355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Нурбей Гулиа » Удивительная механика » Текст книги (страница 3)
Удивительная механика
  • Текст добавлен: 6 октября 2016, 00:44

Текст книги "Удивительная механика"


Автор книги: Нурбей Гулиа



сообщить о нарушении

Текущая страница: 3 (всего у книги 15 страниц) [доступный отрывок для чтения: 6 страниц]

В помощь воздуху – масло

Прослеживая мысленно все этапы работы аккумулятора, я вдруг понял, что под впечатлением своей неудачи с воздуховозом упустил из виду очень существенный момент. Действительно, решив бороться с расширением и охлаждением газа после выхода его из баллона, я совсем не подумал о том, что почти то же самое происходит одновременно и внутри баллона. С каждым мгновением газа в нем становится все меньше и меньше, газ все больше расширяется, давление его падает, а следовательно, снижается и количество выделяемой энергии. И если сначала мы получаем с литра сжатого газа огромную энергию, то потом, когда давление его приближается к атмосферному, в аккумуляторе уже не энергия, а пшик.

Хорошо бы не давать газу расширяться так сильно, подумал я. Допустим, с 50 МПа довести давление этак до 20 и на этом остановиться. Не так уж и трудно это сделать, если, например, взять цилиндрический баллон и начать перемещать внутри него поршень. И охлаждение было бы значительно меньше, и газ можно было бы не выпускать в атмосферу, оставляя его все в том же герметичном баллоне, просто увеличивая его объем. А это, в свою очередь, позволило бы использовать не только воздух, но и более подходящий для сжатия газ, поинертнее, скажем, азот или гелий. Дело в том, что воздух под большим давлением окисляет смазку, которая присутствует везде и всюду, а азот и гелий – нет.


Гидрогазовый аккумулятор

Кстати говоря, чисто воздушный аккумулятор чем-то напоминает резиновый – и тут и там упругое тело (воздух, резина) само взаимодействует с рабочим органом, непосредственно совершает работу. А вот резина и привязанный к ней шнурок разделяют обязанности – резина энергию накапливает, а шнурок совершает работу. Шнурок нерастяжим, и поэтому ему легче взаимодействовать с рабочим органом, например с осью колеса. Будь тут одна резина, было бы много потерь энергии из-за трения. Недаром когда-то в рогатке поместили кусок кожи между резинкой и камнем – так сказать, рабочим телом. Без этой кожи рогатка стреляла бы гораздо хуже.

Надо бы придумать что-нибудь подобное и для воздушного аккумулятора, решил я. И поиски привели меня к уже давно известному устройству, принцип работы которого заключался в следующем.

Заливаем в баллон со сжатым газом машинное масло и разделяем их поршнем или резиновой диафрагмой. Сжатый газ давит на поршень, тот на масло, а оно уже поступает под давлением в гидромашину, которая очень похожа на пневмодвигатель или даже на паровую машину – те же цилиндры, поршни, золотники. Только вместо газа или пара гидромашину приводит в действие масло. Масло не сжимается, поэтому потерь энергии в такой машине во много раз меньше, чем в воздушном пневмодвигателе. Да и смазки не нужно – машинное масло само прекрасно смазывает трущиеся детали. Несжимаемое масло здесь как раз играет роль нерастяжимого шнурка.

Это тоже был аккумулятор – гидрогазовый, то есть состоящий из жидкости – масла – и газа. Но наряду с преимуществами перед чисто воздушным аккумулятором он имел и свои недостатки.

Главный недостаток – требовалось много масла. Чем более емкий аккумулятор мы хотим сделать, тем больше в нем должно быть сжатого воздуха. Масла, естественно, понадобится столько же, сколько и воздуха, не меньше. И еще – проходя через гидромашину, масло свободно стекает в бак – тяжелый, громоздкий, тем большего размера, чем больше масла. Если учесть, что здесь используется не один, а сразу несколько баллонов со сжатым воздухом и маслом, то можно себе представить, как это все увеличит размеры и массу аккумулятора!

Нет, размышлял я, так дело не пойдет. Куда мне такая громадина? Один только бак чего стоит… А нельзя ли обойтись совсем без него?

Половину баллона сначала занимает сжатый газ, вторую половину – масло. Попробуем сузить баллон посередине, между жидкостью и газом, поставив там запорный клапан. Изменим таким же образом и другие баллоны аккумулятора. Теперь сделаем вот что: пусть масло находится в нижней половине первого баллона, сжатый газ – в верхней. В остальных баллонах оставим сжатый газ только в верхних половинах, нижние оставим пустыми, а запорные клапаны перекроем. Причем последний баллон выполним только из нижней половинки.

Итак, весь газ сжат, энергия в нем накоплена – все готово к совершению работы. Сможет ли аккумулятор работать без бака?

Гидрогазовый аккумулятор без бака

Открываем запорный клапан первого баллона и выпускаем масло под давлением в гидромашину. Но после гидромашины направляем масло уже не в бак – его ведь нет, – а в пустую нижнюю половину следующего баллона. Когда он заполнится, открываем запорный клапан этого баллона, и масло, отработав в гидромашине, поступает в третий баллон. И так далее, при любом количестве баллонов, при любой емкости аккумулятора. В конце работы остается только заполненная маслом нижняя половинка последнего баллона. Все в порядке, энергия выделяется!

Зарядка аккумулятора должна происходить в обратной последовательности. Мы крутим гидромашину, и масло своим давлением поочередно сжимает газ в баллонах, переходя из одного в другой, при этом предыдущий баллон используется в качестве бака. Аккумулятор заряжен!

Это была уже действительно победа! Использовать в аккумуляторе огромной емкости постоянный небольшой объем масла и обойтись совсем без бака – раньше это казалось мне просто фантастичным.

Чтобы проверить правильность своих расчетов, я обратился к специалистам-гидравликам. И тут я по-настоящему оценил народную поговорку: «ум хорошо, а два лучше». Специалисты многое поправили в моей схеме, нашли такие «тонкости», о которых я и не подозревал. Разработанные нами впоследствии устройства были признаны изобретениями.

И все же полного удовлетворения у меня не было. Пристально изучая воздушный аккумулятор, я убедился, что при сильном сжатии многие газы просто-напросто сжижаются, и дальнейшее сжатие, если оно даже возможно, уже не дает желаемого эффекта.

Оказалось также, что нельзя закачивать газ под очень большим давлением в один баллон – не выдержит, разрушится стенка баллона, даже если она сделана из толстой стали. Надо помещать один в другой несколько баллонов, постепенно повышая давление от внешних к внутренним. Однако полноценным аккумулятором станет только внутренний, самый малый баллон, где наиболее высокое давление. Остальные будут практически балластом.

Значит, повышать давление более 40—50 МПа для аккумулирования энергии в сжатом газе невыгодно, то есть энергетический «потолок» здесь невысок. И хотя такие аккумуляторы в общем-то нужны и полезны, моей «капсулы» тут не найти.

Время шло, а «энергетическая капсула» продолжала пока оставаться мечтой.

«Капсула» разогревается

«Капсула» начинает теплеть, но с появлением загадочного «демона Максвелла» автор всерьез усомнился в правильности избранного пути…


Тепловой «банк»

Несмотря на то что с газовыми аккумуляторами решено было покончить, забыть я их никак не мог. Не давало покоя тепло – энергия, пропадающая при остывании горячего баллона после его закачки воздухом. Вернее, не пропадающая, а переходящая в окружающую атмосферу, но от этого не легче.

Хорошо, размышлял я, пусть газ при сжатии сильно нагревается, однако неужели нельзя спасти это тепло, не дать ему рассеяться? Тогда энергию сжатого газа можно было бы использовать не тотчас же после сжатия, а когда угодно.

Есть, конечно, целый ряд способов, позволяющих уберечь тепло от рассеивания. Еще наши предки, желая подольше сохранить горячим заварочный чайник на самоваре, накрывали его ватной «бабой». Кастрюлю с кашей с той же целью убирали под подушку. Да и мало ли еще примеров «укутывания» для сохранения тепла!

Но лучший способ сберечь тепло – это воспользоваться термосом. Я всегда удивлялся способности этого прибора долго, целый день, удерживать чай горячим. Пробовал разобраться – как устроен термос, что у него внутри.

Однажды, сняв крышку, я вынул из корпуса сверкающую зеркальную бутылочку с торчащим хвостиком внизу. Так как больше ничего особенного я не обнаружил и загадка термоса не была разгадана, я с замиранием сердца обломил кончик хвостика, надеясь заглянуть внутрь, под зеркальный слой. Послышался резкий свист воздуха, и все стихло. Посмотрев в крошечное отверстие бутылочки, я понял, что обманулся – ничего там не было.

Я поспешно вставил испорченный сосуд обратно в корпус и завинтил крышку. Внешне термос оставался тем же, а тепла, увы, уже не удерживал. Кипяток в нем, правда, остывал не так быстро, как, например, в чайнике, но и не так медленно, как раньше. Термос посчитали негодным и выбросили.

А я, заглянув в энциклопедию, нашел там статью про термос и выяснил его устройство. Оказывается, зеркальная бутылочка была не цельная, а состояла из двух стеклянных колб, вставленных одна в другую и позеркаленных особым способом. В пространство между ними заливают специальный раствор, содержащий соли серебра, и колбы нагревают. Стенки колб при этом покрываются тончайшей серебряной пленкой. Затем раствор выливают, воздух из этого пространства тщательно откачивают и отверстие запаивают. Вот и остается после него тоненький стеклянный хвостик, который я обломил…

Для чего же все это делается? Если мы нальем в термос горячую жидкость и заткнем его пробкой, то куда денется тепло? Окружающий воздух не нагреется – тепло не пройдет через безвоздушную прослойку между колбами. Излучиться в пространство, как излучается оно Солнцем или раскаленным металлом, тепло тоже не сможет – зеркальный слой отразит тепловые лучи, как свет, снова внутрь колбы. А внешняя колба позеркалена для того, чтобы тепловые и солнечные лучи снаружи не попали внутрь и не нагрели термос, особенно когда в нем находится холодная вода или мороженое. Поэтому термос одинаково хорошо сохраняет первоначальную температуру как холодных, так и горячих тел. Говорят, что он теплоизолирует их от окружающей среды. Тепло может «утечь» или «притечь» только через тоненькую «шейку», соединяющую обе колбы, или через пробку. А пробка очень плохо передает тепло.

Здесь следует заметить, что воздух между колбами должен быть откачан до очень высокого, почти «космического» вакуума. Если там остается даже ничтожное количество воздуха, даже его тысячная доля, то эффект термоса исчезает. Хоть молекул и становится намного меньше, но и длина их пробега увеличивается, а теплопроводность почти не падает! Вот такова эта удивительная физика!

Изобрел этот хитрый сосуд в самом конце позапрошлого века английский ученый Джеймс Дьюар; в его честь термос и другие сосуды, поддерживающие постоянную температуру, называют еще сосудами Дьюара. Вот куда бы надо помещать сжатый газ, чтобы он не охлаждался, а сохранял свое тепло подольше. Но сосуд Дьюара, рассчитанный на огромные давления аккумулятора, станет тогда очень сложным и дорогим; как говорится, игра здесь просто не стоит свеч.


«Сосуд Дьюара» – термос

Зачем же вообще помещать туда газ, да еще сжатый? Ведь значительно большее количество энергии можно накопить в заранее нагретых телах помассивнее, чем газ, например в жидкостях, – их и сжимать для этого не надо. Тогда давление нам уже не помешает, и сосуд Дьюара будет иметь свой обычный вид.

Килограмм сжатого до 50 МПа газа, как я подсчитал, может накопить 50 кДж энергии, в то время как литр воды, соответствующий по массе тому же килограмму, при нагревании всего на один градус уже накапливает одну большую калорию тепла, которая равна 4,2 кДж механической энергии. Если же нагревать литр воды от 0 до 100 °С, то в воде будет в восемь раз больше накопленной энергии, чем в килограмме сжатого до 50 МПа газа.

Все это показали несложные расчеты, которые я раньше делал на уроках в школе, откровенно говоря, довольно неохотно. Но теперь результат буквально ошеломил меня. Вот где надо искать настоящую «энергетическую капсулу»! Даже обыкновенная вода, нагреваемая до столь невысокой температуры, запасает огромное количество энергии. А что могут дать другие, новые материалы, которые, возможно, гораздо лучше воды накапливают тепло?

Мысль о новых теплоемких материалах отныне не покидала меня ни на минуту. Я жил в предвкушении сенсационных открытий.

Секреты плавления

В мечтах уже виделся сияющий кусочек неведомого пока материала, нагретый до чудовищной – в миллионы градусов – температуры. Этот кусочек, вобравший в себя гигантское количество тепловой энергии, следовало поместить в жароупорный «термос». Чтобы не расплавились стенки сосуда, кусочек должен быть «подвешен» в магнитном поле внутри «термоса»…

Эту фантастическую картину я рисовал моему школьному товарищу, когда мы до глубокой ночи провожали друг друга домой. А он жестоко и методично разбивал мои мечты одну за другой.

Во-первых, говорил он, при температуре свыше 3000—4000 °С почти все вещества превращаются в пар. Пара же в термосе много не уместишь. Во-вторых, столь высокую температуру не выдержит не только сосуд Дьюара, но и любой другой сосуд – он расплавится или сгорит.

Твердые или жидкие тела останутся в прежнем состоянии, если их нагревать до 1000—1500 °С, не более. Но при такой температуре они уже не подчиняются магниту, в магнитном поле их не «подвесишь». Можно, конечно, «подвешивать» небольшие количества расплавленного металла в высокочастотном электромагнитном поле, где металл поддерживается в расплавленном виде энергией поля. Однако потери электроэнергии на «подвешивание» здесь очень велики, для «энергетической капсулы» это не подходит.

Напомнил мне друг и о том, как мучаются физики-ядерщики, пытаясь хоть на краткий миг «запереть» сверхгорячую материю в магнитном поле, но из этого пока мало что получается. А у меня, дескать, и подавно ничего не выйдет. Большее, на что я могу рассчитывать, это раскалить докрасна камни, как в русской бане, а затем попробовать «извлечь» из них энергию, поливая водой. Пар же можно направить и в паровую машину, и…

Меня злили доводы друга, хотя я понимал, что он прав. Но где же выход? Мечты об «энергетической капсуле» рассеивались как дым. Я лег спать в раздумьях, и мне снилась русская баня…

А утром произошло следующее. Выйдя на кухню, я увидел в кастрюле на газу плавающие в кипятке какие-то странные предметы – зеленые и все в шипах. Оказалось, это термобигуди, которыми пользуются для укладки волос. Нагретые в кипятке, такие бигуди долго-долго остаются горячими. Да это же почти то, что нужно – накопитель тепла!

Я выпросил одну «бигудину» и бросил ее в кипяток вместе с такими же по массе кусочками дерева, пластмассы и металла. Затем одновременно вынул их и положил остывать. Поразительно, но «бигудина» сохраняла тепло в несколько раз дольше своих соседей. Не доверяя пальцам, я проверил это даже небольшим электротермометром, который взял в школьном физическом кабинете.


Термобигуди – накопитель плавления

Проделав опыт многократно, я заметил, что «бигудина» в отличие от других образцов остывала весьма необычно. Сначала температура ее падала довольно резко, потом, дойдя до 50—60 °С, держалась так очень долго. Затем «бигудина» опять быстро остывала до комнатной температуры.

Тут я не удержался и вскрыл «бигудину», чтобы посмотреть, что за механизм у нее внутри. Но там, кроме какой-то пастообразной массы, ничего не оказалось. Это был парафин или стеарин, из которых делают обыкновенные осветительные свечи. Чудеса!

Я купил килограмм парафина, расплавил его и залил в термос. В другой такой же термос я поместил воду, нагретую до одинаковой с парафином температуры. Результат был прежний. Когда вода уже остыла, парафин в термосе все еще оставался горячим и жидким. Наконец он затвердел, а после быстро остыл, почти как вода. Вода простояла горячей примерно сутки, а парафин – несколько дней.

И вдруг меня осенило. Конечно же, при затвердевании жидкости выделяется «скрытая» энергия, которая была затрачена при плавлении! Когда жидкость остывает, тепло постоянно отбирается от нее, но пока вся она не затвердеет, пока не застынет последняя капля, температура ее будет держаться на точке плавления. Для парафина – это 54 °С.

И наоборот, температура плавящегося тела, например льда, не поднимется ни на градус, пока последний его кусочек не расплавится, не превратится в жидкость. Все это я проходил в школе, обо всем этом написано в учебниках.

Оказывается, чтобы расплавить килограмм льда, нужно затратить 80 килокалорий, алюминия – 92,4, железа – 66, свинца – 6,3, ртути – 2,8 килокалории. А есть материалы – к примеру гидрид легкого металла лития, – которые требуют для плавления гораздо большего тепла. Так, чтобы килограмм твердого гидрида лития перевести в жидкость при температуре его плавления – 650 °С, потребуется 650 килокалорий.

Посмотрим теперь, сколько аккумулируется тепла. Предположим, что нам нужна температура в аккумуляторе между 700 и 600 °С, например, чтобы получить из воды пар для питания парового автомобиля. Воспользуемся для этой цели куском металла – железа или меди. При остывании с 700 до 600 °С каждый килограмм железа или меди выделит около 10 килокалорий. Если то же проделать с гидридом лития, то только при затвердевании на точке 650 °С он выделит 650 килокалорий, а дополнительно, остывая до 600 °С, – еще 30 килокалорий. Итого – 680 килокалорий, или в 68 раз больше, чем может дать неплавящийся металл! Это ли не «капсула»?

Действительно, если подсчитать, какой механической работе это соответствует, мы получим гигантскую цифру – 2,85 МДж/кг. Ведь каждая килокалория – 4,2 кДж энергии. Стало быть, менее 10 кг теплового аккумулятора хватило бы для прохождения 100 км пути! Это равно количеству бензина, необходимого автомобилю для такой поездки.

Не только гидрид лития обладает таким «магическим» свойством. Для получения рабочих температур теплового аккумулятора около 100 °С подходят кристаллы фосфорнокислого натрия. Если же нужна температура выше 1000 °С, то можно взять окислы бериллия, магния, алюминия, кремния, а также силициды и бориды некоторых металлов.

Мне уже думалось, что поиск «энергетической капсулы» близок к завершению, – энергетическая, вернее, тепловая «капсула» обещала быть не больше автомобильного бензобака! И я стал искать в литературе все, что было написано про тепловые аккумуляторы.

Что может тепловая «капсула»

Проведя несколько дней в библиотеке, я понял, что все мои мысли и проекты отнюдь не новы.

Американские инженеры уже испытали парафиновые накопители тепла, которые действительно оказались гораздо лучше водяных. Я мог не пачкать термос парафином…

Японские энергетики строят накопители тепла, состоящие из множества шариков, сделанных из окиси алюминия. Шарики сначала обдувают горячим воздухом, а потом они сами нагревают холодный воздух, который затем идет на отопление.

Немецкие ученые построили накопитель тепла в виде вращающегося котла с глауберовой солью. Когда котел подогревают, соль плавится, поглощая большое количество энергии. Накопленное тепло используют для разных целей, в частности для обогрева жилых помещений. Глауберова соль запасает тепла в 7 раз больше, чем нагретая вода, и в 12 раз больше, чем нагретые камни. Объем такого котла – около 3 м3.

Однако немецкие ученые на этом не остановились и предложили проект поистине гигантского теплового накопителя. Озеро площадью около 5 км2они задумали укрыть «одеялом» из пенопласта толщиной 10 см. После этого воду в озере нагреют до 75 °С. Благодаря «одеялу», тепло в озере будет сохраняться очень долго, многие месяцы, и его можно постепенно использовать. Странно, что этот проект появился в современной Германии, где так пекутся об экологии. Ведь рыба, живущая в этом озере, будет очень недовольна повышением температуры воды до 75 °С!

Но уж если говорить о гигантских тепловых накопителях, то проект российских ученых не имеет себе равных. В нем предлагается использовать солнечную энергию с помощью теплового накопителя массой 400 млн т! Этот накопитель можно представить себе в виде кольца, имеющего ширину 10 м и толщину в полметра, которое опоясывает Землю по экватору. Днем участки кольца, освещаемые солнцем, нагреваются, и заполнитель плавится. Ночью расплавленные участки гигантского накопителя выделяют тепло, снабжая энергией население всего земного шара. Проект этот показался мне хоть и заманчивым, но уж очень фантастичным, почти утопией.

Узнал я и о том, что тепловые накопители применяли на транспорте, причем более 100 лет назад. Как я уже говорил, во Франции, в городе Нанте в конце позапрошлого века ходил трамвай, работавший на сжатом воздухе. Так вот, этот трамвай на конечных станциях заправляли не только сжатым воздухом, но и кипятком.

Кипяток, играя роль накопителя тепла, согревал воздух после выхода его из баллона, когда газ сильно охлаждался. Нагревание повышало давление воздуха, и он совершал гораздо большую работу, чем без нагрева. Таким образом, пользуясь дополнительным накопителем тепла, можно получать от газового или воздушного аккумулятора энергию, даже превосходящую ту, что была затрачена при зарядке баллона.

Такой же принцип, но с заменой кипятка на горелку со змеевиком, был использован в американском пневмокаре, о котором мы уже говорили. Таким образом, получался своеобразный «гибрид» теплового двигателя и пневматического накопителя.

Схема пневмокара с подогревом воздуха горелками

Разумеется, я не смог отказать себе в удовольствии проверить такой «гибридный» накопитель в действии и сделал небольшую тележку – микромобиль. Основой послужил детский педальный автомобильчик – карт, какой продается в «Детском мире». На тележке я установил баллон углекислотного огнетушителя и соединил его прочным резиновым шлангом, протянутым через накопитель тепла со змеевиком, с пневматическим гайковертом, который по официальной версии приобрел в магазине инструментов, а в действительности «реквизировал» с заводского конвейера. Гайковерт состоит из пневмодвигателя, работающего от сжатого воздуха, и редуктора, понижающего скорость вращения патрона. С этим патроном я связал цепной передачей заднее колесо тележки, а второе посадил на ось свободно, на подшипниках.


Мой микромобиль – гибрид

Открывая вентиль баллона, я подавал углекислоту в гайковерт, он вращал колесо, и микромобиль катился. Но теперь пневмодвигатель не замерзал, как в моем недавнем опыте с воздуховозом. Я поставил на пути газа из баллона в пневмодвигатель накопитель тепла, используя кастрюлю, и внутри поместил змеевик из металлической трубки (он был взят из выброшенного холодильника). В кастрюлю заливалась кипящая вода, а впоследствии и расплавленный парафин. Углекислый газ, проходя через змеевик, сильно нагревался и отдавал микромобилю значительно больше энергии.

Если правильно подобрать передаточное число цепной передачи от патрона гайковерта к колесу, то на таком микромобиле можно проехать около километра. Позднее я додумался применить здесь цепную «коробку скоростей» от гоночного велосипеда и несколько баллонов с углекислотой, вследствие чего длина пробега микромобиля еще больше увеличилась. Баллоны с углекислотой нужно было периодически заряжать на тех же станциях, где заряжают водители свои автомобильные огнетушители. Или покупать уже заряженные баллоны в автомагазинах. Что и говорить, дороговатым получалось катание, но зато было интересно.


Пневматический гайковерт

Мой микромобиль всем очень нравился, сверстники любили на нем кататься. Каждый приходил со своим огнетушителем, а в автомагазине были рады, что залежалые баллоны хорошо распродаются. Только продавцов удивляло, что спрашивают именно углекислотные, а не другие типы огнетушителей.

У меня уже был опыт составления заявки на изобретение, и вскоре я подал ее на свой микромобиль. В ответ пришло письмо, в котором меня уведомляли о том, что моя заявка признана изобретением. Еще одно изобретение, а настоящей «капсулы» все нет…

Чтобы избавиться от дорогих баллонов с углекислотой, я решил поставить на микромобиль вместо пневмодвигателя паровую машину, которую мне обещали дать из школьного физического кабинета, а огнетушитель заменить обыкновенным паровым котлом. Правда, расчеты показали, что ни парафин, ни глауберова соль мне здесь не помогут – слишком низкая у них температура плавления. Тут вполне подошел бы гидрид лития с его 650 градусами. Однако все мои попытки достать гидрид или сходный с ним фторид лития не увенчались успехом. В хозяйственных магазинах его не было, в магазинах химреактивов мне постоянно советовали обратиться в конце месяца.

А пока я ждал очередного конца месяца, мне попалась на глаза – по-моему, в журнале «Техника молодежи», – информация как раз об использовании тепловых накопителей на транспорте. В маленькой заметке сообщалось, что в тепловой накопитель, установленный на мотороллере с так называемым двигателем Стирлинга мощностью в 3 лошадиные силы (2,2 кВт), заливали ведро расплавленного фторида или гидрида лития, и двигатель работал 5 ч, используя накопленное тепло.

Значит, мне уже не нужно тратить время на поиски гидрида лития, тепловой накопитель с ним уже есть. Вот только что это за двигатель Стирлинга?

Так и не вспомнив, где мне попадалось это название, я обратился к энциклопедии и узнал, что принцип действия двигателя, изобретенного в 1816 году шотландским священником Робертом Стирлингом, основан на нагревании одной его части и охлаждении другой; в самом двигателе находится газ – водород или гелий – под большим давлением. Двигатель Стирлинга сейчас считают одним из самых перспективных тепловых двигателей, он работает даже от тепла человеческих рук.

Я еще раз внимательно прочитал заметку в журнале и прикинул, сколько потребовалось бы горючего для совершения той же работы. Сравнение оказалось не в пользу теплового накопителя – горючего понадобится всего около 3 кг, или чуть больше 3 л!

В чем дело? Почему столь энергоемкий накопитель, как тепловой, менее эффективен, чем бак с горючим?

Когда же я вычислил массу всего силового агрегата, необходимого для автомобиля, то есть массу двигателя Стирлинга вместе с тепловым накопителем, то понял, в чем причина столь неутешительных результатов. Дело в том, что силовой агрегат оказался почти в 300 раз тяжелее теплового накопителя!

Это происходит прежде всего потому, что двигатель Стирлинга и тем более паровая машина очень тяжелы сами по себе. Кроме того, в механическую энергию, как выяснилось, можно перевести с помощью этих машин только около трети энергии накопителя. Две трети энергии, а следовательно, и массы накопителя для нас теряются.

Так или иначе, но для прохождения 100 км пути автомобилю понадобился бы силовой агрегат массой около 3 т, что в три раза больше, чем весит сам автомобиль! Ни о какой «капсуле» здесь говорить, естественно, не приходится…


    Ваша оценка произведения:

Популярные книги за неделю