355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ольга Косарева » Шпаргалка по общей электронике и электротехнике » Текст книги (страница 2)
Шпаргалка по общей электронике и электротехнике
  • Текст добавлен: 5 октября 2016, 02:27

Текст книги "Шпаргалка по общей электронике и электротехнике"


Автор книги: Ольга Косарева



сообщить о нарушении

Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]

8. ПРИМЕСНАЯ ЭЛЕКТРОПРОВОДНОСТЬ

Если в полупроводнике имеются примеси других веществ, то дополнительно к собственной электропроводности появляется еще примесная электропроводность, которая в зависимости от рода примеси может быть электронной или дырочной. Например, германий, будучи четырехвалентным, обладает примесной электронной электропроводностью, если к нему добавлены пятивалентные сурьма и мышьяк. Их атомы взаимодействуют с атомами германия только четырьмя своими электронами, а пятый электрон отдают в зону проводимости. В результате получается некоторое количество дополнительных электронов проводимости. Примеси, у которых атомы отдают электроны, называют донорами. Атомы доноров, теряя электроны, сами заряжаются положительно.

Полупроводники с преобладанием электронной электропроводности называют электронными полупроводниками или полупроводниками п-типа.

Вещества, отбирающие электроны и создающие примесную дырочную электропроводность, называют акцепторами. Атомы акцепторов, захватывая электроны, сами заряжаются отрицательно.

Полупроводники с преобладанием дырочной электропроводности называют дырочными полупроводниками или полупроводниками р-типа.

В полупроводниковых приборах используются главным образом полупроводники, содержащие донорные или акцепторные примеси и называемые примесными. При обычных рабочих температурах в таких полупроводниках все атомы примеси участвуют в создании примесной электропроводности, т. е. каждый атом примеси либо отдает, либо захватывает один электрон.

Чтобы примесная электропроводность преобладала над собственной, концентрация атомов донорной примеси или акцепторной примеси должна превышать концентрацию собственных носителей заряда.

Носители заряда, концентрация которых в данном полупроводнике преобладает, называются основными. Ими являются электроны в полупроводнике п-типа и дырки в полупроводнике р-типа. Неосновными называют носители заряда, концентрация которых меньше, чем концентрация основных носителей. Концентрация неосновных носителей в примесном полупроводнике уменьшается во столько раз, во сколько увеличивается концентрация основных носителей.

Если в германии было определенное число электронов, а после добавления донорной примеси концентрация электронов возросла в 1000 раз, то концентрация неосновных носителей(дырок)уменьшится в 1000 раз, т. е. будет в миллион раз меньше концентрации основных носителей. Это объясняется тем, что при увеличении в 1000 раз концентрации электронов проводимости, полученных от донорных атомов, нижние энергетические уровни зоны проводимости оказываются занятыми и переход электронов из валентной зоны возможен только на более высокие уровни зоны проводимости. Но для такого перехода электроны должны иметь большую энергию и поэтому значительно меньшее число электронов может его осуществить. Соответственно значительно уменьшается число дырок проводимости в валентной зоне.

Таким образом, ничтожно малое количество примеси существенно изменяет характер электропроводности и величину проводимости полупроводника. Получение полупроводников с таким малым и строго дозированным содержанием нужной примеси является весьма сложным процессом. При этом исходный полупроводник, к которому добавляется примесь, должен быть очень чистым.

9. ДИФФУЗИЯ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКАХ

В полупроводниках, помимо тока проводимости, может быть еще диффузионный ток, причиной возникновения которого является не разность потенциалов, а разность концентраций носителей. Выясним сущность этого тока.

Если концентрация носителей заряда распределена равномерно по полупроводнику, то она является равновесной. Под влиянием каких-либо внешних воздействий в разных частях полупроводника концентрация может стать неодинаковой, т. е. неравновесной. Например, если часть полупроводника подвергнуть действию излучения, то в ней усилится процесс генерации пар носителей и возникнет дополнительная концентрация носителей, называемая избыточной.

Так как носители имеют собственную кинетическую энергию, то они всегда стремятся переходить из мест с более высокой концентрацией в места с меньшей концентрацией,т. е. стремятся к выравниванию концентрации.

Явление диффузии наблюдается для многих частиц вещества, а не только для подвижных носителей заряда. Всегда причиной диффузии является неодинаковость концентрации частиц, а сама диффузия совершается за счет собственной энергии теплового движения частиц.

Диффузное движение подвижных носителей заряда (электронов и дырок) представляет собой диффузный ток /. Этот ток так же, как ток проводимости, может быть электронным или дырочным. Плотности этих токов определяются следующими формулами: i = eDn ?n /?x и ip=– eDp?p /?x, где величины ?n/?x и ?с/?x являются так называемыми градиентами концентрации, а Dnи Dp– коэффициенты диффузии. Градиент концентрации характеризует, насколько резко меняется концентрация вдоль расстояния х, т. е. каково изменение концентрации nили pна единицу длины. Если разности концентрации нет, то ?n=0 или ?p =0 и никакого тока диффузии не возникает. А чем больше изменение концентрации ?n или ?p на данном расстоянии ?x, тем больше ток диффузии.

Коэффициент диффузии характеризует интенсивность процесса диффузии. Он пропорционален подвижности носителей, различен для разных веществ и зависит от температуры. Коэффициент диффузии для электронов всегда больше, чем для дырок.

Знак «минус» в правой части формулы для плотности дырочного диффузионного тока поставлен потому, что дырочный ток направлен в сторону уменьшения концентрации дырок.

Если за счет какого-то внешнего воздействия в некоторой части полупроводника создана избыточная концентрация носителей, а затем внешнее воздействие прекратилось, то избыточные носители будут рекомбинировать и распространяться путем диффузии в другие части полупроводника.

Величина, характеризующая процесс убывания избыточной концентрации во времени, называется временем жизни неравновесных носителей.

Рекомбинация неравновесных носителей происходит в объеме полупроводника и на его поверхности и сильно зависит от примесей, а также от состояния поверхности.

При диффузном распространении неравновесных носителей, например электронов, вдоль полупроводника концентрация их вследствие рекомбинации также убывает с расстоянием.

10. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ОТСУТСТВИИ ВНЕШНЕГО НАПРЯЖЕНИЯ

Область на границе двух полупроводников с различными типами электропроводности называется электронно-дырочным, или р-п-переходом.

Электронно-дырочный переход обладает свойством несимметричной проводимости, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов, применяемых в радиоэлектронике, основана на использовании свойств одного или нескольких р-п-переходов. Рассмотрим физические процессы в таком переходе.

Пусть внешнее напряжение на переходе отсутствует. Так как носители заряда в каждом полупроводнике совершают беспорядочное тепловое движение, т. е. имеются собственные скорости, то происходит их диффузия (проникновение) из одного полупроводника в другой. Носители перемещаются оттуда, где их концентрация велика, туда, где концентрация мала. Таким образом, из полупроводника п-типа в полупроводник р-типа диффундируют электроны, а в обратном направлении из полупроводника р-типа в полупроводник п-типа диффундируют дырки.

В результате диффузии носителей по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды различных знаков. В области п возникает положительный объемный заряд. Он образован главным образом положительно заряженными атомами до-норной примеси и в небольшой степени пришедшими в эту область дырками. Подобно этому в области р возникает отрицательный объемный заряд, образованный отрицательно заряженными атомами акцепторной примеси и отчасти пришедшими сюда электронами.

Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов и электрическое поле.

В р-п-переходе возникает потенциальный барьер, препятствующий диффузионному переходу носителей.

Чем больше концентрация примесей, тем выше концентрация основных носителей и тем большее количество их диффундирует через границу. Плотность объемных зарядов возрастает и увеличивается контактная разность потенциалов, т. е. высота потенциального барьера. При этом толщина р-п-перехода уменьшается.

Одновременно с диффузным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из п-области обратно в р-область и электроны из р-области обратно в п-область. При определенной температуре р-п-переход находится в состоянии динамического равновесия. Каждую секунду через границу в противоположных направлениях диффундирует определенное количество электронов и дырок, а под действием поля такое же их количество дрейфует в обратном направлении.

Перемещение носителей за счет диффузии является диффузионным током, а движение носителей под действием поля представляет собой ток проводимости. При динамическом равновесии перехода эти токи равны и противоположны по направлению. Поэтому полный ток через переход равен нулю, что и должно быть при отсутствии внешнего напряжения. Каждый из токов имеет электронную и дырочную составляющие. Величины этих составляющих различны, так как они зависят от концентрации и подвижности носителей. Высота потенциального барьера всегда автоматически устанавливается именно такой, при которой наступает равновесие, т. е. диффузионный ток и ток проводимости взаимно компенсируют друг друга.

11. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ДЕЙСТВИИ ПРЯМОГО НАПРЯЖЕНИЯ

Пусть источник внешнего напряжения подключен положительным полюсом к полупроводнику р-типа, а отрицательным полюсом – к полупроводнику п-типа.

Электрическое поле, создаваемое в р-п-переходе прямым напряжением, действует навстречу полю контактной разности потенциалов. Результирующее поле становится слабее и разность потенциалов в переходе уменьшается, т. е. высота потенциального барьера понижается, возрастает диффузионный ток. Ведь пониженный барьер может преодолеть большее количество носителей. Ток проводимости почти не изменяется, так как он зависит главным образом только от числа неосновных носителей, попадающих за счет своих тепловых скоростей в область р-п-перехода из объемов п– и р-областей.

При отсутствии внешнего напряжения диффузный ток и ток проводимости равны и взаимно компенсируют друг друга. При прямом напряжении iдиф> iпров и поэтому полный ток через переход, т. е. прямой ток, уже не равен нулю: iпр = iдиф – iпров> 0.

Если барьер значительно понижен, то iдиф»iпров и можно считать, что iпр ~ iдиф, т. е. прямой ток в переходе является диффузионным.

Явление введения носителей заряда через понизившийся потенциальный барьер в область, где эти носители являются неосновными, называется инжек-цией носителей заряда. Область полупроводникового прибора, из которой инжектируются носители, называется эмиттерной областью, или эмиттером. А область, в которую инжектируются неосновные для этой области носители заряда, называется базовой областью, или базой. Таким образом, если рассматривать инжекцию электронов, то п-область является эмиттером, а р-область – базой. Для инжекции дырок, наоборот, эмиттером служит р-область, а п-об-ласть является базой.

В полупроводниковых приборах обычно концентрация примесей, а следовательно, и основных носителей в п– и р-областях весьма различна. Поэтому инжекция из области с более высокой концентрацией основных носителей резко преобладает. Соответственно этой преобладающей инжекции и дают название эмиттер и база. Например, если пп»рр, то инжек-ция электронов из п-области в р-область значительно превосходит инжекцию дырок в обратном направлении. В данном случае эмиттером считают п-область, а базой р-область, так как инжекцией дырок можно пренебречь.

При прямом напряжении не только понижается потенциальный барьер, но и уменьшается толщина запирающего слоя. Это приводит к уменьшению сопротивления запирающего слоя. Его сопротивление в прямом направлении получается малым.

Поскольку высота барьера при отсутствии внешнего напряжения составляет несколько десятых долей вольта, то для значительного понижения барьера и существенного уменьшения сопротивления запирающего слоя достаточно подвести к р-п-переходу прямое напряжение всего лишь порядка десятых долей вольта. Поэтому значительный прямой ток можно получить при очень небольшом прямом напряжении.

Очевидно, что при некотором прямом напряжении можно вообще уничтожить потенциальный барьер в р-п-переходе. Тогда сопротивление перехода, т. е. запирающего слоя, станет близко к нулю и им можно будет пренебречь. Прямой ток в этом случае возрастет и будет зависеть от сопротивления объемов пи р-областей. Теперь уже этими сопротивлениями пренебрегать нельзя, так как именно они остаются в цепи и определяют величину тока.

12. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ОБРАТНОМ НАПРЯЖЕНИИ

Пусть источник внешнего напряжения подключен положительным полюсом к области п, а отрицательным – к области р. Под действием такого обратного напряжения через проход протекает очень небольшой обратный ток, что объясняется следующим образом. Поле, создаваемое обратным напряжением, складывается с полем контактной разности потенциалов. Результирующее поле усиливается. Уже при небольшом повышении барьера диффузионное перемещение основных носителей через переход прекращается, так как собственные скорости носителей недостаточны для преодоления барьера. А ток проводимости остается почти неизменным, поскольку он определяется главным образом числом неосновных носителей, попадающих в область р-п-перехода из объемов пр-областей. Выведение неосновных носителей через р-п-переход ускоряющим электрическим полем, созданным внешним напряжением, называют экстракцией носителей заряда.

Таким образом, обратный ток представляет собой практически ток проводимости, образованный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико. Действительно, при повышении обратного напряжения поле в области перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев в глубь пи р– областей. Поэтому с увеличением обратного напряжения увеличивается не только высота потенциального барьера, но и толщина запирающего слоя. Этот слой еще больше обедняется носителями, и его сопротивление значительно возрастает.

Уже при сравнительно небольшом обратном напряжении обратный ток достигает почти постоянной величины, которую можно назвать током насыщения. Это объясняется тем, что количество неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается. Рассмотрим несколько подробнее, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в п-области движутся по направлению к положительному полюсу источника, т. е. удаляются от р-п-пере-хода. А в р-области, удаляясь от р-п-перехода, движутся дырки. У отрицательного электрода они рекомбинируют с электронами, которые приходят из провода, соединяющего этот электрод с отрицательным полюсом источника.

Поскольку из п-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому р-область заряжается отрицательно, ее дырки заполняются приходящими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси.

Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. Такой кратковременный ток подобен зарядному току конденсатора. По обе стороны р-п-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с плохим диэлектриком, в котором имеется ток утечки (его роль играет обратный ток). Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток р-п-перехода сравнительно мало зависит от напряжения.

13. ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ПОЛУПРОВОДНИКОВОГО ДИОДА

Для любого электрического прибора важна зависимость между током через прибор и приложенным напряжением. Зная эту зависимость, можно определить ток при заданном напряжении или, наоборот, напряжение, соответствующее заданному току.

Если сопротивление прибора является постоянным, не зависящим от тока или напряжения, выражается законом Ома: i= u/R, или i= Gu.

Ток прямо пропорционален напряжению. Коэффициентом пропорциональности является проводимость G =1/R.

График зависимости между током и напряжением называется «вольт-амперная характеристика» данного прибора. Для прибора, подчиняющегося закону Ома, характеристикой является прямая линия, проходящая через начало координат.

Приборы, подчиняющиеся закону Ома и имеющие вольт-амперную характеристику в виде прямой линии, проходящей через начало координат, называются линейными.

Существуют также приборы, у которых сопротивление не является постоянным, а зависит от напряжения или тока. Для таких приборов связь между током и напряжением выражается не законом Ома, а более сложным образом, и вольт-амперная характеристика не является прямой линией. Эти приборы называются нелинейными.

Электронно-дырочный переход по существу представляет собой полупроводниковый диод.

Обратный ток при увеличении обратного напряжения сначала быстро возрастает. Это вызвано тем, что уже при небольшом обратном напряжении за счет повышения потенциального барьера в переходе резко снижается диффузионный ток, который направлен навстречу току проводимости. Следовательно, полный ток резко увеличивается. Однако при дальнейшем повышении обратного напряжения ток растет незначительно, т. е. наступает явление, напоминающее насыщение. Рост тока происходит вследствие нагрева перехода током, за счет утечки по поверхности, а также за счет лавинного размножения носителей заряда, т. е. увеличения числа носителей заряда в результате ударной ионизации.

Явление это состоит в том, что при более высоком обратном напряжении электроны приобретают большую скорость и, ударяясь в атомы кристаллической решетки, выбивают из них новые электроны, которые в свою очередь разгоняются полем и также выбивают из атомов электроны. Такой процесс усиливается с повышением напряжения.

При некотором значении обратного напряжения возникает пробой p-n-перехода, при котором обратный ток резко возрастает и сопротивление запирающего слоя резко уменьшается. Следует различать электрический и тепловой пробой p-n-перехода. Электрический пробой является обратимым, если при этом пробое в переходе не происходит необратимых изменений (разрушений структуры вещества). Поэтому работа диода в режиме электрического пробоя допустима. Могут существовать два вида электрического пробоя, которые нередко сопутствуют друг другу: лавинный и туннельный.

Лавинный пробой объясняется рассмотренным лавинным размножением носителей за счет ударной ионизации. Этот пробой характерен для p-n-перехо-дов большой толщины, получающихся при сравнительно малой концентрации примесей в полупроводниках. Пробивное напряжение для лавинного пробоя обычно составляет десятки или сотни вольт.

Туннельный пробой объясняется весьма интересным явлением туннельного эффекта. Сущность его состоит в том, что при достаточно сильном поле с напряженностью более 105В/см, действующем в p-з-переходе малой толщины, некоторые электроны проникают через переход без изменения своей энергии. Тонкие переходы, в которых возможен туннельный эффект, получаются при высокой концентрации примесей. Пробивное напряжение, соответствующее туннельному пробою, обычно не превышает единиц вольт.

14. ЕМКОСТЬ ПОЛУПРОВОДНИКОВОГО ДИОДА

Р-п-переход при обратном напряжении аналогичен конденсатору со значительной утечкой в диэлектрике. Запирающий слой имеет очень высокое сопротивление и по обе его стороны расположены два разноименных объемных заряда, созданных ионизированными атомами донорной и акцепторной примеси. Поэтому p-n-переход обладает емкостью, подобной емкости конденсатора с двумя обкладками. Эту емкость называют барьерной емкостью.

Барьерная емкость, как и емкость обычных конденсаторов, возрастает при увеличении площади p-n-перехода и диэлектрической проницаемости вещества полупроводника и уменьшении толщины запирающего слоя. Особенность барьерной емкости состоит в том, что она является нелинейной емкостью, т. е. изменяется при изменении напряжения на переходе. Если обратное напряжение возрастает, то толщина запирающего слоя увеличивается. А так как этот слой играет роль диэлектрика, то барьерная емкость уменьшается.

Барьерная емкость вредно влияет на выпрямление переменного тока, так как она шунтирует диод и через нее на более высоких частотах проходит переменный ток. Но вместе с тем имеется и полезное применение барьерной емкости. Специальные диоды, называемые варикапами, используют в качестве конденсаторов переменной емкости для настройки колебательных контуров, а также в некоторых схемах, работа которых основана на применении нелинейной емкости. В отличие от обычных конденсаторов переменной емкости, в которых изменение емкости происходит механическим путем, в варикапах это изменение достигается регулировкой величины обратного напряжения. Способ настройки колебательных контуров с помощью варикапов называют электронной настройкой.

При прямом напряжении диод, кроме барьерной емкости, обладает так называемой диффузионной емкостью, которая также нелинейна и возрастает при увеличении прямого напряжения. Диффузионная емкость характеризует накопление подвижных носителей заряда в п– и p-областях при наличии прямого напряжения на переходе. Она существует только при прямом напряжении, когда носители заряда в большом количестве диффундируют через пониженный потенциальный барьер и, не успев рекомбинировать, накапливаются в п– и p-областях. Так, например, если в некотором диоде p-область является эмиттером, а п-область – базой, то при подаче прямого напряжения из p-области в п-область через переход устремляется большое количество дырок и, следовательно, в п-области появляется положительный заряд. Одновременно под действием источника прямого напряжения из провода внешней цепи в п-область входят электроны и в этой области возникает отрицательный заряд. Дырки и электроны в п-области не могут мгновенно рекомбинировать. Поэтому каждому значению прямого напряжения соответствует определенная величина двух равных разноименных зарядов, накопленных в п-области за счет диффузии носителей через переход.

Диффузионная емкость значительно больше барьерной, но она в большинстве случаев не оказывает существенного влияния на работу диода и использовать ее также не удается, так как она всегда зашунти-рована малым прямым сопротивлением самого диода. Практическое значение, как правило, имеет только барьерная емкость.


    Ваша оценка произведения:

Популярные книги за неделю