Текст книги "Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной"
Автор книги: Ричард Докинз
Жанры:
Публицистика
,сообщить о нарушении
Текущая страница: 11 (всего у книги 31 страниц) [доступный отрывок для чтения: 12 страниц]
Да и среди самих муравьев попадаются интересные случаи конвергенции. Хотя большинство муравьиных колоний ведут оседлый образ жизни в стационарном гнезде, однако, по-видимому, можно неплохо заработать на жизнь и кочуя, сбившись в гигантскую мародерствующую армию. Это называется легионерским поведением. Все муравьи, понятное дело, совершают вылазки за кормом, но представители большинства видов возвращаются с добычей в свое постоянное гнездо, где остаются царица и молодняк. Ключевым отличием легионерского образа жизни является то, что в этом случае и молодь, и царицу армия таскает с собой. Яйца и личинок рабочие несут в своих челюстях. Параллельные виды “муравьев-кочевников”, очень похожие друг на друга и внешне, и повадками, обитают в Африке и в Центральной и Южной Америке. Эти виды не особенно близкородственны. Не вызывает сомнений, что общие признаки, связанные с “армейской” профессией, выработались у них самостоятельно и конвергентно.
Колонии муравьев-легионеров отличаются гигантской численностью: до 1 млн особей в Америке, а в Африке – около 2 млн. В обоих случаях периоды кочевья чередуются с фазами “простоя” в относительно стабильных лагерях или “биваках”. Как американские, так и африканские муравьи-легионеры – а точнее, их колонии, если рассматривать колонию как единое целое, похожее на гигантскую амебу, – являются, каждые для своих джунглей, безжалостными и опасными хищниками. И те и другие разрывают на мелкие кусочки все живое на своем пути и приобрели себе зловещую и таинственную репутацию в тех краях, где обитают. Считается, например, что крестьяне в некоторых частях Южной Америки при приближении армии муравьев уходят из деревень, побросав все свои пожитки, и возвращаются только тогда, когда легионы пройдут, не оставив после себя нигде, даже между соломинками кровель, ни таракана, ни скорпиона, ни паучка. Помню, как ребенком в Африке я боялся муравьев-кочевников больше, чем львов или крокодилов. Думаю, имеет смысл взглянуть на эту дурную славу под другим углом, приведя здесь слова Эдварда О. Уилсона – не только автора книги “Социобиология”, но еще и крупнейшего в мире специалиста по муравьям:
Что касается вопроса, который мне постоянно задают, то отвечаю: нет, на самом деле муравьи-легионеры не являются грозой джунглей. Хотя их колония представляет собой “животное”, весящее около 20 кг и вооруженное примерно 20 млн ртов и жал, и это, безусловно, самое грозное создание в мире насекомых, они все же не так страшны, как о них них рассказывают. В конце концов, муравьиная армия передвигается со скоростью, не превышающей одного метра за три минуты. Любая дееспособная мышовка, не говоря уже о человеке или слоне, спокойно может уйти с дороги и наблюдать со стороны за всем этим неистовым воинством – объектом не столько опасным, сколько странным и удивительным, венцом эволюционной истории, которая так далека от истории млекопитающих, как это только возможно на нашей планете.
В Панаме, будучи уже взрослым, я отошел с дороги и наблюдал со стороны за американским вариантом муравьев-кочевников, которых так боялся ребенком. Они текли мимо меня, как сухая похрустывающая река, и я готов подтвердить, что зрелище это в самом деле странное и удивительное. Легионы муравьев, ступавших как по земле, так и друг по другу, все шли и шли, час за часом, а я дожидался царицы. Наконец она приблизилась, и ее присутствие внушало трепет и благоговение. Видна была только движущаяся волна простых смертных, бурлящий пульсирующий шар из сцепившихся конечностями муравьев. Она была где-то в середине этой кучи тел рабочих, вокруг которой теснились многие шеренги солдат с угрожающе раскрытыми челюстями, готовых убить и погибнуть, защищая свою царицу. Простите мне мое любопытство – я проткнул клубок из рабочих особей прутиком в безуспешной попытке добраться до виновницы всех этих предосторожностей. В то же мгновение 20 солдат вонзили в прутик свои массивные мускулистые клещи – возможно, чтобы больше никогда не извлечь их обратно, – в то время как десятки других уже карабкались по нему вверх, так что я почел за благо поскорее его бросить.
Мне не удалось увидеть ее даже мельком, однако где-то в глубине бурлящего клубка она была – центральная база данных, хранилище оригиналов ДНК всей колонии. Эти оскалившиеся солдаты были готовы погибнуть за царицу не потому, что они очень любили свою мать, и не потому, что она вдолбила им идеалы патриотизма, а просто-напросто потому, что их мозги и их челюсти были созданы генами, отпечатанными на исходной матрице, хранящейся в ее теле. Они отважно сражались, потому что их гены были унаследованы от длинного ряда цариц, жизни – и гены – которых были сохранены благодаря таким же бравым солдатам. Солдаты, напавшие на меня, получили свои гены от своей царицы, точно так же как и те, прежние солдаты получали гены от своих предковых цариц. Мои солдаты охраняли не что иное, как ковчег Завета, оригинальные копии инструкций, предписывающих им охранять. Все эти странные утверждения будут разъяснены в следующей главе.
Итак, мне было странно и удивительно, и с одной стороны, к этим чувствам примешивался воскресший полузабытый страх, а с другой – они были преображены и усилены зрелым пониманием того, ради чего происходит весь этот спектакль, – пониманием, которого мне не хватало в моем африканском детстве. Еще более странно и удивительно мне было от осознания, что история муравьев-легионеров достигала этого своего венца не однажды, а дважды. Как бы ни было похоже то, что я видел, на муравьев, которых я боялся ребенком, это были не они, а их дальние родственники из Нового Света. Они делали то же самое, что и африканские муравьи-кочевники, и по тем же причинам. Стало темнеть, и я вернулся домой, снова чувствуя себя испуганным ребенком, но счастливый от знакомства с новым уровнем понимания мира, вытеснившим темные африканские страхи.
Глава 5
Власть и архивы

За окном идет дождь из ДНК. На берегу Оксфордского канала, там, где заканчивается мой сад, растет большая ива, которая фонтанирует пушистыми семенами. Ветра нет, и семена разлетаются во все стороны. И вверх и вниз по течению, насколько хватает моего бинокля, вода кажется белой от упавших на нее пушинок, и можно не сомневаться, что вся земля на том же радиусе тоже покрыта ими. Эти ватные хлопья состоят главным образом из целлюлозы, на фоне которой крохотная капсула, содержащая ДНК, кажется совсем ничтожной. ДНК составляет малую долю от всего семени, так почему же я сказал, что идет дождь из ДНК, а не из целлюлозы? Потому что ДНК – это то, что действительно важно. Пух, хоть его и больше, – не более чем одноразовый парашют. Все действо – вата, сережки, дерево и прочее – происходит для одной цели и ни для какой другой: для распространения ДНК по окрестностям. И не любой ДНК, а только той, чьи закодированные символы содержат инструкции по изготовлению ивовых деревьев, которые будут разбрасывать новое поколение пушистых семян. Пушинки – это в буквальном смысле разлетающиеся в разные стороны инструкции по изготовлению самих себя. Они здесь потому, что их предки преуспели в том же самом. За окном идет дождь из инструкций, дождь из программ, из алгоритмов роста деревьев и распространения пуха. И это не метафора, а правда как она есть. Такая же правда, как если бы за окном шел дождь из дискет.
Так-то оно так, однако в течение долгого времени этого не понимали. Еще совсем недавно, спроси вы почти любого биолога, чем живые существа отличаются от неживых, он рассказал бы вам об особом веществе, называемом протоплазмой. Протоплазма не была похожа на все остальные вещества, она была живой, вибрирующей, пульсирующей и “раздражимой” (что на языке школьных учительниц означает “чувствительной”). Если вы возьмете живой организм и будете разрезать его на все более и более мелкие кусочки, то в конце концов доберетесь до частиц чистой протоплазмы. Некогда, в прошлом веке, реальный прототип профессора Челленджера из романов Артура Конана Дойла полагал, что “иловая глобигерина” с морского дна – это протоплазма в чистом виде. Когда я был школьником, пожилые авторы учебников все еще писали о протоплазме, хотя к тому времени они должны были бы уже понимать, что к чему. Теперь это слово нигде не увидишь и не услышишь. Оно почило в бозе вместе с флогистоном и всемирным эфиром. В веществах, из которых состоят живые организмы, нет ничего особенного. Живые существа, как и все остальное, представляют собой сочетания молекул.
Особенное только то, что сочетания эти гораздо более сложно организованы, чем в случае неживых предметов, и сборка этой сложной организации производится путем следования программам – целому своду правил развития, который организмы носят внутри самих себя. Они могут вибрировать и пульсировать “от раздражения”, могут излучать “животное” тепло, но это все побочные эффекты. В основе любого живого существа лежит не пламя, не теплое дыхание и не “искра жизни”, а информация, текст, предписания. Если вам нужна метафора, забудьте о пламени, дыхании и искрах. Представьте себе лучше миллиард отдельных цифровых знаков, высеченных на кристалле. Если вы хотите понять жизнь, не думайте про вибрирующий и пульсирующий гель и ил, а вспомните об информационных технологиях. Именно к этому я клонил в предыдущей главе, когда сравнивал муравьиную царицу с центральной базой данных.
Основным требованием к развитой информационной технологии является наличие некоего носителя информации с большим количеством ячеек памяти. Свойством каждой такой ячейки долж на быть способность всегда находиться в одном из строго определенного числа состояний. Во всяком случае, это справедливо для той цифровой информационной технологии, которая господствует в нашем рукотворном мире. Существует и альтернативный вид информационных технологий, основанный на аналоговой информации. Информация, записанная на обычной грампластинке, аналоговая. Она хранится в виде волнообразной бороздки. А информация на современных лазерных дисках (которые часто называют компакт-дисками, что досадно, так как это наименование неинформативно, да еще к тому же произносится обычно с неграмотным ударением на первый слог) цифровая, и хранится она в виде ряда микроскопических углублений, каждое из которых либо определенно наличествует на месте, либо определенно там отсутствует, и среднего не дано. Это отличительный признак цифровой системы: определяющие ее компоненты всегда четко находятся либо в одном состоянии, либо в другом – без полумер, промежутков и компромиссов.
Информационная технология генов – цифровая. Этот факт открыл в прошлом веке Грегор Мендель, хотя вряд ли он сформулировал бы его таким образом. Мендель доказал, что наследственность наших родителей не смешивается в нас. Наследственную информацию мы получаем в виде дискретных частиц. Когда речь идет о любой определенной частице, то мы либо унаследовали ее, либо нет. На самом деле, как заметил Р. Э. Фишер, один из отцов-основателей того, что теперь называется неодарвинизмом, факт дискретного наследования всегда лежал прямо у нас перед носом, достаточно было только вспомнить о наследовании пола. Мы получаем признаки от двух родителей мужского и женского пола, однако каждый из нас либо мужчина, либо женщина, а не гермафродит. Каждый новорож денный имеет примерно равные шансы оказаться мальчиком или девочкой, но любой конкретно взятый ребенок наследует только один из этих признаков, а не их сочетание. Теперь мы знаем, что это справедливо и для всех наследуемых частиц. Они не соединяются друг с другом, а только перетасовываются при каждом переходе из одного поколения в следующее, оставаясь при этом обособленными и независимыми. Разумеется, воздействия, оказываемые этими элементарными генетическими единицами на организмы, могут убедительно создавать видимость смешивания. Если один из родителей высокого роста, а другой низкого или если у одного из них кожа темная, а у другого светлая, то дети нередко наследуют промежуточный вариант данного признака. Однако эта видимость смешивания относится только к воздействию на организмы и возникает благодаря суммированию мелких эффектов большого количества частиц. Когда же дело доходит до передачи следующему поколению самих частиц, то они оказываются все такими же независимыми и дискретными.
Это различие между смешанной и дискретной наследственностью сыграло важную роль в истории нашего понимания эволюции. Во времена Дарвина все (за исключением Менделя, который сидел запершись в своем монастыре и, к сожалению, остался незамеченным до самой своей смерти) считали наследование смешанным. Шотландский инженер по имени Флеминг Дженкин обратил внимание на то, что факт смешанного наследования (считавшийся истинным) чуть ли не отменяет всю теорию эволюции путем естественного отбора. Эрнст Майр довольно невежливо заметил, что статья Дженкина “основывается на всех тех предрассудках и заблуждениях, что свойственны физикам”. Как бы то ни было, доводы Дженкина причинили Дарвину немало беспокойства. Наиболее красочным их воплощением была аллегория про белого человека, потерпевшего кораблекрушение на острове, населенном “неграми”:
…пускай у него будут все преимущества, какими только может обладать белый по сравнению с цветными; давайте предположим, что в борьбе за существование его шансы на то, чтобы прожить долгую жизнь, будут намного выше, чем у местных вождей; однако же из всех этих допущений вовсе не следует вывод, что через определенное или неопределенное число поколений все обитатели острова станут белыми. Вполне возможно, что наш потерпевший кораблекрушение герой станет царем, что в борьбе за существование он перебьет огромное количество черных, что у него будет множество жен и детей, в то время как немалая часть его подданных проживут свою жизнь и умрут холостяками… Характерные особенности белого человека существенно повысят вероятность того, что он доживет до глубокой старости, и все же его одного будет недостаточно, чтобы через какое угодно число поколений потомки его подданных сделались белыми… В первом поколении появится несколько десятков смышленых мулатов, в среднем намного более сообразительных, чем негры. Можно предположить, что в течение нескольких поколений трон будут занимать более или менее желтокожие цари, но поверит ли кто-нибудь в то, что население всего острова постепенно приобретет белый, ну или хотя бы желтый, цвет кожи или что островитянам передадутся энергия, отвага, находчивость, терпеливость, самообладание, выносливость, то есть все те качества, благодаря которым наш герой смог убить стольких их предков и произвести такое количество потомства, – фактически те качества, которые борьба за существование отбирала бы, если бы только она могла хоть что-нибудь отбирать?
Пусть вас не отвлекают расистские допущения о превосходстве белых. Во времена Дарвина и Дженкина они так же не подвергались сомнению, как сегодня не оспаривается наш видовой шовинизм, провозглашающий права человека, человеческое достоинство и священность человеческой жизни. Аргументацию Дженкина можно перефразировать с помощью более нейтральной аналогии. Если вы смешаете белую краску с черной, получится серая краска. Если вы смешаете две серые краски, то вам не удастся воссоздать ни исходную белую, ни исходную черную краску. Такое смешивание красок не слишком отличается от доменделевских представлений о наследственности, и даже в современной массовой культуре наследственность нередко описывается как смешение “кровей”. Дженкин в своих рассуждениях фактически ведет речь о заглушении. Если наследственность смешанная, то с течением поколений изменчивость неизбежно будет заглушаться. Господствовать будет все бóльшее и бóльшее единообразие. В конце концов не останется никакой изменчивости, на которую естественный отбор мог бы воздействовать.
Как бы убедительно ни звучали такие доводы, направлены они не только против теории естественного отбора. Еще в большей степени они противоречат неопровержимым фактам, касающимся наследственности как таковой. То, что разнообразие из поколения в поколение уменьшается, явно не соответствует истине. В наши дни люди не более похожи друг на друга, чем во времена наших дедушек и бабушек. Разнообразие поддерживается. Существует некий пул изменчивости, с которой естественный отбор может работать. Это было математически доказано в 1908 г. В. Вайнбергом и независимо от него – эксцентричным математиком Г. Х. Харди, который однажды, к слову, как свидетельствует книга для записей пари его (и моего) колледжа, принял от своего приятеля такое пари: “Бьюсь об заклад, что завтра взойдет солнце; если нет, то обязуюсь выплачивать ему полпенни пожизненно”. Но дать исчерпывающий ответ Флемингу Дженкину в понятиях корпускулярной генетики смогли только основатели современной генетики популяций: Р. Э. Фишер и его коллеги. В этом была своя ирония, поскольку, как мы увидим в главе 11, ведущие последователи Менделя на заре XX века считали себя антидарвинистами. Фишер и его единомышленники доказали, что дарвиновский отбор возможен, а проблема, поставленная Дженкином, как выяснилось, изящно решается, если эволюционным изменением считать изменение относительной частоты встречаемости отдельных наследственных частиц или генов, каждый из которых либо присутствует в данном конкретном организме, либо нет. Дарвинизм после Фишера получил название неодарвинизма. Его цифровая природа – это не просто оказавшийся верным любопытный факт насчет генетических информационных технологий. По всей вероятности, она – необходимое предварительное условие, без которого дарвинизм вообще невозможен.
Дискретные цифровые ячейки в нашей электронной технике могут находиться только в двух состояниях, которые принято обозначать как 1 и 0, но с таким же успехом вы можете представлять их себе как “высоко и низко”, “включено и выключено”, “туда и обратно” – важно только, чтобы их можно было четко отличить друг от друга и чтобы паттерн их состояний мог быть “считан” и преобразован во что-нибудь. Для хранения этих “единиц” и “нулей” электронные технологии используют различные физические носители, в том числе магнитные диски, магнитную ленту, перфокарты и перфоленту, а также интегральные “схемы”, состоящие из множества крошечных транзисторов.
Основной носитель информации в семенах ивы, муравьях и вообще во всех живых клетках имеет не электронную, а химическую природу. В данном случае используется способность некоторых типов молекул к “полимеризации”, то есть к объединению в протяженные цепи какой угодно длины. Полимеры бывают самыми разными. Например, полиэтилен – полимеризованный этилен – состоит из небольших молекул вещества, называемого этиленом, собранных в длинные цепочки. А крахмал и целлюлоза – это полимеризованные сахара. Некоторые из полимерных цепей неоднородны: они образованы не одинаковыми небольшими молекулами вроде этилена, а двумя или более разновидностями таких молекул. Едва в полимерной цепи возникает подобная гетерогенность, как сразу же становится теоретически возможно и возникновение информационных технологий. Если цепь состоит из двух видов молекул, то ничто не мешает обозначить их как 1 и 0 и – при условии что цепь достаточно протяженна – хранить на ней любое количество информации любого сорта. Те полимеры, которые используются для этой цели в живых клетках, называются полинуклеотидами. Две основные разновидности полинуклеотидов сокращенно называются ДНК и РНК. Обе представляют собой цепочки из небольших молекул, называемых нуклеотидами. Как у ДНК, так и у РНК цепи гетерогенные, состоящие из нуклеотидов четырех разных типов. Тут-то, разумеется, и открывается возможность для хранения информации. Информационная технология живой клетки использует не два различных состояния, 1 и 0, а целых четыре, которые мы можем условно обозначить как А, Т, Ц и Г. Принципиальная разница между нашей двоичной информатикой и технологией живых клеток, использующей четырехзначный код, совсем невелика.
В конце главы 1 я уже упоминал, что информационной емкости одной человеческой клетки достаточно для того, чтобы вместить Британскую энциклопедию, все 30 томов, три или четыре раза с лишним. Соответствующая цифра для семян ивы или для муравьев мне неизвестна, но она будет не менее ошеломляющей. В ДНК одного спермия лилии или сперматозоида саламандры хватит емкости, чтобы разместить 60 копий Британской энциклопедии. Количество информации в ДНК некоторых амеб, несправедливо называемых “простейшими”, соответствует 1000 Британских энциклопедий.
Как ни удивительно, но на самом деле в клетке – человеческой, скажем, – используется, по-видимому, не более 1 % генетической информации, что примерно соответствует одному тому Британской энциклопедии. Зачем нужны остальные 99 %, никому не известно. В одной из своих предыдущих книг я высказал предположение, что эта ДНК может быть паразитической, находящейся на иждивении у работающего 1 %, – данная мысль позже была подхвачена молекулярными биологами под именем теории “эгоистичной ДНК”. У бактериальной клетки информационная емкость примерно в 1000 раз меньше, чем у человеческой, и используется практически полностью – для паразитов места маловато. Она способна вместить “всего-навсего” одну копию Нового Завета!
Современные генные инженеры уже владеют такими методами, которые позволяют вписать в ДНК бактерии Новый Завет и вообще все что угодно. В любых информационных технологиях “значение” символов является произвольным, и ничто не мешает нам установить соответствие между, скажем, тройками знаков четырехбуквенного алфавита ДНК и 26 буквами нашего алфавита (этого хватило бы для обозначения всех заглавных и строчных букв и еще для 12 знаков препинания). К сожалению, на то, чтобы записать Новый Завет в бактерию, понадобится где-то пять человеко-веков, так что я сомневаюсь, что кому-нибудь захочется с этим возиться. Если бы это было сделано, то, учитывая скорость размножения бактерий, можно было бы печатать Новый Завет тиражом 10 млн в день. Умей люди разбирать алфавит ДНК, это была бы мечта миссионера, но – увы! – буквы у такого издания были бы столь маленькими, что все 10 млн копий смогли бы одновременно танцевать на булавочной головке.
Память ЭВМ условно принято подразделять на ПЗУ и ОЗУ. ПЗУ означает “постоянное запоминающее устройство” – то, что называется “только для чтения”. Но точнее было бы сказать “память для однократной записи и многократного чтения”. Расположение нулей и единиц “нарезается” при ее производстве раз и навсегда. Оно останется неизменным на все время существования запоминающего устройства, и информация, записанная таким образом, может быть считана сколько угодно раз. Другая разновидность электронной памяти, называемая ОЗУ, может не только считываться, но и “писаться” (к не слишком изящному компьютерному сленгу привыкаешь довольно быстро). Таким образом, ОЗУ может все, что может ПЗУ, и даже больше. Аббревиатура ОЗУ расшифровывается как оперативное запоминающее устройство. Главным свойством ОЗУ является то, что в любую его часть вы можете помещать любой паттерн из единиц и нулей так часто, как только захотите. Почти вся память компьютера представляет собой ОЗУ. Когда я печатаю эти слова, они сразу же направляются в ОЗУ. Программа подготовки текстов, контролирующая этот процесс, также находится в ОЗУ, хотя теоретически она могла бы быть записана на ПЗУ и более никогда не меняться. ПЗУ используется для ограниченного набора тех стандартных программ, которыми вы пользуетесь постоянно, и в них вы не сможете ничего изменить, даже если захотите.
ДНК – это ПЗУ. Информация с нее может считываться миллионы раз, но записывается лишь однажды – в момент зарождения той клетки, в которой эта ДНК находится. В клетках любого индивидуума ДНК “зашита при производстве” и на протяжении всей его жизни не меняется, если не считать случайных повреждений, происходящих крайне редко. При этом с нее могут сниматься копии. При каждом клеточном делении ДНК удваивается. Порядок нуклеотидов А, Т, Ц и Г добросовестно воспроизводится в каждой новой клетке из тех триллионов, что образуются в ходе развития ребенка. Когда происходит зачатие нового индивидуума, в его ПЗУ – то есть ДНК – “отжигается” новый и уникальный набор данных, который останется с ним на всю жизнь и будет скопирован во все клетки его организма (за исключением половых клеток, в каждую из которых, как мы увидим, попадет только половина его ДНК, выбранная наугад).
Любая машинная память, как ПЗУ, так и ОЗУ, является адресной. Другими словами, каждая ячейка этой памяти имеет свое обозначение – как правило, номер, но это не более чем общепринятая условность. Очень важно понимать различие между адресом ячейки памяти и ее содержимым. Каждую ячейку можно идентифицировать по ее адресу. Например, первые две буквы этой главы, “За”, занимают в настоящий момент в ОЗУ моего компьютера ячейки 6446 и 6447, а всего там таких ячеек 65 536. В другой раз содержимое этих двух ячеек может оказаться иным. Содержимое ячейки – это та информация, которая была записана туда последней. У ячеек ПЗУ тоже есть и адрес, и содержимое. Отличие в том, что здесь любое содержимое привязано к своему адресу раз и навсегда.
ДНК организована в нитчатые структуры, называемые хромосомами. Они напоминают длинную компьютерную ленту с записанными данными. Вся информация, содержащаяся в ДНК, имеет свой адрес в том же самом смысле, что и данные, записанные на ПЗУ, да и на ленту тоже. Конкретные номера или наименования, которыми обозначается тот или иной адрес, произвольны – точно так же, как и в случае с компьютерной памятью. Принципиально то, что любое определенное местоположение на моей ДНК строго соответствует определенному местоположению на вашей ДНК: у них один и тот же адрес. Содержимое “ячейки” 321762 в моей ДНК может быть то же самое, что и у вашей “ячейки” 321762, а может и отличаться. Но моя “ячейка” 321762 занимает в моих клетках абсолютно то же самое местоположение, что и ваша “ячейка” 321762 в ваших клетках. Под “местоположением” в данном случае имеется в виду местоположение на конкретной хромосоме. Точное физическое положение самой хромосомы в клетке значения не имеет и может меняться, так как хромосома плавает в жидкости. Однако порядок расположения “ячеек памяти” вдоль хромосомы четко определен, и каждая “ячейка” имеет свой точный адрес, так же как и каждая единица информации на магнитной ленте не меняет своего местоположения от того, разбросана эта лента по полу или аккуратно намотана на катушку. Все мы, люди, обладаем одинаковым набором адресов ДНК, но содержимое этих адресов может быть разным. Вот основная причина того, почему мы все не похожи друг на друга.
У организмов других видов набор адресов не такой. Например, у шимпанзе 48 хромосом, а не 46, как у нас. “Адреса ячеек” по разные стороны межвидового барьера не соответствуют друг другу, и потому сравнивать их содержимое адрес за адресом, строго говоря, невозможно. Тем не менее у таких близкородственных видов, как шимпанзе и человек, имеются настолько большие общие куски ДНК с одинаковой последовательностью содержимого, что нам, бесспорно, позволительно считать эти куски по сути идентичными друг другу, хотя применить к обоим видам абсолютно одну и ту же систему адресации мы и не можем. Определяющей особенностью вида является то, что ДНК всех его представителей имеет одну и ту же систему адресации. Сделав поправку на редкие и несущественные исключения, можно сказать, что все представители вида обладают одинаковым количеством хромосом и что любое конкретное местоположение на какой-либо хромосоме будет у всех представителей одного вида обозначаться одним и тем же номером. В пределах вида может различаться только содержимое адресов, но не сами адреса.
Теперь поговорим о том, как возникают различия в содержимом, – и тут я должен подчеркнуть, что речь идет исключительно о тех организмах, которые, вроде нас с вами, размножаются половым путем. Наши сперматозоиды и яйцеклетки содержат по 23 хромосомы. Каждая “ячейка памяти” любого из моих сперматозоидов соответствует определенному “адресу” в любом другом моем сперматозоиде, так же как и в любой из ваших яйцеклеток (или сперматозоидов). Все остальные мои клетки содержат вдвое больше хромосом – 46. В таких клетках каждый из адресов используется дважды. Любая из них содержит две хромосомы № 9 и две ячейки с адресом 7230 хромосомы № 9. Содержимое этих двух адресных ячеек может совпадать или не совпадать друг с другом, как оно может совпадать или не совпадать с содержимым тех же ячеек у других представителей нашего вида. Когда из обычной клетки, имеющей 46 хромосом, образуется сперматозоид, у которого 23 хромосомы, в него попадает только одна из каждой пары адресных ячеек. Какая именно – дело случая. То же самое происходит и при производстве яйцеклеток. В результате получается, что любой новый сперматозоид и любая новая яйцеклетка уникальны в том, что касается содержимого их адресных ячеек, хотя сама система адресации будет у всех представителей данного вида одинаковой (исключения не принципиальны и не стоят того, чтобы мы сейчас на них отвлекались). Когда происходит оплодотворение яйцеклетки сперматозоидом, комплект из 46 хромосом, естественно, восстанавливается, и его копия попадает в каждую клетку развивающегося зародыша.
Я уже говорил, что записать информацию на ПЗУ можно только однократно, при его изготовлении. Справедливо это и для ДНК в клетках, если не считать случайных ошибок, время от времени происходящих при копировании. Однако совокупная база данных, состоящая из ПЗУ всего вида, может быть в некотором смысле конструктивно переписана. Из поколения в поколение выживание и репродуктивный успех особей данного вида, будучи неслучайными, эффективно “вносят усовершенствования” в те инструкции по выживанию, которые хранит генетическая память вида. Эволюционное изменение вида в значительной степени заключается в том, что с течением поколений меняется общее число копий каждого возможного варианта содержимого для каждой адресной ячейки ДНК. Разумеется, в любой конкретный момент времени каждая копия находится внутри своего организма и никуда оттуда не девается. Однако для эволюции важно другое: чтобы изменялась частота встречаемости альтернативных вариантов содержимого в каждой адресной ячейке в популяции. Система адресации остается прежней, однако общая статистическая картина содержания ячеек из века в век меняется.







