности позволяют не только разделить смесь феромонов, но и накопить отдельные вещества в количестве, необходимом для дальнейшей работы.
Однако даже самый совершенный газовый хроматограф не позволяет расшифровать структуру молекул изучаемых веществ. Для того чтобы установить полный «портрет» феромона, химики обращаются за помощью к таким физическим методам, как масс-спектрометрия, инфракрасная спектроскопия, электронные спектры поглощения как в видимой, так и в ультрафиолетовой областях, а также ядерному парамагнитному резонансу.
Масс-спектрометрия – самый чувствительный из методов, позволяющих исследовать структуру молекул. Ведь для такого анализа исследователю достаточно располагать следовыми количествами феромонов – 10–9 г. На чем же основан принцип этого метода? В специальном приборе масс-спектрометре на пары исследуемого вещества воздействуют пучком быстрых электронов, которые ионизируют молекулы и превращают их в положительно заряженные ионы. Затем магнитное поле делит полученные частицы на молекулярные и осколочные ионы, которые регистрируются с помощью коллектора и системы усиления сигналов. На ленте прибор выписывает пики, которые соответствуют ионам с определенным отношением массы к заряду. Соответствующая обработка полученных результатов позволяет ученым идентифицировать тот или иной компонент феромона.
В последнее время широкое распространение получили приборы, созданные путем слияния двух методов: газо-жидкостной хроматографии и масс-спектрометрии. Компьютеры этих электронных роботов, получивших название «хроммассов», располагают огромной памятью о спектрах уже известных веществ, и поэтому для идентификации исследуемых компонентов химического языка насекомых не требуется много времени. Современные приборы позволяют анализировать практически почти все известные классы органических соединений. Для проведения анализа достаточно располагать всего лишь 10–9 г вещества.
Довольно часто обращаются химики к методу инфракрасной спектроскопии, который позволяет определить в молекуле такие функциональные группы, как C=0, C=C, OH и другие. Этот метод возник после первых опытов Исаака Ньютона по разложению солнечного света на разноцветные полоски. Дальнейшие исследования спектров атомов и молекул позволили немецким ученым Р. В. Бунзену и Г. Р. Кирхгофу изобрести спектральный метод анализа. Благодаря ему ученые узнали химический состав Солнца, многих звезд и туманностей. Для инфракрасной спектроскопии необходимо располагать несколькими миллиграммами исследуемого вещества, чтобы получить данные о его химической структуре. А вот для того, чтобы снять спектры молекул в видимой или ультрафиолетовой области, нужно иметь и того менее – всего лишь доли миллиграмма. Эти методы позволяют определить в изучаемых объектах наличие хроматофоров и ароматических колец.
При расшифровке структуры феромонов исследователям довольно часто приходится иметь дело с пространственными изомерами молекул. Здесь на помощь химикам приходит метод ядерного парамагнитного резонанса (ЯМР). Он помогает установить расположение в молекуле водорода, фтора и других атомов, обладающих парамагнитными свойствами. К недостатку метода относится необходимость располагать не менее 3...5 мг изучаемого вещества. В 1944 году советский ученый Е. К. Завойский обнаружил явление электронного парамагнитного резонанса (ЭПР). При помощи этого метода можно судить о наличии в молекуле свободных радикалов.
Определенный интерес для аналитиков представляет разработанный на кафедре биофизики МГУ профессором Б. Н. Тарусовым и его сотрудниками метод биохемолюминесценции. При помощи специальной электрохимической ячейки в результате окисления некоторых соединений, например циклических аминокислот, создается постоянный фон сверхслабого свечения. Добавляя в такую среду изучаемое вещество, ученые наблюдают изменение фона свечения и по этим данным судят о свойствах молекул.
Для изучения реакционной и радикальной активности, а также интенсивности различных запахов, советские исследователи А. X. Тамбиев и А. Ш. Агавердиев в 1966 году предложили метод химических моделей, называемый еще методом термоокисления ДОФА. Он заключается в том, что исследуемыми веществами воздействуют на специальные соединения-индикаторы, которые под влиянием последних изменяют такие свои свойства, как интенсивность хемолюминесценции, оптическую плотность, окраску и другие. Довольно часто для регистрации таких воздействий применяют 3,4-диоксифенилаланин (ДОФА). Оптические свойства этого индикатора могут изменяться под влиянием феромонов, что позволяет судить об интенсивности и реакционной способности пахучих молекул.
Используя чудо-технику XX века, исследователи пытаются узнать секреты химического языка насекомых. Расшифровка любого феромона – совсем не простое дело и нередко напоминает работу по расшифровке египетских иероглифов или решение археологических загадок. На этом пути ученых на каждом шагу подстерегают ошибки и удачи, разочарования и находки.
Поэтому успех в расшифровке феромонов насекомых зависит не сколько от технического оснащения, сколько от знаний, опыта, терпения и настойчивости исследователей невидимых кирпичиков здания жизни.
По образу и подобию
Химики-синтетики, работающие над созданием феромонов, часто оказываются в чрезвычайно затруднительном положении. Им гораздо легче изобразить вещество на бумаге, чем получить его в колбе. Даже знания точной формулы молекулы бывает недостаточно для осуществления ее синтеза. Конструкторы молекул должны прекрасно ориентироваться в химическом лабиринте геометрически разноликих формул, чтобы воспроизвести по расшифрованному соединению его копию.
Об одном характерном для химической «кухни» случае рассказал в своем интервью известный специалист химического синтеза Роберт Вудворт.
Как-то к нему из Англии приехал молодой человек с хорошими рекомендациями – он хотел поработать в лаборатории ученого. Вудворт дал ему задание провести довольно простой синтез. Химик выполнил его за две недели. Ученый оценил способности стажера и поручил ему сделать серьезную работу – синтез холестерина. Это соединение было выделено в чистом виде еще в 1812 г. Его молекулы представляют собой стероиды циклического строения и присутствуют почти во всех тканях живого организма. Холестерин – необходимый химический компонент для биосинтеза экдизона – гормона роста насекомых. Однако шестиногие не могут синтезировать его самостоятельно и получают в готовом виде с пищей (потребность в нем у разных видов колеблется от 0,01 до 0,1% массы суточного рациона).
И вот холестерин – очень важный строительный материал для клеточных структур – был синтезирован молодым ученым, будущим профессором химии, Вудвортом и его сотрудниками. Через год после этого события, встретившись с Вудвортом, его бывший стажер признался, что был поражен, услышав от ученого о предстоящем синтезе холестерина, и даже подумал: «Видать, он просто сумасшедший», – но все-таки решил попробовать. Как видно, часто создание сложных молекул даже для химиков кажется невероятной, безумной затеей.
И тем не менее самые недоступные органические соединения были покорены в XX в. Достаточно вспомнить синтез пигмента зеленого листа – хлорофилла или молекул здоровья – различных витаминов. Многие чудодейственные вещества, такие, как хинин, убивающий возбудителя малярии, сульфаниламидные препараты – гроза болезнетворных микроорганизмов, пестициды всех поколений и искусственные красители, подарили человечеству конструкторы органических молекул. В настоящее время химический синтез принял индустриальные масштабы. Подсчитано, что каждый месяц в мире синтезируется не менее 25 тыс. новых соединений.
А было время, когда известный химик И. Я. Берцелиус (1779–1848 гг.) и многие другие считали невозможным искусственно создать органические молекулы без помощи магической «жизненной силы».
Своим рождением органический синтез в большой мере обязан выдающемуся химику Марселену Бертло (1827–1907 гг.) Он настолько верил в будущее химического синтеза, что, выступая на съезде французских фабрикантов в 1894 г., утверждал, что в 2000 г. не будет сельского хозяйства. Химия достигнет такого уровня, когда земледелие станет лишним, и каждый житель планеты будет иметь коробочку с химическими веществами, которые полностью удовлетворят потребность организма в основных питательных веществах: белках и углеводах, жирах и витаминах.
Предвидение великого химика в какой-то мере становится реальностью. Уже изготовлена синтетическая зернистая икра, которая по вкусовым качествам почти не уступает настоящей.
Как же действуют исследователи при синтезе химических соединений? Когда стало известно, что феромон тутового шелкопряда представляет собой сложный спирт, ученые испытали сотни сходных с ним по строению веществ. При помощи «носа-антенны» насекомых прошли проверку даже соединения, содержащиеся в листьях шелковицы, которыми питаются гусеницы шелкопряда. Чтобы получить бомбикол, конструкторам молекул пришлось объединить свои усилия. Одновременно в двух лабораториях шел напряженный поиск путей синтеза этого вещества. В процессе работы были получены многие пахучие молекулы. Причем искусственные вещества в отдельности или в сочетании часто оказывались более привлекательными для насекомых, чем извлеченные химиками из тел шестиногих. Видимо, синтетические вещества не содержали никаких примесей.
Для химиков всех времен поучительным примером могли бы послужить работы Фридриха Велера, который 150 лет назад синтезировал мочевину. Современные аналитические приборы подтвердили чистоту образца вещества, сохранившегося в запаянной ампуле.
Однако не всегда однородность отдельных компонентов запаха дает гарантию успеха при смешивании. Так, «сюрприз» ожидал охотников за ароматом черной смородины. После расшифровки строения и синтеза более 40 различных пахучих молекул химики сделали из них «коктейль» и вынуждены были зажимать носы. Конечно, ученым этой специальности не привыкать к острым запахам, и обоняние у них от химической кухни притуплено, но вспомним хотя бы запах аммиака.
Для получения феромонов в лабораториях проводят различные реакции. Синтезируя спирты, кислоты, эфиры, кетоны, химики окисляют и восстанавливают, присоединяют и отщепляют различные молекулы и функциональные группы.
Со времени работ пионера химического синтеза Марселена Бертло и до сих пор химикам приходится решать задачу присоединения к молекуле-основе, например ацетилену, другой органической молекулы, состоящей из различного числа углеродных атомов. Для этого хорошо служат реакции конденсации. Они были использованы при получении бомбикола шелкопряда, пропилура розового червя хлопчатника и феромонов грозы садов – восточной и яблонной плодожорок.
Для нормального протекания этой реакции важное значение имеет присутствие различных катализаторов, таких, как металлический натрий, хлористый алюминий, металлорганические соединения. В биохимических процессах, происходящих в живых организмах, роль катализаторов выполняют различные ферменты. Химику же самому приходится подбирать необходимый ускоритель реакции.
Особое место среди катализаторов занимает вещество, предложенное французским ученым Виктором Гриньяром (1871–1935 гг.) и названное в честь него реактивом Гриньяра. Трудно найти область органического синтеза, где бы не использовали это чудесное соединение, которое часто выручает химиков при конструировании «молекул любви».
Для синтеза феромонов ученые часто используют и реакцию гидрирования ненасыщенных углеводородов. С ее помощью было получено большое количество пахучих молекул.
Конструирование феромонов осложняется и тем, что от пространственного положения молекулы, то есть ее стереометрии, изменяется результат синтеза. Если изомерия на плоскости связана с различным положением отдельных групп (гидроксильной, метильной и других) в углеродной цепи, то стереоизомеры – зеркальные близнецы в пространстве. Химикам приходится проверять множество веществ, чтобы поймать так называемую цис– или трансконфигурацию молекулы. Тем не менее благодаря созданию оригинальных методов химического синтеза, основой для которых послужили работы известных советских ученых М. М. Шемякина и Л. Д. Бергельсона, исследователи успешно преодолевают все трудности. Только у нас в стране за последнее время осуществлен синтез феромонов более чем 20 видов насекомых-вредителей.
Наконец-то в руках ученых оказалась стеклянная пробирка с веществом, которое, как золотой ключик, поможет открыть тайны химического языка насекомых. Но как же работает молекулярный механизм «секретного замочка»?
Существует множество теорий и гипотез, при помощи которых ученые пытаются объяснить механизм действия обонятельных рецепторов. Каждый человек по-разному может описать один и тот же запах, но большинство из нас одинаково ощущают прекрасный аромат цветов и хвойных деревьев, хлеба и валерианы. А кто хоть раз в жизни понюхает нашатырный спирт или мускус, тот никогда уже не сможет ошибиться при описании этих запахов.
У японцев существует забавная игра для развлечения гостей. Всем желающим предлагают предмет, который обладает одним из множества известных нам запахов. Победу присуждают тому из присутствующих, который окажется лучшим дегустатором и правильно назовет пахучее вещество. Преимущество в этой игре имеет тот, у кого самый чувствительный нос. Значит, в органах обоняния существуют «сортировщики», которые на каждую молекулу «клеят» ярлык. Кстати, некоторые химики или парфюмеры могут различать до 10 тыс. ароматов.
На первый взгляд все просто: каждый отдельный запах есть не что иное, как воздействие определенных летучих молекул на органы обоняния: хвойный или фруктовый аромат создают сложные эфиры, а запах тухлых яиц – производные сероводорода. Однако чем тогда объяснить, что разные химические соединения: розетон и фенилэтанол, гераниол и пеларгол имеют аромат розы? К этому можно добавить, что запах камфоры наблюдается более чем у 100 соединений, а запах мяты – примерно у 80 различных органических молекул.
Кроме того, учеными получены данные о том, что вещества, сходные по строению, существенно различаются по запаху.
Может быть, на качество запаха влияют только функциональные группы или конфигурация молекул на плоскости и в пространстве? Оказывается, нет. Уксусная кислота имеет резкий уксусный запах, а масляная – пахнет прогорклыми жирами. У ванилина замена альдегидной группы на нитрогруппу не вызывает изменения аромата. А вот форма молекулы, видимо, играет важную роль в создании запаха.
В конце 40-х годов нашего столетия было высказано предположение о том, что запах не что иное, как «узнавание» пахучей молекулой определенной лунки в обонятельных клетках. Эта идея «замка и ключа», в настоящее время принятая на вооружение биохимиками для объяснения механизма действия ферментов – живых катализаторов, была не нова. Еще более 2000 лет назад римский философ и поэт Лукреций Кар (98–55 гг. до н. э.) писал, что запахи состоят из «первичных начал» различной формы. Приятные запахи образуются из гладких и круглых начал, терпкие – из крючковатых, зловонные – из острых и колючих, проникающих в «поры» органа обоняния.
Развивая теорию «молекулы ключа» и обонятельной «ямки-замка», американские ученые предложили свой вариант. Предполагая, что число различных запахов ограничено, как и количество элементарных вкусовых ощущений, он выделил семь первичных запахов. Это известные нам камфорный, острый (запах муравьиной кислоты), мятный (ментол), цветочный (аромат розы), мускусный, эфирный, гнилостный (сероводород). Более того, исследователи описали размеры и форму обонятельных рецепторов, которые соответствуют этим запахам. Однако и «палочка-выручалочка» Эймура не смогла объяснить нюансы обоняния.
Канадские ученые предложили следующее объяснение проблемы. Пахучие молекулы при соприкосновении с обонятельными рецепторами раздражают их, и те под действием атомных колебаний различной частоты передают нервный импульс в мозг. Причем воспринимаются сигналы только с длиной волны от 20 до 200 мкм. В дальнейшем эти волновые диапазоны были названы осмическими (от греческого «osme» – запах). Однако и эта гипотеза не в состоянии объяснить многие факты.
Изучая тайны обоняния насекомых, ученые получили много важных и интересных данных о механизме восприятия запахов этими животными. Так, они установили, что слой вязкой субстанции, которая выделяется из пор хеморецепторных сенсилл шестиногих, состоит из мукополисахаридов и представляет собой барьер между мембраной чувствительной клетки и окружающей средой. Он играет важную роль в восприятии химического стимула и преобразовании его в нервный сигнал. Мукополисахаридный слой – фактор, свойства которого зависят от физиологического состояния насекомого. Ученые считают, что эффективность этого селективного фильтра зависит от молекулярной структуры веществ, диффундирующих через него. Полученные данные проливают некоторый свет на секреты механизма восприятия запахов в мире шестиногих.