355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Филлипс Фейнман » Фейнмановские лекции по физике 1. Современная наука о природе, законы механики » Текст книги (страница 7)
Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
  • Текст добавлен: 7 октября 2016, 17:34

Текст книги "Фейнмановские лекции по физике 1. Современная наука о природе, законы механики"


Автор книги: Ричард Филлипс Фейнман


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 7 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]

Фиг. 5.4. Определение высоты искусственного спутника методом триангуляции.

Она оказалась равной приблизительно 5•105м. При большей тщательности измерений тем же самым методом определялось расстояние до Луны. Направления двух телескопов в различных точках Земли дают два необходимых угла. Оказалось, что Луна удалена от нас на расстояние 4•108м. Однако для Солнца таких измерений провести нельзя, по крайней мере до сих пор никому не удавалось. Дело в том, что точность, с которой можно сфокусировать телескоп на данную точку Солнца и с которой можно измерить углы, не достаточна для вычисления расстояния до Солнца. Как же все–таки определить его? Необходимо как–то расширить принцип триангуляции. Астрономические наблюдения позволяют измерить относительное расстояние между планетами и Солнцем и определить их относительное расположение. Таким образом, мы получаем план солнечной системы в неизвестном масштабе. Чтобы определить масштаб, требуется только абсолютное расстояние, которое было найдено многими различными способами. Один из способов, считавшийся до самого последнего времени наиболее точным, заключается в определении расстояния от Земли до Эроса – малой планеты, которая по временам проходит недалеко от Земли. С помощью триангуляции можно определить расстояние до этого небольшого объекта и получить необходимый масштаб. Зная относительные расстояния, можно определить, например, все абсолютные расстояния от Земли до Солнца или до планеты Плутон.

В последний год достигнуты большие успехи в определении масштаба солнечной системы. В Лаборатории ракетных двигателей с помощью прямой радиолокационной связи были проведены очень точные измерения расстояния от Земли до Венеры. Здесь мы имеем дело еще с одним определением понятия «расстояние». Нам известна скорость распространения света (а стало быть, и скорость распространения радиоволн), и мы предполагаем, что эта скорость постоянна на всем протяжении между Землей и Венерой. Послав радиоволну по направлению к Венере, мы считаем время до прихода обратно отраженной волны. А зная время и скорость, мы получаем расстояние.

А как измерить расстояние до еще более отдаленных объектов, например до звезд? К счастью, здесь снова можно возвратиться к нашему методу триангуляции, ибо движение Земли вокруг Солнца позволяет измерить расстояние до объектов, находящихся вне солнечной системы. Если мы направим телескоп на некую звезду один раз зимой, а другой раз летом (фиг. 5.5), то можно надеяться достаточно точно измерить углы и определить расстояние до этой звезды.

Фиг. 5.5. Определение расстояния до ближайшей звезды методом триангуляции.

В качестве базы используется диаметр орбиты Земли.

Но что делать, если звезда находится настолько далеко от нас, что уже невозможно пользоваться методом триангуляции? Астрономы всегда изобретают все новые и новые способы определения расстояний. Так, они научились определять размер и яркость звезд по их цвету. Оказалось, что цвет и истинная яркость многих близлежащих звезд, расстояние до которых определялось методом триангуляции, в большинстве случаев связаны между собой гладкой зависимостью. Если теперь измерить цвет отдаленной звезды, то по этой зависимости можно определить ее истинную яркость, а измеряя видимую яркость звезды (вернее, по тому, насколько звезда нам кажется тусклой), можно вычислить расстояние до нее. (Для данной истинной яркости видимая яркость уменьшается как квадрат расстояния.) Правильность этого метода нашла неожиданное подтверждение в результатах измерений, проведенных для группы звезд, известных под названием «шарового скопления». Фотография этой группы звезд приведена на фиг. 5.6.

Фиг. 5.6. Скопление звезд вблизи центра нашей Галактики, удаленное от нас на расстояние 30 000 световых лет, или около 31020м.

Достаточно взглянуть на фотографию, чтобы убедиться, что все эти звезды расположены в одном месте. Тот же результат получается и с помощью метода сравнения цвета и яркости.

Изучение многих шаровых скоплений дает еще одну важную информацию. Оказалось, что существует участок неба с большой концентрацией таких шаровых скоплений, причем большинство из них находится на одном и том же расстоянии от нас. Сравнивая эти данные с некоторыми другими, мы приходим к заключению, что эти скопления являются центром нашей Галактики. Таким образом мы определяем, что расстояние до центра Галактики составляет приблизительно 1020м.

Данные о размере нашей Галактики дают ключ к определению еще больших межгалактических расстоянии. На фиг. 5.7 приведена фотография галактики, которая по форме очень похожа на нашу Галактику.

Фиг. 5.7. Спиральная галактика, подобная нашей. Если предположить, что диаметр этой галактики равен диаметру нашей Галактики, та, исходя из ее кажущегося размера, можно подсчитать расстояние; оно оказывается равным 30 миллионам световых лет (31023м).

Возможно, что и размер ее тот же. (Есть еще ряд соображений, согласно которым размеры всех галактик приблизительно одинаковы.) А если это так, то можно узнать расстояние до нее. Мы измеряем угловой размер галактики (т. е. угол, который она занимает на небесном своде), знаем ее диаметр, а стало быть, можем вычислить расстояние. Опять триангуляция!

Недавно с помощью гигантского Паломарского телескопа были получены фотографии неимоверно далеких галактик. Одна из этих фотографий приведена на фиг. 5.8.

Фиг. 5.8. Наиболее удаленный от нас объект ЗС295 в созвездии Волопаса (указан стрелкой), который измерялся в 1960 г. с помощью 200–дюймового телескопа.

Сейчас полагают, что расстояние до некоторых из них приблизительно равно половине размера Вселенной (1026 м) – наибольшего расстояния, которое можно себе представить!

§ 7. Малые расстояния

Обратимся теперь к малым расстояниям. Подразделить метр просто. Без особых трудностей можно разделить его на тысячу равных частей. Таким же путем, хотя и несколько сложнее (используя хороший микроскоп), можно разделить миллиметр на тысячу частей и получить микрон (миллионную долю метра). Однако продолжать это деление становится трудно, поскольку невозможно «увидеть» объекты, меньшие, чем длина волны видимого света (около 5?10–7 м).

Все же мы не останавливаемся на том, что недоступно глазу. С помощью электронного микроскопа можно получить фотографии, помогающие увидеть и измерить еще меньшие объекты – вплоть до 10–8м (фиг. 5.9).

Фиг. 5.9. Фотография вирусов, полученная с помощью электронного микроскопа. Видна «большая» сфера, показанная для сравнения: диаметр ее равен 2?10–7 м, или 2000 ?.

А с помощью косвенных измерений (своего рода триангуляции в микроскопическом масштабе) можно измерять все меньшие и меньшие объекты. Сначала из наблюдений отражения света короткой длины волны (рентгеновских лучей) от образца с нанесенными на известном расстоянии метками измеряется длина волны световых колебаний.

Затем по картине рассеяния того же света на кристалле можно определить относительное расположение в нем атомов, причем результат хорошо согласуется с данными о расположении атомов, полученными химическим путем. Таким способом определяется диаметр атомов (около 10–10 м).

Дальше в шкале расстояний имеется довольно большая незаполненная «щель» между атомными размерами 10–10 м и в 105 раз меньшими ядерными размерами (около 10–15 м). Для определения ядерных размеров применяются уже совершенно другие методы: измеряется видимая площадь ?, или так называемое эффективное поперечное сечение, Если же мы хотим определить радиус, то пользуемся формулой ?=?r2, поскольку ядра можно приближенно рассматривать как сферические.

Эффективные сечения ядер можно определить, пропуская пучок частиц высокой энергии через тонкую пластинку вещества и измеряя число частиц, не прошедших сквозь нее. Эти высокоэнергетические частицы прорываются сквозь легкое облачко электронов, но при попадании в тяжелое ядро останавливаются или отклоняются. Предположим, что у нас имеется пластинка толщиной 1 см. На такой толщине укладывается приблизительно 108 атомных слоев. Однако ядра настолько малы, что вероятность того, что одно ядро закроет другое, очень незначительна. Можно себе представить, что высокоэнергетическая частица, налетающая на пластинку углерода толщиной 1 см, «видит» приблизительно то, что в сильно увеличенном масштабе показано на фиг. 5.10.

Фиг. 5.10. Воображаемая пластинка углерода толщиной 1 см при сильном увеличении (если бы были видны только ядра атомов).

Вероятность того, что очень малая частица столкнется с ядром, равна отношению площади, занимаемой ядрами (черные точки), к общей площади рисунка. Пусть над областью с площадью А по всей толщине пластинки находится N атомов (разумеется, каждый с одним ядром). Тогда доля площади, закрытая ядрами, будет равна N?/A. Пусть теперь число частиц в нашем пучке до пластинки будет равно n1, а после нее равно n2; тогда доля частиц, не прошедших через пластинку, будет (n1–n2)/n1, что должно быть равно доле площади, занимаемой ядрами. Радиус же ядер вычисляется из равенства

?r2=?=ANn1–n2n1.

Из таких экспериментов мы находим, что радиусы ядер лежат в пределах от 1?10–15 до 6?10–15 м. Кстати, единица длины 10–15 м называется ферми в честь Энрико Ферми (1901–1958).

Что можно ожидать в области еще меньших расстояний? Можно ли их измерять? На этот вопрос пока еще нет ответа. Может быть, именно здесь, в каком–то изменении понятия пространства или измерения на малых расстояниях, кроется разгадка тайны ядерных сил.

Несколько слов о стандарте длины. Разумно в качестве стандарта использовать какую–то естественную единицу длины, например радиус Земли или некоторую его долю. Именно таким образом возник метр. Первоначально он определялся как (?/2)?10–7 доля радиуса Земли. Однако такое определение нельзя считать ни особенно точным, ни удобным. Поэтому в течение долгого времени по международному соглашению в качестве эталона метра принималась длина между двумя метками, сделанными на особом брусе, который хранится в специальной лаборатории во Франции. Только много позднее поняли, что и такое определение метра не столь уж точно, как это необходимо, и не так уж универсально и постоянно, как этого хотелось бы. Поэтому сейчас принят новый стандарт длины как некоторое заранее установленное число длин волн определенной спектральной линии.

• • •

Результаты измерения расстояний и времени зависят от наблюдателя. Два наблюдателя, движущиеся друг относительно друга, измеряя один и тот же предмет или длительность одного и того же процесса, получат разные значения, хотя, казалось бы, мерили одно и то же. Расстояния и интервалы времени в зависимости от системы координат (т. е. системы отсчета), в которой производят измерения, имеют различную величину. В последующих главах мы будем более подробно разбирать этот вопрос.

Законы природы не позволяют выполнять абсолютно точные измерения расстояний или интервалов времени. Мы уже упоминали ранее, что ошибка в определении положения предмета не может быть меньше, чем

?x=h?p,

где h – малая величина, называемая «постоянной Планка», а ?p – ошибка в измерении импульса (массы, умноженной на скорость) этого предмета. Как уже говорилось, эта неопределенность в измерении положения связана с волновой природой частиц.

Относительность пространства и времени приводит к тому, что измерения интервалов времени также не могут быть точнее, чем

?t=h?E,

где ?E – ошибка в измерении энергии того процесса, продолжительностью которого мы интересуемся. Чтобы знать более точно, когда что–то произошло, мы вынуждены довольствоваться тем, что меньше знаем, что же именно произошло, поскольку наши знания об энергии, участвующей в процессе, будут менее точными. Эта неопределенность времени, так же как и неопределенность положения, связана с волновой природой вещества.

* Об этом ученые договорились в конце 1964 г., когда готовилось русское издание этой книги. – Прим. ред.

* Это равенство справедливо только тогда, когда площадь, занимаемая ядрами, составляет малую долю общей площади, т. е. (n1–n2)/n1 много меньше единицы. В противном же случае необходимо учитывать поправку на частичное «загораживание» одного ядра другим.

Глава 6 ВЕРОЯТНОСТЬ

Истинная логика нашего мира–это подсчет вероятностей.

Джемс Кларк Максвелл

§ 1. Вероятность и правдоподобие

«Вероятность», или «шанс», – это слово вы слышите почти ежедневно. Вот по радио передают прогноз погоды на завтра: «Вероятно, будет дождь». Вы можете сказать: «У меня мало шансов дожить до ста лет». Ученые тоже часто употребляют эти слова. Сейсмолога интересует вопрос: какова вероятность того, что в следующем году в Южной Калифорнии произойдет землетрясение такой–то силы? Физик может спросить: с какой вероятностью этот счетчик Гейгера зарегистрирует двадцать импульсов в последующие десять секунд? Дипломата или государственного деятеля волнует вопрос: каковы шансы этого кандидата быть избранным президентом? Ну, а вас, конечно, интересует: есть ли шансы что–либо понять в этой главе?

Под вероятностью мы понимаем что–то вроде предположения или догадки. Но почему и когда мы гадаем? Это делается тогда, когда мы хотим вынести какое–то заключение или вывод, но не имеем достаточно информации или знаний, чтобы сделать вполне определенное заключение. Вот и приходится гадать: может быть, так, а может быть, и не так, но больше похоже на то, что именно так. Очень часто мы гадаем, когда нужно принять какое–то решение, например: «Брать ли мне сегодня с собой плащ или не стоит?» «На какую силу землетрясения должен я рассчитывать проектируемое здание?» «Нужно ли мне делать более надежную защиту?» «Следует ли мне менять свою позицию в предстоящих международных переговорах?» «Идти ли мне сегодня на лекцию?»

Иногда мы строим догадки потому, что хотим при ограниченности своих знаний сказать как можно больше о данной ситуации. В сущности ведь любое обобщение носит характер догадки. Любая физическая теория – это своего рода догадка. Но догадки тоже бывают разные: хорошие и плохие, близкие и далекие. Тому, как делать наилучшие догадки, учит нас теория вероятностей. Язык вероятностей позволяет нам количественно говорить о таких ситуациях, когда исход весьма и весьма неопределенен, но о котором все же в среднем можно что–то сказать.

Давайте рассмотрим классический пример с подбрасыванием монеты. Если монета «честная», то мы не можем знать наверняка, какой стороной она упадет. Однако мы предчувствуем, что ври большом числе бросаний число выпадений «орла» и «решки» должно быть приблизительно одинаковым. В этом случае говорят: вероятность выпадения «орла» равна половине.

Мы можем говорить о вероятности исхода только тех наблюдений, которые собираемся проделать в будущем. Под вероятностью данного частного результата наблюдения понимается ожидаемая нами наиболее правдоподобная доля исходов с данным результатом при некотором числе повторений наблюдения. Вообразите себе повторяющееся N раз наблюдение, например подбрасывание вверх монеты. Если NАнаша оценка наиболее правдоподобного числа выпадений с результатом А, например выпадений «орла», то под вероятностью Р(А) результата А мы понимаем отношение

PA=NA/N (6.1)

Наше определение требует некоторых комментариев. Прежде всего мы говорим о вероятности какого–то события только в том случае, если оно представляет собой возможный результат испытания, которое можно повторить. Но отнюдь не ясно, имеет ли смысл такой вопрос: какова вероятность того, что в этом доме поселилось привидение?

Вы, конечно, можете возразить, что никакая ситуация не может повториться в точности. Это верно. Каждое новое наблюдение должно происходить по крайней мере в другое время или в другом месте. По этому поводу я могу сказать только одно: необходимо, чтобы каждое «повторное» наблюдение казалось нам эквивалентным. Мы должны предполагать по крайней мере, что каждый новый результат наблюдения возник из равноценных начальных условий и из одного и того же уровня начальных знаний. Последнее особенно важно. (Если вы заглянули в карты противника, то, конечно, ваши прогнозы о шансах на выигрыш будут совсем другими, чем если бы вы играли честно!)

Хочу отметить, что я не собираюсь рассматривать значения N и NA в (6.1) только как результат каких–то действительных наблюдений. Число NA – это просто наилучшая оценка того, что могло бы произойти при воображаемых наблюдениях. Поэтому вероятность зависит от наших знаний и способностей быть пророком, в сущности от нашего здравого смысла! К счастью, здравый смысл не столь уже субъективен, как это кажется на первый взгляд. Здравым смыслом обладают многие люди, и их суждения о степени правдоподобия того или иного события в большинстве случаев совпадают. Однако вероятность все же не является «абсолютным» числом. Поскольку в каком–то смысле она зависит от степени нашего невежества, постольку с изменением наших знаний она может меняться.

Отмечу еще одну «субъективную» сторону нашего определения вероятности. Мы говорили, что NA – это «наша оценка наиболее вероятного числа случаев». При этом, конечно, мы не надеялись, что число нужных нам случаев будет в точности равно NA, но оно должно быть где–то близко к NA; это число более вероятно, чем любое другое. Если подбрасывать монету вверх 30 раз, то вряд ли можно ожидать, что число выпадений «орла» будет в точности 15; скорее это будет какое–то число около 15, может быть 12, 13, 14, 15, 16 или 17. Однако если необходимо выбрать из этих чисел какое–то одно число, то мы бы решили, что число 15 наиболее правдоподобно. Поэтому мы и пишем, что Р (орел) = 0,5.

Но почему все же число 15 более правдоподобно, чем все остальные? Можно рассуждать следующим образом: если наиболее вероятное число выпадений «орла» будет N0, а полное число подбрасываний N, то наиболее вероятное число выпадений «решек» равно N–N0. (Ведь предполагается, что при каждом подбрасывании должны выпасть только либо «орел», либо «решка» и ничего другого!) Но если монета «честная», то нет основания думать, что число выпадений «орла», например, должно быть больше, чем выпадений «решки»? Так что до тех пор, пока у нас нет оснований сомневаться в честности подбрасывающего, мы должны считать, что Np=N0, а следовательно, Np=N0=N/2, или Р(орел) = P(решка) = 0,5.

Наши рассуждения можно обобщить на любую ситуацию, в которой возможны m различных, но «равноценных» (т. е. равновероятных) результатов наблюдения. Если наблюдение может привести к m различным результатам и ни к чему больше и если у нас нет оснований думать, что один из результатов предпочтительнее остальных, то вероятность каждого частного исхода наблюдения А будет 1/m, т. е. Р(А) = 1/m.

Пусть, например, в закрытом ящике находятся семь шаров разного цвета и мы наугад, т. е. не глядя, берем один из них. Вероятность того, что у нас в руке окажется красный шар, равна 1/7. Вероятность того, что мы из колоды в 36 карт вытащим даму пик, равна 1/36, такая же, как и выпадение двух шестерок при бросании двух игральных костей.

• • •

В гл. 5 мы определяли размер ядра с помощью затеняемой им площади или так называемого эффективного сечения. По существу речь шла о вероятностях. Если мы «обстреливаем» быстрыми частицами тонкую пластинку вещества, то имеется некая вероятность, что они пройдут через нее, не задев ядер, однако с некоторой вероятностью они могут попасть в ядро. (Ведь ядра столь малы, что мы не можем видеть их, мы, следовательно, не можем прицелиться, и «стрельба» ведется вслепую.) Если в нашей пластинке имеется n атомов и ядро каждого из них затеняет площадь а, то полная площадь, затененная ядрами, будет равна na. При большом числе N случайных выстрелов мы ожидаем, что число попаданий NC будет так относиться к полному числу выстрелов, как затененная ядрами площадь относится к полной площади пластинки:

NC/N=?/A. (6.2)

Поэтому можно сказать, что вероятность попадания каждой из выстреленных частиц в ядро при прохождении сквозь пластинку будет равна

Pc=n?/A, (6.3)

где n/A – просто число атомов, приходящихся на единицу площади пластинки.

§ 2. Флуктуации

Теперь мне бы хотелось несколько подробнее показать, как можно использовать идею вероятности, чтобы ответить на вопрос: сколько же в самом деле я ожидаю выпадений «орла», если подбрасываю монету N раз? Однако, прежде чем ответить на него, давайте посмотрим, что все–таки дает нам такой «эксперимент». На фиг. 6.1 показаны результаты, полученные в первых трех сериях испытаний по 30 испытаний в каждой.

Фиг. 6.1. Последовательность выпадения «орла» и «решки».

Три серии опытов подбрасывания монеты по 30 раз в каждой серии.

Последовательности выпадений «орла» и «решки» показаны в том порядке, как это происходило. В первый раз получилось 11 выпадений «орла», во второй – тоже 11, а в третий – 16. Можно ли на этом основании подозревать, что монета была «нечестной»? Или, может быть, мы ошиблись, приняв 15 за наиболее вероятное число выпадений «орла» в каждой серии испытаний?

Сделаем еще 97 серий, т. е. 100 серий по 30 испытаний в каждой. Результаты их приведены в табл. 6.1.

Таблица б.1 • число выпадений «орла»

Проведено несколько серий испытаний, по 30 подбрасываний монеты в каждой

Взгляните на числа, приведенные в этой таблице. Вы видите, что большинство результатов «близки» к 15, так как почти все они расположены между 12 и 18. Чтобы лучше прочувствовать эти результаты, нарисуем график их распределения. Для этого подсчитаем число испытаний, в которых получилось k выпадений «орла», и отложим это число вверх над k. В результате получим фиг. 6.2.

Вертикальные линии показывают число серий, в которых выпадал k раз «орел». Пунктирная кривая показывает ожидаемое число серий с выпадением k раз «орла», полученное из вычисления вероятностей.

Действительно, в 13 сериях было получено 15 выпадений «орла», то же число серий дало 14 выпадений «орла»; 16 и 17 выпадений получались больше чем 13 раз. Должны ли мы из этого делать вывод, что монетам больше нравится ложиться «орлом» вверх? А может быть, мы неправы в выборе числа 15 как наиболее правдоподобного? Может быть, в действительности более правдоподобно, что за 30 испытаний получается 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испытаниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все–таки не можем предполагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпадал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по–прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15.

Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое–то другое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероятность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 14; б) вероятность одного выпадения «орла» равна 14; в) вероятность невыпадения «орла» равна 14. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «орла» и только одна возможность получить два выпадения или не получить ни одного.

Рассмотрим теперь серию из трех испытаний. Третье испытание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в последнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа – после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 18, 38, 38, 18.

Эти результаты удобно записать в виде диаграммы (фиг. 6.3).

Фиг. 6.3. Диаграмма, иллюстрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний.

Ясно, что эту диаграмму можно продолжить, если мы интересуемся еще большим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний.

Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний.

Число «способов», соответствующих каждой точке диаграммы, – это просто число различных «путей» (т. е., попросту говоря, последовательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения (a+b)n, Обычно эти числа на нашей диаграмме обозначаются символом (kn), или Ckn (число сочетаний из n по k), где n – полное число

испытаний, а k – число выпадений «орла». Отмечу попутно, что биномиальные коэффициенты можно вычислять по формуле:

(kn)=n!k!(n! – k!), (6.4)

где символ n!, называемый «n–факториалом», обозначает произведение всех целых чисел от 1 до n, т. е. 1?2?3?…?n–1?n. Теперь уже все готово для того, чтобы с помощью выражения (6.1) подсчитать вероятность P(k,n) выпадения k раз «орла» в серии из n испытаний. Полное число всех возможностей будет 2n (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет (kn), так что

Pk,n=(kn)2n (6.5)

Поскольку Pk,n – доля тех серий испытаний, в которых выпадение «орла» ожидается k раз, то из ста серий k выпадений «орла» ожидается 100?Pk,n раз. Пунктирная кривая на фиг. 6.2 проведена как раз через точки функции 100?Pk,30. Видите, мы ожидали получить 15 выпадений «орла» в 14 или 15 сериях испытаний, а получили только в 13. Мы ожидали получить 16 выпадений «орла» в 13 или 14 сериях испытаний, а получили в 16. Но такие флуктуации вполне допускаются «правилами игры».

Использованный здесь метод можно применять и в более общей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность результата П) должна быть равна (1–p). В серии из n испытаний вероятность того, что результат В получится k раз, равна

Pk,n=(kn)pkqn–k (6.6)

Эта функция вероятностей называется биномиальным законом распределения вероятности.

§ 3. Случайные блуждания

Существует еще одна интересная задача, при решении которой не обойтись без понятия вероятности. Это проблема «случайных блужданий». В простейшем варианте эта задача выглядит следующим образом. Вообразите себе игру, в которой игрок, начиная от точки х=0, за каждый ход может продвинуться либо вперед (до точки х), либо назад (до точки–х), причем решение о том, куда ему идти, принимается совершенно случайно, ну, например, с помощью подбрасывания монеты. Как описать результат такого движения? В более общей форме эта задача описывает движение атомов (или других частиц) в газе – так называемое броуновское движение – или образование ошибки при измерениях. Вы увидите, насколько проблема «случайных блужданий» тесно связана с описанным выше опытом с подбрасыванием монеты.

Прежде всего давайте рассмотрим несколько примеров случайных блужданий. Их можно описать «чистым» продвижением DN за N шагов. На фиг. 6.5 показаны три примера путей при случайном блуждании.

Фиг. 6.5. Три примера случайного блуждания.

По горизонтали отложено число шагов N, по вертикали координата

D(N), т. е. чистое расстояние от начальной точки.

(При построении их в качестве случайной последовательности решений о том, куда сделать следующий шаг, использовались результаты подбрасывания монеты, приведенные на фиг. 6.1.)

Что можно сказать о таком движении? Ну, во–первых, можно спросить: как далеко мы в среднем продвинемся? Нужно ожидать, что среднего продвижения вообще не будет, поскольку мы с равной вероятностью можем идти как вперед, так и назад. Однако чувствуется, что с увеличением N мы все с большей вероятностью можем блуждать где–то все дальше и дальше от начальной точки. Поэтому возникает вопрос: каково среднее абсолютное расстояние, т. е. каково среднее значение |D|? Впрочем, удобнее иметь дело не с |D|, а с D2; эта величина положительна как для положительного, так и для отрицательного движения и поэтому тоже может служить разумной мерой таких случайных блужданий.

Можно показать, что ожидаемая величина DN2 равна просто N – числу сделанных шагов. Кстати, под «ожидаемой величиной» мы понимаем наиболее вероятное значение (угаданное наилучшим образом), о котором можно думать как об ожидаемом среднем значении большого числа повторяющихся процессов блуждания. Эта величина обозначается как и называется, кроме того, «средним квадратом расстояния». После одного шага D2 всегда равно +1, поэтому, несомненно, =1. (За единицу расстояния всюду будет выбираться один шаг, и поэтому я в дальнейшем не буду писать единиц длины).

Ожидаемая величина DN2 для N>1 может быть получена из DN–1. Если после (N–1) шагов мы оказались на расстоянии DN–1, то еще один шаг даст либо DN=DN–1+1, либо DN=DN–1–1. Или для квадратов

(6.7)

Если процесс повторяется большое число раз, то мы ожидаем, что каждая из этих возможностей осуществляется с вероятностью ?/2, так что средняя ожидаемая величина будет просто средним арифметическим этих значений, т. е. ожидаемая величина DN2 будет просто DN–12+1. Но какова величина DN–12, вернее, какого значения ее мы ожидаем? Просто, по определению, ясно, что это должно быть «среднее ожидаемое значение» , так что

=+1. (6.8)

Если теперь вспомнить, что =1, то получается очень простой результат:

=1. (6.9)

Отклонение от начального положения можно характеризовать величиной типа расстояния (а не квадрата расстояния); для этого нужно просто извлечь квадратный корень из и получить так называемое «среднее квадратичное расстояние» DC–K:


    Ваша оценка произведения:

Популярные книги за неделю