Текст книги "Приключения с насекомыми"
Автор книги: Ричард Хедстром
Жанр:
Биология
сообщить о нарушении
Текущая страница: 6 (всего у книги 11 страниц)
Приключение 20
Еще о том, как производятся звуки
Как мы видели в последнем приключении, некоторые насекомые производят звук трением одной части тела о другую. Однако ряд насекомых создают звуковые волны вибрацией крыльев. Жуки точильщика пестрого производят слабый тикающий звук, ударяясь головами о стенки своих ходов. Различные щелкающие звуки издают некоторые личинки, которые сверлят дерево, прогрызая себе путь через твердую древесину. Крошечные жуки-капюшонники производят звук, слышный на расстоянии.
Однако звуки, издаваемые этими насекомыми, являются случайными; специальные звуковые органы у них отсутствуют. Мухи и некоторые другие насекомые производят звуки при помощи дыхалец – наружных отверстий дыхательной системы. Позади каждого дыхальца расположена мембрана, которая вибрирует во время дыхания. Таким способом издают звуки пчелиная матка, синяя муха и хрущ. Этих насекомых обычно называют барабанщиками, так как звук производится вибрирующей мембраной.
Классический барабанщик в мире насекомых – цикада (рис. 150); ее звуковые органы считаются самыми сложными в животном царстве. У различных видов цикад части звукового аппарата несколько отличаются, но в основном он устроен следующим образом: у самца на нижней стороне третьего грудного сегмента имеются две большие пластинки, которые называются крышечками, – их очень легко увидеть и даже можно слегка приподнять. Каждая крышечка служит заслонкой – покрывает пару полостей, содержащих звуковые органы, – и, очевидно, является предохранительным покрытием.
Различаются брюшная и боковая полости. В боковой полости расположена перепонка – вибрирующая (тимпанальная) мембрана звукового органа; в вентральной полости – две мембраны: складчатая и так называемое «зеркальце» (рис. 151). Внутри тела – большая воздушная камера, которая сообщается с наружной стороной через пару дыхалец.
Звук производится быстрой вибрацией тимпанальной мембраны, приводимой в движение мускулами.
Две другие мембраны усиливают звук, а воздух в воздушной камере действует как резонатор. Другими словами, вибрация тимпанальной мембраны передается складчатой мембране и «зеркальцу» воздухом в воздушной камере почти так же, как звуки скрипки вызывают вибрацию струн пианино.
В предыдущем приключении мы уже выяснили, что некоторые насекомые обладают слухом.
Некоторые, но не все. Самки сверчка-трубачика, например, не имеют ушей и не слышат звуков, издаваемых самцами. Однако большинство насекомых, по-видимому, имеют нечто вроде органа слуха (вспомните «ухо» самки сверчка). Эту функцию выполняют усики самца комара, возможно, и муравья, а также дневных и ночных бабочек. Звуковые колебания могут улавливать волоски некоторых гусениц, хвостовые придатки американского таракана.
Найдите скопление питающихся гусениц коконопрядов и понаблюдайте за их реакцией на резкий звук (громкий крик или удар одного куска дерева о другой). Покров тела гусеницы сравнительно тонок и может воспринимать бесчисленное количество звуков.
Мы видели, что у сверчков тимпанальная мембрана уха находится на голени передних ног. Подобные органы находят и на передних ногах кузнечиков (рис. 152) и термитов. У кузнечиков «зеркальце» тимпанального органа овальной формы и хорошо видно; у сверчков и термитов оно находится внутри ноги и только две маленькие щели видны на поверхности. Воздух уравновешивается на обеих сторонах мембраны специальными каналами, которые идут через центр ноги и открываются на верхушке груди.
По действию они весьма сходны с нашими евстахиевыми трубами. У саранчовых большие и заметные «зеркальца» расположены на первом брюшном сегменте (рис. 153). У водяных клопов-гребляков, водяных скорпионов, клопов-плавтов и у многих дневных и ночных бабочек они расположены на груди.
Посмотрите, сможете ли вы найти их. Вибрирующая мембрана сама по себе не имеет значения; чтобы звук был воспринят, колебания мембраны должны передаваться в нервную систему, воздействуя на воспринимающие образования, называемые хордотональными органами, которые состоят из палочек нервов и нервных окончаний. Аппарат этот сложен, но его основой является элемент-палочка (похожая на деревянный гвоздь), находящаяся в трубчатом нервном окончании (рис. 154), связанном или не связанном с особым «зеркальцем».
Приключение 21
Почему насекомые поют
Почему самцы «поют»? И, если уж мы об этом заговорили, почему вообще насекомые «поют»? Служит ли их «пение» какой-нибудь цели? Если нет, то для чего им органы, производящие звуки?
В ряде случаев звук, производимый насекомым, является результатом его обычной жизнедеятельности.
Звуки, издаваемые личинками, протачивающими дерево, жужжание и гудение летающих насекомых можно сравнить с шуршанием шелкового платья или шумом автомобильного мотора. Такие, например, насекомые, как пчела, муха и таракан, непрерывно чистят усики; звуки, которые рождаются при этом, безусловно, случайны.
Все слышали гудение мухи или жужжание пчелы, но можете ли вы похвастаться, что обнаружили много оттенков? Пчеловоды знают, что жужжание пчел часто имеет разную высоту. Жужжание активной энергичной пчелы соответствует звуку с частотой 435 колебаний в секунду (нота ля), усталой пчелы – с частотой 326 колебаний в секунду (нота ми), в то время как звуки, создаваемые дыхальцами того же насекомого, выше по меньшей мере на октаву и часто поднимаются еще выше в зависимости от эмоционального состояния насекомого. Опытному пчеловоду хорошо знакомы звуки роения, гудение семьи, оставшейся без матки, сердитое жужжание сражающейся пчелы. Весьма вероятно, что члены пчелиной семьи различают все эти звуки. А частота колебаний, по-видимому, регулируется в соответствии с конкретным проявлением жизнедеятельности. Это относится и к звуку, издаваемому самкой комара, которая «настраивается» так, чтобы привести в колебание волоски на усиках-антеннах самцов. Частотные отклонения обнаруживаются и в звуках, производимых другими насекомыми, но в подавляющем большинстве случаев они являются результатом деятельности насекомого, а не средством связи. Понаблюдав, например, за работой осы целифрона у берега пруда (см. приключение 13), вы заметите, что, когда оса собирает грязь, она слабо гудит, а когда лепит из этой грязи гнездо, издает звук более высокий, который переходит в резкий, почти скрежещущий, слышный на значительном расстоянии.
Кажется почти чудом, что вибрация крыльев насекомых выполняет в произведении ими звука примерно такую же роль, как вибрирующие язычки звучащей губной гармоники. Ведь для того, чтобы воспроизвести до самой низкой октавы – ноту, постоянно используемую в музыке, – крылья Должны вибрировать со скоростью 32 взмаха в секунду, или около 2000 раз в минуту, и все же насекомые, которые «поют» таким образом, есть. Более того, их звуки не ограничены низкими октавами. Обычная комнатная муха, жужжа, воспроизводит фа средней октавы; скорость вибрации ее крыльев – 345 раз в секунду, или 20 700 раз в минуту.
Как правило, высота звука, производимого крыльями, для каждого вида насекомых постоянна.
Саранчовые шелестят, шуршат или потрескивают; сверчки пронзительно верещат или скрипят; кузнечики скребут или пиликают. Любой человек, особенно обладающий музыкальным слухом, может, познакомившись с «песнями» насекомых, быстро научиться узнавать «певцов» – почти так же, как орнитолог различает птиц по их пению.
Рис. 155. Хрущ.
Несомненно, насекомые часто производят звуки с какой-то определенной целью. Мы упоминали о различных звуках, издаваемых медоносной пчелой, и о способе, с помощью которого самец комара находит самку.
Некоторые насекомые производят звуки настолько резкие и неприятные, что пугают ими даже людей.
Хорошим примером может служить совершенно безобидный хрущ (рис. 155). Ряд насекомых, когда их берут в руки, издают слабый звук: например, слегка сдавив цикаду, можно услышать характерное тихое стрекотание. Человеческое ухо едва улавливает такие звуки, но птиц или других животных они могут заставить выронить пойманное насекомое. Кузнечик, смело встречая врага и вступая с ним в бой, энергично потирает задние ноги о края брюшка и издает при этом отчетливый скрежещущий звук.
Можно утверждать, что стрекочущие сигналы помогают взрослым особям и личинкам пассалюса рогатого, которые живут «на одной жилплощади» – в гниющем дереве, держаться вместе и не терять друг друга.
Как правило, звуки, издаваемые насекомыми, являются половыми призывами. Это, несомненно, относится к самке сверчка-трубачика (рис. 156), которая особым образом отвечает на пение самца.
Когда самец ищет самку, он поднимает крылья почти перпендикулярно к телу. Стрекотательный кантик левого надкрылья трется о стрекотательную жилку на правом надкрылье. При этом на верхней поверхности третьего грудного сегмента обнажается железа, выделяющая жидкость с характерным запахом. Самка, лишенная органа слуха, не слышит стрекотания самца, но улавливает и реагирует на него: влезает на спину самца, чтобы выпить жидкость, выделенную железой. В этот момент и происходит спаривание. Таким образом, процесс спаривания зависит в данном случае не от звуковых сигналов, а от реакции на запах пищи.
Раз уж мы заговорили о сверчке-трубачике, вспомним, что скорость стрекотания сверчков зависит от температуры. В теплую погоду стрекотание быстрое и более высокого тона; в холодную замедляется и переходит в треск. Выведена формула, позволяющая по скорости стрекотания определить температуру воздуха. Для сверчка-трубачика эта формула (где Т – температура по Фаренгейту; N – число стрекотаний в минуту) имеет такой вид: для домового сверчка для кузнечика «Голос» сверчка-трубачика особенно хорошо слышен ночью, когда другие звуки затихают.
Но вообще это насекомое стрекочет непрерывно, и днем и ночью: подсчитано 2640 стрекотаний подряд. Но сверчки-трубачики знамениты не только этой замечательной способностью: они принадлежат к немногим насекомым, которые поют хором, в то время как большинство насекомых-музыкантов – солисты.
Когда вечер только-только наступил, сверчки, готовясь начать свой концерт, разумеется, некоторое время «настраивают инструменты». Но вот уже все «играют» в унисон, в монотонном ритме, и так всю ночь. Иногда отдельные «оркестранты» позволяют себе передохнуть, но, возобновляя «игру», они никогда не нарушают такта.
Приключение 22
Осматриваем квартиры
В течение почти всего лета в обмелевших участках пруда, ручья или озера можно увидеть двигающиеся по дну палочки и камешки, – кажется, что их переносит вода. На самом деле это построенные из кусочков палочек и мелкой гальки и скрепленные в форме трубок домики, в которых живет червеобразная личинка ручейника. Если ничто не мешает ее развитию, она в конце концов превращается в похожее на ночную бабочку насекомое (рис. 157).
Ручейники обычно встречаются у ручьев, прудов и озер; ночью они часто летят на свет. Существуют различные виды ручейников. Личинки большинства из них строят домики, или чехлы, разной формы из разных материалов и скрепляют их шелком или слюной. В этих домиках они живут до тех пор, пока не станут крылатыми взрослыми насекомыми.
Встречаются домики, построенные из маленьких палочек, скрепленных в длину или крест-накрест, – они удивительно напоминают миниатюрные хижины из изящных бревнышек (рис. 158).
Материалом для других домиков служат кусочки листьев – почти квадратные и расположенные «венцами», друг над другом (рис. 159), или в виде узких полосок, как бы образующих спираль (рис. 160). Камешки-балласты, прилепленные с двух сторон к домикам из гальки, помогают им противостоять течению (рис. 161). «Панцирь черепахи» (рис. 162) или «домик улитки» (рис. 163), сложенный из гальки и частиц песка, – бывают и такие жилища у ручейников. Личинка одного из видов ручейника строит свой домик из кусочков мусора; обкрученный спиралями шелка, он напоминает по форме маленький рог (рис. 164). А некоторые виды ручейников живут в полых стеблях растений.
Рис. 162. Рис. 163. Рис. 164.
Домики личинок ручейников.
Все домики ручейников снабжены прочной шелковой подкладкой (внутренним слоем), защищающей мягкотелых личинок. Ручейники выпускают шелк не нитью, как другие прядущие шелк насекомые, а широкой клейкой полосой, к которой и крепится материал, образующий чехол. У домика с обоих концов отверстия – «парадный ход» и «черный ход». Насекомое ползает по дну, покрытому илом или гравием, высунув из «парадного хода» голову и шесть ног и перенося с собой чехол. В отличие от улитки, которая прикреплена к раковине, личинка ручейника не связана со своим чехлом. Это легко проверить: переверните чехол «вверх ногами» и придержите его пальцами. Сначала насекомое попытается «навести порядок», но, не сумев сделать этого, повернется само.
Если насекомое не прикреплено к чехлу, как же ему удается повсюду носить его с собой? Где-то в процессе своего эволюционного развития личинка ручейника приобрела два загнутых вперед крючка.
Эти крючки – их называют прицепками, – расположенные у заднего конца тела (рис. 165), вставляются в плотную шелковую подкладку и таким образом прочно держат чехол насекомого, когда оно передвигается.
Личинки ручейника дышат жабрами, похожими на короткие белые кисточки. Прикрепленные по бокам к брюшку личинки, они полностью защищены чехликом. Благодаря волнообразным движениям тела насекомого вода циркулирует через жабры. Теперь мы можем понять назначение двух отверстий в чехле: вода втекает в один его конец и вытекает из другого. Она свободно проходит через чехол, так как личинка снабжена тремя бугорками, которые не дают ему прижиматься к телу.
Рис. 165. Личинка ручейника. Б – бугорок; Пр – прицепка; Ж – жабры.
Вряд ли вам удастся проследить весь процесс постройки чехла, но некоторое представление о нем все же можно получить. Поймайте подвижную, наполовину выросшую личинку и, удалив часть чехла, поместите ее в высокий стакан со слоем воды немногим больше сантиметра и кусочками строительных материалов. Понаблюдайте внимательно – и вы увидите, как личинка прикрепляет эти кусочки к своему чехлу.
Приключение 23
Исследуем окраску насекомых
Всем известно, что луч света, пройдя через стеклянную призму, дает своего рода радугу. Радужные переливы могут возникнуть, даже если луч попадает в обыкновенную лужу на шоссе. Радуга – это ряд плавно переходящих друг в друга цветовых полос с красной у одного края и фиолетовой у другого.
Ощущение цвета рождается, когда световые волны попадают на сетчатку глаза. Не вдаваясь в подробности природы цветового восприятия, скажем только, что каждому цвету соответствует световая волна определенной длины. Совокупность световых волн, составляющих спектр, дает белый свет (например, свет солнца). Падая на предмет, световые волны либо поглощаются им, либо отражаются, либо часть их поглощается, а часть отражается. Если предмет поглощает все волны, он выглядит черным; если отражает – белым; если поглощает все волны, кроме красной, которую отражает, – красным; если поглощает все волны, кроме синей, которую отражает, – синим; если предмет отражает волны двух разных частот, его окраска представляет сочетание цветов, обусловленных отраженными волнами. Конечно, весь этот процесс гораздо сложнее, но суть его именно такова.
Для натуралиста важен не только цвет; окраска насекомого определяется расположением цветовых пятен, или рисунком. В мире насекомых мы встречаем и тускло-коричневых, почти бесцветных, и великолепно окрашенных, а иногда и таких, которые напоминают прекрасные драгоценные камни с золотыми и серебряными блестками, да еще покрытые тончайшей, изящнейшей гравировкой. Как объяснить такое разнообразие?
Поскольку цвет – это результат поглощения или отражения волн различной длины, окраска насекомых может зависеть либо от их структурных особенностей, либо от веществ, имеющихся в их покровах, – от того, поглощают они или отражают волны падающего на них света. Соответственно окраску насекомых можно подразделить на структурную и пигментную. Например, зеленая окраска многих гусениц и саранчовых обусловлена главным образом тем, что в листьях, которыми они питаются, содержится зеленое красящее вещество – хлорофилл, который слегка окрашивает кровь насекомых и просвечивает через их наружные покровы. Насекомые, питающиеся кровью высших животных, приобретают красную окраску за счет поглощенного гемоглобина. Такие красящие вещества известны как пигменты. Насекомое берет их непосредственно из нищи, либо вырабатывает из полученных с пищей веществ, либо они являются продуктами выделения. Коричневая и черная окраска насекомых обусловлена побочными продуктами обмена веществ – азотистыми веществами меланинами, которые рассеяны во внешнем слое кутикулы.
Помимо хлорофилла, в листьях есть и другие пигменты – каротин и ксантофилл; именно они дают осенним листьям такую красивую окраску. За счет этих пигментов, полученных из растительной пищи, насекомые приобретают красные и желтые цвета. Встречаются каротин и ксантофилл в кутикуле и гиподерме. Интересно отметить, что насекомые, поедающие листоеда картофельного, приобретают желтый цвет от съеденных жуков, которые в свою очередь получают его из листьев картофеля.
Вещество антоциан, которому некоторые цветы, плоды, листья и стебли обязаны красной и пурпурной окраской, дает красные, пурпурные и, возможно, синие цвета и многим насекомым. О синих цветах приходится говорить с большей осторожностью, так как мы еще очень мало знаем о синих пигментах у насекомых. Впрочем, и встречаются они редко. Синие, фиолетовые и зеленые цвета у насекомых, как правило, являются структурными. Розовые, пурпурные и зеленые цвета у некоторых видов насекомых зависят от наличия определенных веществ. Красный и желтый пигменты являются экскреторными продуктами, производными мочевой кислоты. Тускло-желтые и коричневые цвета часто обусловливаются содержащимся в листьях танином.
Радужная окраска крыла мухи и мыльного пузыря определяется одним и тем же явлением. Но в отличие от мыльного пузыря крыло мухи состоит из двух тонких, прозрачных, слегка разделенных мембран, или пластинок, и поэтому окраска крыла мухи зависит от расстояния между ними. Она объясняется интерференцией. Переливающаяся окраска крыла дневной бабочки объясняется дифракцией света на мелких параллельных желобках, или бороздках, рядком расположенных на чешуйках крыльев. Эти желобки, которые можно увидеть, рассмотрев чешуйку под микроскопом, разбивают свет на составляющие его части – почти так же, как призма расщепляет свет, образуя спектр. Какой получится цвет, это зависит от расстояния между бороздками. Однако яркие, великолепные цвета различных тропических дневных бабочек обусловлены тем, что чешуйки и окрашены, и покрыты бороздками.
Иногда чешуйки бабочек имеют смешанные цвета: дело тут не только в поверхностной окраске, но и в расслоении чешуек и частичном наложении двух или более чешуек одна на другую.
Чтобы представить себе, как получаются некоторые цвета при отражении света, поместите крыло яркосиней бабочки на предметный столик микроскопа, затенив его так, чтобы оно было видно только в проходящем свете (от зеркала микроскопа). Синий цвет пропадает. Причина этого явления заключается в том, что свет, проходя непосредственно через чешуйки, не преломляется и мы видим только цвета, образованные пигментом.
Если вы снова рассмотрите чешуйки под микроскопом, они окажутся коричневыми в лучах проходящего света и фиолетовыми – в лучах отраженного. Для невооруженного глаза цвет крыла либо коричневый, либо фиолетовый в зависимости от того, как отражается свет – от пигмента или от поверхности чешуек, покрытой узкими бороздками.
Переливающиеся синие и зеленые цвета и радужность у некоторых жуков в какой-то мере обусловлены тем, что бороздки, или углубления, преломляют свет. Их можно увидеть с помощью увеличительного стекла или микроскопа. Однако сами по себе бороздки не создают никакого цвета; только когда они сочетаются с отражающей или преломляющей поверхностью и пигментным слоем, возникает радужность. Причина металлического блеска многих насекомых почти та же, что и золота, серебра или меди, которые светонепроницаемы и практически отражают весь падающий на них свет. Отсюда и характерный металлический блеск. Но дело не только в этом. В непрозрачную поверхность названных металлов проникает лишь небольшая часть световой волны. Однако волны разной длины проникают на разную глубину, поэтому не все цвета воспринимаются одинаково свободно. В результате проходящий свет дает основной тон, а отраженный дополняет его. У золота отраженный свет – желтый, проходящий – синий. Зеленоватый блеск некоторых жуков-скакунов и жуков-златок имеет такое же происхождение. Все это довольно сложно. Серебристо-белый цвет некоторых насекомых объясняется полным отражением света. Свет могут отражать чешуйки, наполненные воздухом мешочки или трахеи и пузырьки воздуха, соединенные с волосками тела; многие водные насекомые, например жукиплавунцы, уносят эти воздушные пузырьки под воду.