355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Роудс » Создание атомной бомбы » Текст книги (страница 4)
Создание атомной бомбы
  • Текст добавлен: 11 ноября 2020, 12:00

Текст книги "Создание атомной бомбы"


Автор книги: Ричард Роудс



сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц)

Каждый из работников может взять какие-то элементы пазла и попытаться совместить их. Этот метод был бы эффективным, если бы собирание пазла было сродни шелушению гороха. Но это не так. Элементы пазла не изолированы. Они были частью единого целого. И вероятность того, что один из работников случайно наберет себе элементы, подходящие друг к другу, мала. Даже если такая группа изготовит достаточно экземпляров всех элементов, чтобы в распоряжении каждого работника был весь пазл, ни один из них в одиночку не сделает столько, сколько могла бы сделать группа, если бы нашла метод совместной работы.

Наиболее эффективное решение, по словам Полани, заключается в том, чтобы позволить каждому из работников следить за тем, что делают все остальные. «Пусть они работают над пазлом вместе, видя друг друга, чтобы каждый раз, когда один из [работников] ставит какую-либо часть мозаики на место, все остальные сразу начинали искать следующий шаг, который становится возможным благодаря этому»[121]121
  Ibid., p. 7.


[Закрыть]
. В таком случае, даже если каждый из работников действует по собственной инициативе, его действия способствуют прогрессу всей группы. Члены группы работают вместе независимым образом; пазл собирается самым действенным способом.

Полани считал, что наука познает неизвестное, проходя через последовательность этапов, которые он называл «точками роста»[122]122
  Ibid., p. 15.


[Закрыть]
, причем каждая из таких точек представляет собой место, в котором делаются наиболее продуктивные открытия. Узнавая о новых достижениях из сети научных изданий и личных связей с коллегами, – благодаря полной открытости обмена информацией, абсолютной и жизненно важной свободе слова – ученые немедленно начинают работать именно в тех точках, в которых личные таланты каждого из них обеспечивают максимальный положительный эффект, эмоциональный и интеллектуальный, от вложения сил и размышлений.

Тогда становится ясно, кто именно в научной среде оценивает значение результатов исследований: это делают все члены группы, как на собрании общины квакеров. «Авторитетность научного мнения остается преимущественно взаимной; она формируется среди ученых, а не над ними»[123]123
  Ibid., p. 14. Курсив оригинала.


[Закрыть]
. Бывают ведущие ученые, ученые, которые работают в точках роста своих дисциплин необыкновенно плодотворно; но в науке нет верховных правителей. Ею управляет коллективное согласие.

Не всякий ученый способен оценить любой вклад. Сетевая структура устраняет и это затруднение. Предположим, ученый М объявляет о новом результате. Он знает свой чрезвычайно специализированный предмет лучше всех на свете; кто же в таком случае может обладать компетенцией, необходимой, чтобы оценить его работу? Но рядом с ученым М работают ученые L и N. Поскольку предметы их исследований частично пересекаются с областью работы М, они достаточно хорошо понимают его работу, чтобы судить о ее качестве и достоверности, а также понять, как она соотносится с общей научной картиной. Кроме L и N есть еще и другие ученые, K и O, а также J и P, которые достаточно хорошо знают L и N, чтобы решить, можно ли доверять их суждению о работе М. И эта цепочка продолжается дальше и дальше, вплоть до ученых A и Z, которые работают в области, почти совершенно отличной от сферы интересов М.

«Эта сеть и есть вместилище научного мнения, – подчеркивал Полани, – мнения, не присущего разуму какого-то отдельного человека, но разделенного на тысячи разных фрагментов, мнения, которого придерживаются множественные индивидуумы, каждый из которых поддерживает мнение другого опосредованно, полагаясь на согласованные цепочки, которые связывают его со всеми остальными через последовательность пересекающихся сообществ»[124]124
  Ibid.


[Закрыть]
. Наука, подразумевал Полани, работает как гигантский мозг, образованный связанными между собою индивидуальными разумами. Это и есть источник ее кумулятивной и, по-видимому, непреодолимой силы. Но сила эта, как тщательно подчеркивают и Полани, и Фейнман, достается ценой добровольного самоограничения. Науке удается решать трудную задачу поддержания сети политических связей между людьми разного происхождения и разных взглядов и даже еще более трудную задачу определения правил шахматной игры, в которую играют боги, благодаря жестким ограничениям области своей деятельности. «Физика, – как однажды напомнил группе своих коллег Юджин Вигнер, – даже не пытается дать нам полную информацию о событиях, которые происходят вокруг нас: она дает нам информацию о корреляциях между этими событиями»[125]125
  Wigner (1981), p. 8.


[Закрыть]
.

Что по-прежнему оставляет открытым вопрос о том, на какие стандарты ориентируются ученые, когда выносят оценку работе своих коллег. Хорошая наука, оригинальная работа всегда выходят за пределы общепринятых мнений, всегда содержат элемент несогласия с ортодоксальными взглядами. Как же в таком случае выразители ортодоксальных взглядов могут оценить их по достоинству?

Полани предположил, что науку защищает от окостенения существующая в ней структура учителей и учеников. Учитель прививает ученику высокие стандарты суждений. В то же время ученик обучается доверять своему собственному суждению: он узнает о возможности и необходимости несогласия. Из книг и лекций можно узнать правила; учителя обучают осознанному бунту, хотя бы на примере своей собственной оригинальной – и, следовательно, бунтовщической в этом смысле – работы.

Ученики познают три общих критерия научного суждения[126]126
  Ср. обсуждение в Polanyi (1962), p. 10 и далее.


[Закрыть]
. Первый из этих критериев – правдоподобие. Он позволяет отсеять безумцев и жуликов. Он также может приводить (и иногда приводил) к отбрасыванию идей, слишком оригинальных, чтобы ортодоксальное мышление могло осознать их, – но чтобы наука вообще могла работать, с этой опасностью приходится мириться. Второй критерий – научная ценность, составная величина, содержащая в равных долях точность, важность для всей системы науки или той ее ветви, к которой относится данная идея, и степень интереса, который порождает сущность работы. Третий критерий – оригинальность. Патентные эксперты оценивают оригинальность изобретения по тому, насколько неожиданным оно оказывается для специалиста, знакомого с соответствующей областью. Ученые оценивают новые теории и новые открытия подобным же образом. Правдоподобие и научная ценность позволяют оценить качество идеи по стандартам ортодоксальной точки зрения; оригинальность определяет степень ее отклонения от ортодоксальности.

Предложенная Полани модель открытой научной республики, в которой каждый из ученых судит о работе своих коллег по общепризнанным и поддерживаемым всеми критериям, объясняет, почему идея атома обладала столь неустойчивым статусом в физике XIX века. Она была правдоподобна; она обладала значительной научной ценностью, особенно с системной точки зрения; однако никаких неожиданных открытий, касающихся атома, еще никому не удалось совершить. По крайней мере, таких открытий, которые были бы достаточно убедительными для сети из всего лишь приблизительно тысячи мужчин и женщин всего мира, которые в 1895 году называли себя физиками[127]127
  Ср. Segre (1980), p. 9.


[Закрыть]
, – а также для более многочисленной сети химиков, связанной с первой.

Время атома было на подходе. В XIX веке самые неожиданные открытия в фундаментальной науке делались в химии. В первой половине века XX источником великих неожиданностей в фундаментальной науке стала физика.

В 1895 году, когда юный Эрнест Резерфорд приехал с другого конца света в Кавендишскую лабораторию, чтобы изучать физику в надежде составить себе имя в этой области, Новая Зеландия, которую он покинул, была еще территорией малоосвоенной. Инакомыслящие британские ремесленники и крестьяне, а также некоторые искатели приключений из дворян заселили этот суровый вулканический архипелаг в 1840-х годах, потеснив приплывших из Полинезии маори, которые открыли его за пять столетий до этого. Серьезное сопротивление маори, вылившееся в несколько десятилетий кровавых стычек, закончилось лишь в 1871 году, в котором и родился Резерфорд. Он учился в недавно созданных школах, гонял коров на дойку, ездил верхом в буш охотиться на диких голубей, сидящих на покрытых ягодами ветвях деревьев миро[128]128
  Подокарп, или ногоплодник, ржавый, Prumnopitys ferruginea, вечнозеленое хвойное дерево, растущее в Новой Зеландии.


[Закрыть]
, помогал на льнопрядильной фабрике своего отца в Брайтуотере, на которой дикий лен, собранный в местных болотах, замачивали, мяли и трепали, получая из него льняные нити и очески. Два младших брата Резерфорда утонули; вся семья в течение нескольких месяцев искала их на берегах Тихого океана вокруг фермы.

Его детство было трудным и здоровым. Резерфорд увенчал его стипендиями на обучение – сначала в скромном колледже имени Нельсона в близлежащем городе Нельсоне на Южном острове, затем в Университете Новой Зеландии, в котором он в возрасте двадцати двух лет получил магистерскую степень сразу по двум специализациям, математике и физике. Он был человеком крепким, энергичным и сообразительным, и все эти качества потребовались ему на пути из новозеландской сельской глуши к руководству британской наукой. Еще одно, более тонкое качество – проницательность деревенского парня в сочетании с характерной для далеких от цивилизации мест глубокой неиспорченностью – сыграло важнейшую роль в тех беспрецедентных научных открытиях, которые он совершил в течение своей жизни. Как сказал его воспитанник Джеймс Чедвик, главной отличительной чертой Резерфорда был «его талант удивляться»[129]129
  Chadwick (1954), p. 440. Некоторые подробности детства Резерфорда позаимствованы из Eve (1939), Feather (1940) и Crowther (1974).


[Закрыть]
. Он сохранил это качество, несмотря на все свои успехи и несмотря на тщательно замаскированную, но иногда чрезвычайно болезненную неуверенность в себе[130]130
  Эта формулировка принадлежит Ч. П. Сноу, Snow (1967), p. 11.


[Закрыть]
, грубый шрам, оставленный его колониальным происхождением.

Первую возможность для проявления своих талантов Резерфорд нашел в Университете Новой Зеландии, в котором он получил в 1893 году степень бакалавра. «Электрические волны», открытые в 1887 году Генрихом Герцем, – сейчас мы называем их радиоволнами – произвели на Резерфорда, как и на других молодых людей по всему миру, сильнейшее впечатление. Для изучения этих волн он собрал в промозглом подвальном чулане так называемый вибратор Герца – электрически заряженные металлические шары, установленные с зазором, благодаря которому между металлическими пластинами проскакивают искры. Он искал задачу, которая могла бы стать темой его первого независимого исследования.

Такую задачу он нашел в общепринятом среди ученых – в число которых входил и сам Герц – мнении, что переменный ток высокой частоты, то есть такой, какой возникает в вибраторе Герца, когда между металлическими пластинами в обоих направлениях быстро пролетает искровое излучение, не вызывает намагничивания железа. Резерфорд предположил, что это не так, и нашел изобретательное доказательство своей правоты. За эту работу он получил стипендию Всемирной выставки 1851 года[131]131
  Она была учреждена организационным комитетом Великой выставки промышленных работ всех народов, проходившей в лондонском Гайд-парке в 1851 г. Стипендиаты, избираемые из числа «исключительно многообещающих молодых ученых или инженеров», получают финансирование на три года исследовательской работы в любом научном учреждении Соединенного Королевства. Стипендия эта, среди получателей которой было множество нобелевских лауреатов и других выдающихся ученых, существует до сих пор.


[Закрыть]
на работу в Кембридже. Когда пришла телеграмма, Резерфорд копал картошку в домашнем огороде. Его мать прокричала новость с другого конца борозды; он рассмеялся, отбросил лопату и воскликнул, отмечая момент, торжественный и для сына, и для матери: «Я выкопал свою последнюю картофелину!»[132]132
  Eve (1939), p. 11.


[Закрыть]
Тридцать шесть лет спустя, когда ему был пожалован титул барона Резерфорда Нельсонского, его мать, в свою очередь, получила следующую телеграмму: «Теперь [я] лорд Резерфорд, и твоей заслуги в этом больше, чем моей»[133]133
  Ibid., p. 342.


[Закрыть]
.

Работа под названием «Намагничивание железа высокочастотными разрядами»[134]134
  1894, в Rutherford (1962), p. 25–57.


[Закрыть]
сочетала в себе мастерские наблюдения и отважное инакомыслие. Проявив глубокую оригинальность, Резерфорд заметил слабую обратную реакцию, возникающую при намагничивании железных иголок током высокой частоты: при пропускании высокочастотного тока происходит частичное размагничивание иголок, уже намагниченных до насыщения. Здесь и сработал его талант удивляться. Он быстро понял, что радиоволны, принимаемые соответствующей антенной и подаваемые в проволочную обмотку, можно использовать для создания в пучке намагниченных иголок высокочастотного тока. Это вызовет частичное размагничивание иголок, и, если поместить рядом с ними компас, это изменение можно будет заметить по отклонению его стрелки.

К сентябрю 1895 года, когда Резерфорд добрался на одолженные деньги до Кембриджа, где он должен был начать работать под руководством прославленного директора Кавендишской лаборатории Дж. Дж. Томсона, он разработал на основе своих наблюдений устройство для улавливания радиоволн на расстоянии – по сути дела, первый, еще весьма несовершенный, радиоприемник. В это время Гульельмо Маркони еще доводил свою модель радиоприемника до совершенства в итальянском имении отца; в течение нескольких месяцев молодой новозеландец удерживал мировой рекорд по дальности приема радиопередач[135]135
  Marsden (1962), p. 3.


[Закрыть]
.

Опыты Резерфорда привели в восторг заслуженных британских ученых, узнавших о них от Томсона. Они быстро приняли Резерфорда в свою среду: однажды вечером его даже усадили на почетное место рядом с ректором за профессорским столом Кингс-колледжа. По его словам, он чувствовал себя там «как осел в львиной шкуре»[136]136
  Eve (1939), p. 24.


[Закрыть]
, а некоторые снобы из числа сотрудников Кавендишской лаборатории просто позеленели от зависти. Благодаря великодушной помощи Томсона 18 июня 1896 года Резерфорд, нервничая, но внутренне ликуя, представил свою третью научную статью под названием «Магнитный детектор электрических волн и некоторые его применения»[137]137
  Rutherford (1962), p. 80–104.


[Закрыть]
на заседании лондонского Королевского общества, ведущей научной организации мира. Маркони догнал его лишь в сентябре[138]138
  Ср. Eve (1939), p. 35.


[Закрыть]
.

Резерфорд был беден. Он был обручен с Мэри Ньютон, дочерью хозяйки квартиры, которую он снимал, когда учился в Университете Новой Зеландии, но свадьбу отложили до улучшения его материального положения. В то время, когда он трудился, чтобы добиться такого улучшения, он писал своей невесте: «Я занимаюсь темой [приема радиоволн] так интенсивно из-за ее практической важности… Если опыты, которые я буду проводить на следующей неделе, пройдут так, как я ожидаю, я вижу в будущем возможность быстрого заработка»[139]139
  Ibid., p. 23.


[Закрыть]
.

Тут есть одна загадка, и загадка эта тянется вплоть до самой речи о «лунных миражах». Впоследствии Резерфорд был известен своим строгим отношением к бюджету исследовательской работы, нежеланием принимать финансирование от промышленных компаний или частных спонсоров, нежеланием даже запрашивать финансирование и убежденностью в том, что все можно сделать «при помощи сургуча и бечевки». Он терпеть не мог коммерциализации научных исследований и, например, когда его русскому ученику Петру Капице предложили работу консультанта в промышленной компании, сказал ему: «Нельзя одновременно служить Богу и Мамоне»[140]140
  Цит. по: Kapitza (1980), p. 267.


[Закрыть]
. Загадка эта касается того, что Ч. П. Сноу, знавший Резерфорда, назвал «единственным любопытным исключением» из «непогрешимости» его интуиции, добавив при этом, что «еще не было ученого, который допустил бы так мало ошибок»[141]141
  Цит. по: Сноу Ч. П. Резерфорд / Пер. Г. Льва // Портреты и размышления. М.: Прогресс, 1985.


[Закрыть]
[142]142
  Snow (1967), p. 7.


[Закрыть]
. Это исключение – нежелание Резерфорда допустить возможность извлечения из атома полезной энергии, то самое нежелание, которое так раздражало в 1933 году Лео Сциларда. «Мне кажется, он боялся, что его любимую область ядерных исследований вот-вот захватят неверные, которые хотят разгромить ее ради коммерческой эксплуатации»[143]143
  Oliphant (1972), p. 140 и далее.


[Закрыть]
, – рассуждает другой воспитанник Резерфорда, Марк Олифант. Однако в январе 1896 года сам Резерфорд активно стремился к коммерческой эксплуатации радио. Чем же была вызвана столь резкая перемена, определившая всю его дальнейшую жизнь?

Сохранившиеся сведения неоднозначны, но дают некоторое представление о произошедшем. В соответствии с исторической традицией английская наука была занятием благородным. Патенты на открытия, а также любые другие юридические и коммерческие ограничения, которые могли помешать свободному распространению научных результатов, как правило, считались в ней делом недостойным. На практике такая защита свободы науки могла выродиться в высокомерное презрение к «вульгарной меркантильности». Физик Эрнест Марсден, учившийся у Резерфорда и ставший его вдохновенным биографом, слышал, что «в начальный период его работы в Кембридже по меньшей мере некоторые говорили, что Резерфорд – человек неотесанный»[144]144
  Marsden (1962), p. 16.


[Закрыть]
. Одной из составляющих таких сплетен могло быть презрение к его стремлению извлечь выгоду из работ, связанных с радио.

По-видимому, в дело вмешался Дж. Дж. Томсон. Внезапно открылось огромное новое поле деятельности. 8 ноября 1895 года, через месяц после прибытия Резерфорда в Кембридж, немецкий физик Вильгельм Рентген открыл «икс-лучи», исходящие из стенок катодной трубки, сделанных из флуоресцирующего стекла. В декабре Рентген сообщил о своем открытии и поверг в изумление весь мир. Это странное излучение стало новой точкой роста науки, и Томсон почти немедленно принялся за его изучение. Одновременно с этим он продолжал и свои опыты с катодными лучами, в завершение которых он обнаружил в 1897 году частицу, которую назвал «отрицательной корпускулой», – то есть электрон, первую из открытых составляющих атома. В этой работе ему неизбежно нужны были помощники. Кроме того, он не мог не понимать, какие необычайные возможности для проведения оригинальных исследований откроет это излучение перед молодым человеком, обладающим такими талантами экспериментатора, как Резерфорд.

Чтобы разрешить этот вопрос, Томсон написал патриарху британской науки лорду Кельвину, которому было тогда семьдесят два года, и спросил его мнение о коммерческих перспективах радио – как говорит Марсден, «прежде, чем попытаться соблазнить Резерфорда новой темой». В конце концов, как бы там ни обстояло дело с вульгарной меркантильностью, именно Кельвин спроектировал трансокеанский телеграфный кабель. «Великий человек ответил, что развитие [радио] может оправдать капитальные вложения в компанию стоимостью порядка 100 000 фунтов, но не более того»[145]145
  Ibid., p. 3.


[Закрыть]
.

К 24 апреля Резерфорд прозрел. Он писал Мэри Ньютон: «Я надеюсь свести концы с концами, но в первый год мне, видимо, потребуется дополнительная помощь… Моя научная работа пока что продвигается медленно. В этом семестре я занимаюсь вместе с Профессором рентгеновскими лучами. Моя старая тема мне несколько надоела, и я рад сменить ее на что-то другое. Мне кажется, что мне будет полезно некоторое время поработать с Профессором. Я уже провел одно исследование и продемонстрировал, что могу работать самостоятельно»[146]146
  Eve (1939), p. 34.


[Закрыть]
. Письмо написано в смиренном и вовсе не уверенном тоне, как если бы через Резерфорда к его невесте по-отечески обращался призрак Дж. Дж. Томсона. Резерфорд еще не выступал перед Королевским обществом – по этому выступлению совершенно не казалось, что его тема ему «несколько надоела». Но его обращение уже свершилось. Отныне все устремления Резерфорда касались не коммерческого успеха, а научной славы.

Кажется вполне вероятным, что Дж. Дж. Томсон усадил молодого и пылкого Эрнеста Резерфорда в обитом темными панелями кабинете в неоготической Кавендишской лаборатории, которую основал Джеймс Клерк Максвелл, в том же университете, в котором Ньютон писал свои великие «Начала», и деликатно сказал ему, что нельзя одновременно служить Богу и Мамоне. Вполне вероятно, что известие о том, что заслуженный директор Кавендишской лаборатории написал небожителю лорду Кельвину о коммерческих устремлениях энергичного новозеландца, смертельно огорчило Резерфорда, и он вышел после этого разговора, чувствуя себя каким-то нелепым выскочкой. Он никогда больше не повторял этой ошибки, даже если его лаборатории оставались из-за этого без финансирования, даже если это заставляло уходить лучших из его учеников – а так оно в конце концов и случалось. Даже если это означало, что получение энергии из его любимого атома было всего лишь миражом. Но, отказавшись от коммерческой выгоды ради святой науки, Резерфорд получил взамен сам атом. Он открыл составляющие его части и дал им названия. При помощи сургуча и бечевки он сделал атом реальным.

Сургуч был кроваво-красным, и именно из него состоял самый заметный вклад Банка Англии в развитие науки[147]147
  Blackett (1933), p. 72: «Интересно, что наиболее удачной и универсальной вакуумной замазкой в течение многих лет оставался материал, обычно применяемый совершенно в других целях. В какой-то момент в любой английской лаборатории было трудно найти прибор, в котором не использовался бы в качестве вакуумной замазки красный сургуч Банка Англии».


[Закрыть]
. Британские экспериментаторы использовали банковский сургуч для герметизации стеклянных трубок. Первая работа Резерфорда по исследованию атома, как и работа Дж. Дж. Томсона с катодными лучами, возникла на основе проводившихся в XIX веке исследований поразительных эффектов, которые возникают, если из стеклянной трубки, к концам которой припаяны металлические пластины, откачать воздух, а затем подсоединить эти пластины к батарее или катушке индуктивности. Под действием электрического заряда пустота[148]148
  Оставшийся в трубке разреженный воздух. – Прим. науч. ред.


[Закрыть]
внутри герметичной трубки начинает светиться. Это свечение исходит от отрицательно заряженной пластины – катода – и поглощается пластиной, заряженной положительно, – анодом. Если изготовить анод в форме цилиндра и поместить этот цилиндр в середину трубки, можно заставить пучок такого свечения – или катодных лучей – проходить сквозь цилиндр до конца трубки, противоположного катоду. Если энергия этого пучка достаточно высока, чтобы он смог достичь стеклянной стенки, он заставляет стекло флуоресцировать. Такая катодная трубка, должным образом видоизмененная – с уплощенным стеклянным концом, покрытым фосфором для усиления флуоресценции, – становится телевизионным кинескопом.

Весной 1897 года Томсон продемонстрировал, что пучок светящегося вещества в катодной трубке не состоит из световых волн, как (сухо писал он)«почти единодушно считают немецкие физики». На самом деле катодные лучи оказались отрицательно заряженными частицами, вылетающими с отрицательного катода и притягиваемыми положительным анодом. Эти частицы можно отклонить электрическим полем и направить по криволинейной траектории полем магнитным. Частицы эти гораздо легче атома водорода и одинаковы, «каким бы ни был газ, через который проходит разряд»[149]149
  Дж. Дж. Томсон в Conn and Turner (1965), p. 53.


[Закрыть]
, если такой газ ввести в трубку. Поскольку они легче, чем самый легкий из известных элементов материи и одинаковы независимо от того, из какого вещества они получаются, следовало заключить, что эти частицы представляют собой некую основополагающую составную часть материи, а раз они представляют собой часть, то должно существовать и некое целое. Из существования реального, физического электрона вытекало существование реального, физического атома: таким образом, корпускулярная теория вещества впервые была убедительно подтверждена физическим опытом. На ежегодном банкете Кавендишской лаборатории в честь этого достижения Дж. Дж. Томсона была исполнена песня:

 
Рой корпускул благородный
Улетел в полет свободный,
Превратился в луч катодный[150]150
  Crowther (1974), p. 123.


[Закрыть]
.
 

Имея в своем распоряжении электрон и зная из других экспериментов, что после удаления электронов от атома остается гораздо более массивная часть с положительным зарядом, Томсон разрабатывал в течение следующего десятилетия модель атома, которую стали называть «пудинговой моделью». Атом по Томсону, состоящий из «нескольких отрицательно заряженных корпускул, заключенных в сферу, имеющую однородно распределенный положительный электрический заряд»[151]151
  Дж. Дж. Томсон в Conn and Turner (1965), p. 97.


[Закрыть]
, подобно изюму в пудинге, представлял собой гибрид, сочетание корпускулярных электронов и распределенной в пространстве остальной части. Эта модель была полезна тем, что позволяла показать математически, что электроны могут образовывать внутри атома устойчивые конфигурации и что такие устойчивые с математической точки зрения конфигурации могут объяснять сходства и различия, которые проявляют химические элементы периодической системы. Начинало проясняться, что именно электроны отвечают за сходные химические свойства разных элементов, что химия, по сути дела, сводится к электрическим процессам.

В 1894 году Томсон чуть было не открыл рентгеновские лучи[152]152
  Ср. там же, p. 33.


[Закрыть]
. Если верить легенде, ему все же не повезло не так сильно, как оксфордскому физику Фредерику Смиту, который обнаружил, что фотопластинки, которые хранились рядом с катодной трубкой, помутнели, и просто велел своему ассистенту переложить их в другое место[153]153
  Ср. Andrade (1957), p. 444.


[Закрыть]
. Томсон заметил, что стеклянные трубки, находящиеся «на расстоянии нескольких футов от разрядной трубки»[154]154
  Дж. Дж. Томсон в Conn and Turner (1965), p. 33.


[Закрыть]
, флуоресцируют так же, как стенки самой катодной трубки, на которые падают катодные лучи, но он был слишком занят исследованием самих этих лучей и не стал исследовать причину этого явления. Рентген выделил этот эффект, закрыв катодную трубку черной бумагой. Когда оказалось, что установленный поблизости экран из флуоресцентного материала все равно продолжает светиться, Рентген понял: то, что вызывает свечение экрана, проходит сквозь бумагу и окружающий экран воздух. Когда он помещал свою руку между закрытой бумагой трубкой и экраном, это несколько ослабляло свечение экрана, но зато в появляющейся на экране темной тени он видел свои кости.

Открытие Рентгена заинтересовало не только Дж. Дж. Томсона и Резерфорда, но и других физиков. Француз Анри Беккерель был физиком в третьем поколении: вслед за своим дедом и отцом он возглавлял кафедру физики в парижском Музее естественной истории. Также подобно отцу и деду он был специалистом по фосфоресценции и флуоресценции – причем лично он специализировался на свечении урана. Отчет о работе Рентгена он прослушал на еженедельном заседании Академии наук 20 января 1896 года. Узнав, что рентгеновские лучи испускаются флуоресцентным стеклом, он немедленно решил проверить разные флуоресцентные материалы, чтобы узнать, не испускают ли и они также рентгеновские лучи. Проработав над этим вопросом в течение десяти дней, он не получил никаких положительных результатов, а 30 января прочитал статью по рентгеновским лучам, которая вдохновила его на продолжение исследований и навела на мысль попробовать одну из солей урана, двойной сульфат уранила и калия[155]155
  Подробности о Рентгене и Беккереле: Segre (1980), p. 19 и далее.


[Закрыть]
.

Первый его опыт прошел успешно – он обнаружил, что соль урана испускает излучение, – но привел его к ошибочным выводам. Он запечатал фотографическую пластинку в черную бумагу, нанес на бумагу слой соли урана и «выдержал все вместе на солнце в течение нескольких часов». Проявив фотопластинку, он «увидел на негативе черный силуэт фосфоресцирующего вещества»[156]156
  Цит. по: Ibid., p. 28.


[Закрыть]
. Беккерель ошибочно решил, что это явление было активировано солнечным светом, подобно тому, как катодные лучи вызывают испускание рентгеновского излучения из стекла.

История удачливости Беккереля, проявившейся после этого, стала легендарной. Когда он попытался повторить свой опыт, 26, а затем 27 февраля, в Париже было пасмурно. Он убрал завернутую фотопластинку, по-прежнему с нанесенной на нее урановой солью, в темный ящик. 1 марта он решил все-таки проявить пластинку, «ожидая, что изображение получится очень блеклым. Напротив, силуэты проявились с высокой интенсивностью. Я сразу подумал, что этот процесс, возможно, способен продолжаться и в темноте»[157]157
  Цит. по: Ibid., p. 29.


[Закрыть]
. Высокоэнергетическое, проницающее излучение инертной материи, возникающее без стимуляции солнечными лучами: теперь у Резерфорда появилась тема для исследований, а Пьер и Мария Кюри смогли взяться за свою изнурительную работу по поиску чистого излучающего элемента.

Между 1898 годом, когда Резерфорд впервые обратил внимание на это явление, открытое Анри Беккерелем и названное Марией Кюри радиоактивностью, и 1911 годом, в котором он совершил самое важное в своей жизни открытие, молодой новозеландский физик систематически трудился над расщеплением атома.

Он изучал виды излучения, испускаемого ураном и торием, и дал названия двум из них: «Эти опыты показывают, что излучение урана неоднородно по составу – в нем присутствуют по крайней мере два излучения различного типа. Одно очень сильно поглощается, назовем его для удобства α-излучением, а другое имеет бо́льшую проникающую способность, назовем его ß-излучением»[158]158
  Резерфорд Э. Излучение урана и вызываемая им электропроводность // Избранные научные труды. Радиоактивность. М.: Наука, 1971. С. 72.


[Закрыть]
[159]159
  Rutherford (1962), p. 175.


[Закрыть]
. Впоследствии француз П. У. Виллар открыл третий тип радиации, отличный от остальных, вид высокоэнергетических рентгеновских лучей, названный в соответствии со схемой Резерфорда гамма-излучением[160]160
  Segre (1980), p. 50.


[Закрыть]
. Эта работа была выполнена в Кавендишской лаборатории, но ко времени ее публикации в 1899 году Резерфорд, которому было тогда двадцать семь лет, перебрался в Монреаль и стал профессором физики в Университете Макгилла. Один канадский торговец табаком пожертвовал университету средства на строительство физической лаборатории и финансирование нескольких профессорских кафедр, в том числе и той, которую занял Резерфорд[161]161
  Речь идет о сэре Уильяме Кристофере Макдональде (1831–1917). Он не только финансировал создание физического и химического факультетов Университета Макгилла, но и восстановил сгоревшее здание инженерного факультета, а также расширил территорию университетского кампуса.


[Закрыть]
. «Университет Макгилла пользуется хорошей репутацией, – писал Резерфорд матери. – 500 фунтов – совсем не плохое жалованье, а поскольку физическая лаборатория в нем лучшая в мире в своем роде, жаловаться мне не приходится»[162]162
  Eve (1939), p. 57.


[Закрыть]
.

В 1900 году Резерфорд объявил об открытии радиоактивного газа, выделяющегося из радиоактивного элемента тория[163]163
  «Радиоактивное вещество, испускаемое соединениями тория» (A radioactive substance emitted from thorium compounds). Rutherford (1962), p. 220, 231. См.: Резерфорд Э. Избранные научные труды. Радиоактивность. М.: Наука, 1971. С. 110).


[Закрыть]
. Мария и Пьер Кюри вскоре выяснили, что радий (который они выделили из урановой руды в 1898 году) также испускает радиоактивный газ. Чтобы понять, являются ли «выделения» тория также торием или каким-либо другим веществом, Резерфорду нужен был хороший химик; по счастью, ему удалось переманить к себе работавшего в том же университете молодого оксфордского выпускника Фредерика Содди, талантов которого в конце концов оказалось достаточно для получения Нобелевской премии. «В начале зимы [1900 года], – вспоминает Содди, – бывший тогда младшим профессором физики Эрнест Резерфорд зашел ко мне в лабораторию и рассказал об открытиях, которые он сделал. Он только что вернулся со своей молодой женой из Новой Зеландии… но еще до отъезда из Канады он открыл то, что сам он называл ториевой эманацией… Меня это, разумеется, очень заинтересовало, и я предположил, что следует изучить химические свойства этого [вещества]»[164]164
  Soddy (1953), p. 124 и далее.


[Закрыть]
.

Оказалось, что этот газ начисто лишен каких бы то ни было химических свойств. Из этого, как говорит Содди, «вытекал важнейший и неизбежный вывод о том, что торий медленно и самопроизвольно превращается в [химически инертный] газ аргон!»[165]165
  Позднее выяснилось, что выделяются целых два инертных газа: радиоактивный радон и нерадиоактивный гелий. Аргона – единственного из инертных газов, который был к тому времени давно и хорошо исследован, – там не оказалось. – Прим. науч. ред.


[Закрыть]
[166]166
  Ibid., p. 126.


[Закрыть]
. Содди и Резерфорд наблюдали самопроизвольный распад радиоактивных элементов – это было одно из крупнейших открытий физики XX века. Они взялись за изучение того, как именно уран, радий и торий превращаются в другие элементы путем испускания части своих атомов в виде альфа– и бета-частиц. Они обнаружили, что каждое из разных радиоактивных веществ обладает характерным для него «временем полураспада», то есть временем, за которое интенсивность его излучения уменьшается вдвое по сравнению с ранее измеренной величиной. Время полураспада соответствует времени превращения половины атомов исходного элемента в атомы другого элемента или физически отличного вида того же элемента – «изотопа», как назвал его Содди[167]167
  Soddy (1913), p. 400.


[Закрыть]
. Время полураспада стало инструментом для обнаружения присутствия преобразованного вещества – «продуктов распада» – в количествах, слишком малых для обнаружения химическими методами. Для урана время полураспада оказалось равным 4,5 миллиарда лет, для радия – 1620 годам, для одного из продуктов распада тория – 22 минутам, а для другого продукта распада тория – 27 суткам. Некоторые из продуктов распада возникали и сами превращались в другие элементы за малые доли секунды – буквально в мгновение ока. Эта работа была чрезвычайно важной с точки зрения физики, она открывала восхищенному взору исследователя все новые и новые области, и, как вспоминал впоследствии Содди, «в течение более чем двух лет жизнь была полна такой суматохи, какая редко встречается на протяжении всей жизни человека и даже, возможно, на протяжении всей жизни целой организации»[168]168
  Soddy (1953), p. 127.


[Закрыть]
.


    Ваша оценка произведения:

Популярные книги за неделю